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Abstract

The Bologna Optimal Higher-order Machine (BOHM) is a prototype implementation of the
core of a functional language based on (a variant of) Lamping's optimal graph reduction
technique (Lamping, 1990; Gonthier et al., 1992a; Asperti, 1994). The source language is a
sugared A-calculus enriched with booleans, integers, lists and basic operations on these data
types (following the guidelines of Interaction Systems - Asperti and Laneve (1993b, 1994),
Laneve (1993)). In this paper, we shall describe BOHM's general architecture (comprising the
garbage collector), and give a large set of benchmarks and experimental results.

Capsule Review

As lambda terms represent functional programs people have studied ways to evaluate them
efficiently. It can be proved that just reducing terms step-by-step, without having other in-
formation, is not an optimal reduction strategy. Levy (1978) has shown that using extra
information gives an optimal reduction strategy (in a certain class of strategies using infor-
mation). (But then, Albert Meyer has shown (unpublished) that there is no optimal strategy
if one uses arbitrary Turing computable tools.) So what matters is efficiency.

The present paper describes an implementation based on an extension of ideas in Lamping
(1990) by Asperti and Laneve. In a benchmark, using purposely non-optimised algorithms,
it is shown that the described implementation works rather well. The resulting optimism of
the authors may be compared to the more pessimistic view of Lawall and Mairson in their
'What isn't a cost model of the lambda calculus?' (1996 ACM International Conference on
Functional Programming, pp. 92-101). This paper, available from

http://www.cs.brandeis.edu/ mairson/Papers/icfp.ps.gz

gives an overview of several approaches, including ones related to the underlying paper.

1 Introduction

This paper describes the main architecture of the Bologna Optimal Higher-order
Machine (BOHM). BOHM is a prototype implementation of an extension of Lamp-
ing's optimal graph reduction technique (Lamping, 1990) for reducing A-expressions.
The source language is a sugared A-calculus enriched with booleans, integers, lists
and basic operations on these data types. The extension of Lamping's techniques
to this language is essentially based on Asperti and Laneve's work on Interaction
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Systems (Asperti and Laneve, 1993b, 1994; Laneve, 1993). In particular, all syntac-
tical operators are represented as nodes in a graph. These nodes are divided into
constructors and destructors, and reduction is expressed as a local interaction (graph
rewriting) between constructor-destructor pairs.

BOHM is just a high level interpreter written in C. Its purpose was not to be a
real implementation, but to provide some empirical evidence about the feasibility of
Lamping's technique (that, in our opinion, looks very promising). From this respect,
some care has been devoted in supporting the user with a large set of data relative
to the computation of each term (user and system time, number of interactions,
storage allocation, garbage collection, and so on). The source code is available by
anonymous ftp at f tp .cs .unibo . i t , in the directory /pub/asperti, under the
name BOHM.tax.Z (compressed tar format).

In this paper, we shall describe in some detail the general architecture of BOHM
(comprising the garbage collector), and give a large set of benchmarks and experi-
mental results. No theoretical topic is discussed; in particular, we shall not address
the correctness and optimality issues, since they have been already proved in Asperti
and Laneve (1993b).

The structure of the paper is as follows. In the next section we introduce the prob-
lem of optimal reduction of A-terms, and Lamping's graph reduction technique. This
section is rather sketchy - the paper requires some knowledge of the problem and of
Lamping's algorithm. Section 3 is devoted to an introduction to interaction systems,
which provide the starting point for the generalization of Lamping's technique to a
richer source language. In section 4, we define BOHM's source language, its opera-
tional semantics in the form of an interaction system, the initial graph encoding of
each term and the graph reduction rules corresponding to the rewriting rules of the
Interaction System. Section 5 discusses the crucial notion of a safe operator, which
allows us to introduce some essential optimizations into the machine. Section 6 is
devoted to the garbage collector. Finally, in section 7 we present a large number of
experimental results about BOHM's performance and its garbage collector.

2 Optimal reduction

The concept of optimal reduction of the A-calculus was defined by Levy (1978). The
idea was that of formalizing the intuitive notion of 'optimal sharing' of reducible
expressions, implicitly defining a lower bound to the 'intrinsic complexity' of /l-term
reduction.

Levy approached the problem of sharing from many different perspectives (copy-
relation, labelling, extraction), all of them leading to the unique and crucial notion
of redex family (see also Levy (1980) and Asperti and Laneve (1993a)). Two redex
are 'sharable' if and only if they belong to the same family. So, a redex family is
composed by 'copies' of a same redex, and could be conceptually represented by a
unique object (and reduced in a single atomical step). In this sense, the length of the
family reduction (i.e. the 'parallel' reduction where at each step a whole redex family
is reduced) would provide the above-mentioned lower bound to the complexity of
A-term reduction, in any possible implementation.
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The first and natural problem raised by Levy's thesis was that of getting some
empirical evidence that his abstract notion of sharing could be feasible: in fact, no
'traditional' implementation of 1-calculus (supercombinators, environment machines,
etc.) is able to share all redexes in Levy's families. The problem challenged the
functional community for over ten years, before Lamping (1990) proposed a solution
based on a complex graph rewriting technique. However, Lamping did not establish
any relation between the complexity of his reduction technique and the length
of the family reduction. This looks like a quite different problem, since we must
obviously take into account both the computational overhead introduced for the
correct handling of optimal sharing, and the fact that in any case ^-reduction is not
an atomic operation, and thus any complexity measure based on this notion could
eventually be misleading. So, the very abstract problem of establishing a concrete
measure for the intrinsic complexity of A-term reduction is still far from being
solved.

Unfortunately, Lamping did not provide any computational result or bench-
mark of his implementation (if he had any), making it impossible to evaluate the
practical interest of his technique with respect to more traditional implementation
architectures. The first empirical results on (a slight variant of) Lamping's tech-
nique appeared in Asperti (1995). However, those empirical results (that looked
very promising) suffered from the limitation of being relative to pure X-terms, and
could not be seriously considered as real 'benchmarks' for a full functional lan-
guage.

For this reason, we decided to extend the prototype in Asperti (1995) to a reacher
source language, adding some primitive data types (boolean, integers, lists) equipped
by the usual set of operations, and a few more control structures (if-then-else, letrec,
etc.). BOHM is the result of this extension. Although BOHM's source language is
still very limited, it contains the full core of a 'real' functional language. In this
sense, BOHM can be considered as the first empirical and practical test for optimal
implementation techniques.

2.1 Graph reduction

The aim of an optimal reduction technique is that of avoiding, during the com-
putation of a term, any duplication of reducible expressions (that would obviously
imply duplication of work). The main problem is that, in higher order languages,
redexes are created along the reduction in a quite complex way. So, the problem
amounts not only to avoiding the duplication of 'actual' redexes at a given stage
of the computation, but also the duplication of all those substructures that are not
still a redex, but may become a redex later on, due to an arbitrary long sequence of
reductions ('virtual' redexes).

Since, for optimal reduction, we must get some notion of physical sharing of
substructures, it seems natural to look for some graph representation of A-terms.
The first work in such a direction was due to Wadsworth (1971), where A-terms
are represented as directed acyclic graphs (essentially representing their abstract
syntax tree, plus the sharing information for variables). Unfortunately, Wadsworth's
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technique is not optimal. The problem is that, every time you have a redex r =
(Xx.M)N, you should start with duplicating the functional part F = Xx.M. Indeed, F
could be shared by other terms, and since it will be instantiated by the ^-reduction
r, we must eventually work on a new copy (see Peyton Jones (1987)). Even if you
normalize F before its duplication, you can eventually lose sharing, at this point.
Suppose, for instance, we have in F a subterm like (yP), where y is bound externally
to r. The subterm (yP) is not a redex, but its duplication can be as useless and
expensive as the duplication of an actual redex.

Levy proved that this problem cannot be solved by the choice of a suitable
reduction strategy. In fact, there are terms where every order of reduction would
duplicate work. For instance, consider the following term (Levy, 1978, p. 15):

P = (Xx.xlx...x)ky.((lx.x...x)(ya))

where a is some constant, and the two sequences of x have both length n. P has
two redexes. If the outermost is reduced first, we eventually create n residuals of the
inner one. Conversely, if we start reducing the innermost redex, n copies of (y a) are
created, and this will duplicate work later on, when I is passed as a parameter to
y. In conclusion, any reduction strategy is at least linear in n whilst we just have
exactly four redex families in this example!

2.2 Lamping's solution

Asperti and Laneve (1993a) clarified that all redexes in the same family define a
unique common path in the initial term of the derivation. In a sense, these paths
are the 'physical' information that must be shared in optimal reduction systems.
Lamping's idea was to define a set of local rewriting rules, on a suitable graph rep-
resentation of A-terms, that avoided duplications of these paths without preventing
the reduction of the term to its normal form. Roughly, in Lamping's system, the
duplication of a given term M is performed in a sort of 'lazy' way, by propagating
a duplication operator (a fan) along the graph structure of M, and stopping this
propagation at suitable 'critical' places (typically, just before the applications in
M). Suppose, for instance, we have the following configuration, where a duplication
operator is applied to M = Xx.{yx):

r
Xx

A
y

The duplication is done step-by-step, following the connected structure of M. The
first syntactical form traversed by the fan is the binder for x. Note that duplication
of the binder implies duplication of the bound variable (otherwise we would not
know to which of the two binders we should refer). So we obtain the following term:
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Xx' Xx"v
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This term is in normal form. No one of the two fan operators can be propagated
any further, until y will be instantiated to a functional term, and the corresponding
redex will be fired. Note that the 'virtual' redex between the application and the
unbound variable y is kept shared by this representation, while the two X of the
two instances of M have been put in evidence by the partial duplication we have
performed so far, and they can now possibly interact with the surrounding context.

As noted above, when a fan interacts with a A, a new fan (a fan-out) appears on
the edge representing the bound variable. To get a simple implementation of this
rule, it is convenient to have a direct connection through an explicit link between
the bound variable and its binder. So, X becomes now a ternary node, with two sons
respectively pointing to the body and the bound variable. With this representation
(that goes back to Bourbaki), the interaction between a X and a fan is expressed by
the rewriting rule shown in Figure 1.

Fig. 1. Fan-lambda interaction.

Fig. 2. Fan-application interaction.

Note that both X and application nodes (forms) have a unique and distinguished
'active' position, where they could possibly interact with other nodes. This position
(in Lafont's notation) is called the principal port of the form. All other ports of the
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form are called auxiliary. The main law behind the optimal implementation strategy
is the following:

(main law) a fan may duplicate a form if and only if it reaches the form at its principal
port.

We have already provided the duplication rule for A; the analogous rule for
application is shown in Figure 2.

2.3 The problem of fans

The only problem with fans is to understand what happens when they meet 'face to
face' during the reduction. Two reductions seem to be possible in this case:

X
V v

By the left rule, the effacement of the two fans 'completes' the duplication; this rule
should be only applied when the two fans belong to a same 'duplication process' (i.e.
the two fans are residual of a same duplication operator created by its interaction
with a 2-abstraction). In all other cases, fans should 'mutually duplicate' each other,
according to the right rule, above.

Unfortunately, there does not seem to be a simple way to solve the above
ambiguity. At the present state-of-the-art, the solution is that of associating an
integer with each fan, denoting its sharing-level or, if you like, the 'duplication
process' it belongs to. When two fans meet face to face, they will reduce according
to the first rule above if they belong to the same level, and according to the second
rule, if their levels are different.

Matters are complicated further by the fact that levels may change dynamically
during the computation. This requires the introduction of two more (indexed) control
operators (brackets and croissants) for increasing and decreasing levels along the
computation. The idea is that brackets and croissants define the 'interaction context'
of a fan in such a way that two fans in different contexts will never be paired.
From this point of view, the integer associated with each form represents the nesting
level of the context; a croissant indicates that we are entering a new context and
the square bracket that we are exiting from it. Operationally, we need two different
operators to this purpose, since they propagate in opposite directions.

3 Interaction systems

The main problem in extending Lamping's optimal graph reduction technique from
A-calculus to a richer source language is posed by the main rule of section 2.2. In
fact, to have a clean and local rewriting system for optimal reduction, we need all
syntactical forms of our generalized source language to preserve the property of

https://doi.org/10.1017/S0956796800001994 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001994


The Bologna Optimal Higher-order Machine 769

having a distinguished principal port, where they can possibly interact with other
forms (what is called 'local sequentiality' by Lafont).

To this end, Asperti and Laneve (1993b, 1994; Laneve, 1993) introduced the
notion of Interaction Systems (IS).

Formally, there are two possible ways to understand Interaction Systems (IS)
(Asperti and Laneve, 1993b, 1994; Laneve, 1993). From one side they are the intu-
itionistic generalization of Lafont's (1990) Interaction Nets, from which they borrow
the logical setting, the bipartition of operators into constructors and destructors, and
the principle of binary interaction. From the other side, ISs can be seen as a subclass
of Klop's (1980) Combinatory Reduction Systems (CRS), where pattern matching in
the left-hand side of a higher order rewriting rule is restricted to a very specific and
simple form of binary interaction between dual syntactical forms. As a main corol-
lary of this assumption, we can immediately generalize the Curry-Howard (Proofs as
Propositions) analogy from lambda calculus to an arbitrary IS. This means we can
associate every IS with a suitable 'intuitionistic' system: constructors and destructors
respectively correspond to right and left introduction rules, interaction is cut, and
computation is cut-elimination. As a consequence, ISs have a nice locally sequential
nature: in particular, the leftmost outermost reduction strategy only reduces needed
redexes.

Due to their logical (intuitionistic) nature, ISs are particularly suited to a gen-
eralization of Lamping's technique. In fact, from Gonthier et al. (1992a, b), it was
clear that the 'core' of Lamping's algorithm (fans, croissants, brackets and their
mutual interactions) provided a very abstract set of operations for implementing the
structural part of Intuitionistic Systems (i.e. via the Curry-Howard analogy, the part
charged with the management and sharing of resources in functional languages).
This becomes particularly clear when we consider logical systems such as linear
logic (Girard, 1986), where we have a neat distinction between the logical and struc-
tural part. The only purpose of Lamping's control operators is that of providing a
completely local (and optimal) implementation of the structural operations relative
to the box of linear logic. Then, the natural idea behind ISs was that of replacing
the logical part of intuitionistic logic (namely, abstraction, application and their
interaction through ^-reduction), with a richer collection of dual operators, binarily
interacting via cuts. In other words, we had to replace linear 1-calculus with a richer
linear calculus, that was naturally provided by Lafont's interaction nets. In this way,
we could keep Lamping's core, just adding the new 'logical' rules proper to the
system. Interfacing 'structural' and 'logical' rules is then a trivial task.

3.1 The Formal definition

An Interaction System is defined by a signature E and a set of rewriting rules R. The
signature E consists of a denumerable set of variables and a set of forms. Forms are
partitioned into two disjoint sets E+ and £~, representing constructors (ranged over
by c) and destructors (ranged over by d). Variables will be ranged over by x, y, z, • • •,
possibly indexed. Vectors of variables will be denoted by 3c,, where i is the length of
the vector (often omitted).
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Each form of the syntax can be a binder. In the arity of the form we must specify
not only the number of arguments, but also, for each argument, the number of
bound variables. Thus, the arity of a form f is a finite (possibly empty) sequence
of naturals. Moreover, we have the constraint that the arity of every destructor
d € IT has a leading 0 (i.e. it cannot bind over its first argument). The reason for
this restriction is that, in Lafont's (1990) notation, at the first argument we find
the principal port of the destructor, that is the (unique) port where we will have
interaction (local sequentiality).

Expressions, ranged over by t,t\,- • •, are inductively generated as follows:

(a) every variable is an expression;
(b) if f is a form of arity k\---kn and t\, • • •, tn are expressions then

f(3c^.ti, • • •, xjjn. tn) is an expression.

Free and bound occurrences of variables are defined in the obvious way. As usual,
we will identify terms up to renaming of bound variables (a-conversion).

Rewriting rules are described by using schemas or metaexpressions. A metaexpres-
sion is an expression with metavariables, ranged over by X, Y, • • •, possibly indexed
(see Aczel (1978) for more details). Metaexpressions will be denoted by H,H\- •.

A rewriting rule is a pair of metaexpressions, written H\ —> Hi, where H\ (the
left-hand side of the rule - lhs for short) has the following format:

and i ^ j implies Xt ^ Xj (left linearity). The arity of d is 0/cm+i • • • kn and that of c
is fci • • • km.

The right-hand side Hj (rhs for short) is every closed metaexpression, whose
metavariables are already in the lhs and built up by the following syntax:

H ::= x | t{xli.Hu--,xij.Hj) | * [ " ' / * , , • ' ""'• / x'k)

The expression X[Hl/Xl>- • • ,H" /Xn] denotes a meta-operation of substitution, as in
A-calculus, and defined in the obvious way.

Finally, the set of rewriting rules must be non-ambiguous, i.e. there exists at most
one rewriting rule for each pair d-c.

Interaction Systems are a subsystem of Klop's (Orthogonal) Combinatory Reduc-
tion Systems (Klop, 1980; Aczel, 1978). We just added a bipartition of operators
into constructors and destructors, and imposed a suitable constraint on the shape
of the lhs of each rule. As a subclass of non ambiguous, left-linear CRSs, Interac-
tion Systems inherit all good properties of their predecessors (Church-Rosser, finite
development, etc.).

Example 3.1
(The X-calculus) The application @ is a destructor of arity 00, and A is a constructor
of arity 1. The only rewriting rule is j?-reduction:

@Wx.X), Y) ^ X[Y/X].

D
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Example 3.2
(Booleans) Booleans are denned by two constructors T and F of arity £ (two
constants). Then you may add your favourite destructors. For instance, the logical
conjunction is a destructor and of arity 00, with the following rewriting rules:

and(T, X) -> X and(F, X) - • F

Another typical destructor is the if-then-else operator ite, of arity 000:

ite(T, X, Y) -» X ite(F, X, Y)-> 7

•
Example 3.3
(Lists) Lists are denned by two constructors nil and cons of arity e and 00,
respectively. The typical destructors hd, tl and isnil (all of arity 0) may be defined
by the following rules:

hd((cons(X, Y))-*X tl((cons(Ar, Y)) -> Y

isnil(nil) -• T isnil((cons(Z, Y)) -> F

D

Example 3.4
(Integers) For arithmetics, we consider each integer n as a distinguished constructor
n. Then, we may define arithmetical operations in constant time. The only problem
is the strictly sequential nature of ISs, that imposes interaction on a distinguished
port of the form. For instance, we may define

add(m,A:)->add,nW addm(n) -> k

where k = n+m. Note that we have an infinite number of forms, and also an infinite
number of rewriting rules. •

Example 3.5
(General recursion) The recursion operator fix.M —> M[llxM/x] is a bit problematic,
since ISs are based on a principle of binary interaction. The obvious idea is to
introduce a suitable 'dummy' operator interacting with fi. This 'dummy' operator
may be indifferently regarded as a constructor or a destructor, yielding the following
encodings for n:

In other words, we should look at fx as a constructor-destructor pair, permanently
interacting with itself. •

3.2 The intuitionistic nature of ISs

In this section we shall recall the logical, intuitionistic nature of Interaction Systems,
and their relation with Lafont's interaction nets. The aim of this section is to
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introduce and clarify some essential notions of IS-forms (polarities, principal and
auxiliary ports, bound ports, inputs and outputs, etc.).

3.2.1 Statics

An intuitionistic system, in a sequent calculus presentation (a la Gentzen) (see Girard
et al., 1989), consists of expressions, named sequents, whose shape is Ait ••• An\- B,
where At and B are formulas. Inference rules are partitioned into three groups (to
emphasize the relationships with ISs, we write rules by assigning terms to proofs):

Structural rules
r, x : A, y : B, A \-f.C

(Exchange)
F, y : B, x : A, A \-f.C

F, x : A, y : A \- t : C T \-t : C
{Contr.) {Weak.)

T,z :A,A h t[z/x,
z ly\ : C T,z :A \-f.C

Identity group

T \-f.A A,x:A\-t':B
(Identity) (Cut)

x :A\-x :A F, A h/f/J : B

Logical rules
These are the 'peculiar' operations of the systems that allow us to introduce new
formulae (i.e. new types) in the proof. The unique new formula P introduced by
each logical rule is called the principal formula of the inference. If the principal
formula is in the rhs of the final sequent, the inference rule is called right, and left
otherwise. Right and left introduction rules respectively correspond with constructors
and destructors in ISs. The shape of these rules is:

Tux
l : A l h h :Bi ••• Tn,x

n : A " h tn : B n

r , , , r n \- c(xl.tu •••,x".tn)-.p

for right introduction rules (constructors), and

r i , x ' : A l \- t , : B i ••• T m , x m : A m h t m : B m A , z : C \ - t : D

r i , - , r R ) A j : P h t[d(,,*'.I1,",**..m)/z] :D

for left introduction rules (destructors). The contexts F, are pairwise different.
A canonical example is implication, which gives the expressions of typed X-

calculus:

A I- r : / i z :B,T \-t! :C A, x : A \-t : B
(aright)

A, y : A-+B, T h r^-'Vz] : C Ah X(x.t) : A^B

An immediate consequence of the above construction is that every proof of an
intuitionistic system may be described by an IS-expression.

Following Lafont, we may provide a graphical representation of IS-forms. This
will explain some important relations between the arity of the forms and the way
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A-+B

Fig. 3. Graphical representation of @ and X.

they link upper sequents in a proof. In the notation of interaction nets, a proof of
a sequent A\,...,An \- B is represented as a graph with n + 1 conclusions, n with a
negative type (the inputs) and one with a positive type (the output). In particular,
an axiom is just a line with one input and one output.

Every logical rule is represented by introducing a new operator in the net (a new
labelled node in the graph). The operator has a principal (or main) port, individuated
by an arrow, that is associated with the principal formula of the logical inference.
For instance, the two logical rules for implications are illustrated in Figure 3.

The principal port of each operator may be either an input or an output. In the
former case it corresponds to a new logical assumption in the left-hand side of the
sequent (as for @), and the operator is a destructor; in the latter case, it corresponds
to the right-hand side of the sequent (as for X), and the operator is a constructor. The
other ports of the agents are associated with the auxiliary formulae of the inference
rule, that is, the distinguished occurrences of formulae in the upper sequents of the
rule. In the two rules above, the auxiliary formulae are A and B.

The auxiliary ports of an agent may be either inputs or outputs, independent
of the fact that it is a constructor or a destructor. Actually, in the general theory
of interaction nets, which is inspired by classical (linear) logic, there is a complete
symmetry between constructors and destructors, and no restriction is imposed on
the type of the auxiliary ports (in other words, there is a complete symmetry
between inputs and outputs). On the contrary, the fact of limiting ourselves to the
intuitionistic case, imposes some obvious 'functional' constraints.

Note first that auxiliary formulae may come from different upper sequents or from
a single one. For instance, the auxiliary ports of @ are in different upper sequents,
while those of X are in a same one. Lafont expresses this fact by defining partitions
of auxiliary ports. So, in the case of @, A and B are in different partitions, while
in the case of X they are in the same partition. Note that the concept of partition is
obviously related to that of binding. In particular, a partition is a singleton if and
only if the arity of the form for that port is 0. Moreover, the polarity of an auxiliary
port is the opposite of the polarity of the conclusion against which it has to be
matched. Then, the intuitionistic framework imposes the following constraints:

• In every partition there is at most one negative port. If a negative port exists,
we shall call it an input partition; otherwise it is an output. The positive ports
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of an input partition are called bound ports of the form (they are the ports
connected to bound variables).

• Every agent has exactly 'one output' (functionality). In particular, if the agent
is a constructor, the principal port is already an output, and all the partitions
must be inputs. Conversely, in the case of destructors, we have exactly one
output partition among the auxiliary ports, and this partition has to be a
singleton.

If k\... kn is the arity of a form, every k, denotes the number of positive ports in
the i-th input partition. In the case of a destructor, one input partition must be a
singleton (since it corresponds to the principal port), so its arity is 0. By convention,
in the concrete syntax of ISs, we have supposed that this is always the first partition
of the destructor (this assumption is absolutely irrelevant). Summing up, a form
with arity k\...kn is associated with an operator with 1 + YH=i(ki + 1) ports.

3.2.2 Dynamics

Dynamics, in logical systems, is given by the cut elimination process; the idea is
that every proof ending into a cut can be simplified into another one by means of
some mechanism that is characteristic of that cut (providing, in this way, a rewriting
system over proofs). In particular, there exist essentially two kinds of cuts. The most
interesting case is the logical cut, i.e. a cut between two dual (left-right) introduction
rules for the same principal formula. The way such a cut should be eliminated is
obviously peculiar to the system, and to the intended semantics of the formula. In
all the other cases (structural cuts), intuitionistic systems 'eliminate' the cut by lifting
it in the premise(s) of one of the rules preceding the cut (that becomes the last rule
of the new proof). As in the case of A-calculus, these kind of cuts are essentially
'unobservable' in ISs (they are dealt with in the metalevel definition of substitution).
So, let us concentrate on logical cuts only.

A typical case of logical cut is that for implication in intuitionistic logic:

r,x:A\-t:B A h t' : A y : B,@ h t" : C

r\-A(x.t):A^B A,z : ^ B , 0 h t " [ ® ( 2 / ) / , ] • C

r ,A,0ht"[@^')/y][^ ') / z] :C

The elimination of the above cut consists of introducing two cuts of lesser grade
(see Girard et al., 1989). The rewritten proof is:

r,x :A\-t:B y :B,@\-t" : C
:A

r,x:A,®\-t?'\!/y]:C

r ,A,0hf"[7y][7x] :
Since by assumption

this tneta-operation on proofs obviously induces the beta-reduction rule in the
underlying IS.
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Graphically, the above cut elimination rule can be represented as follows:

775

reduces to:

In general, let L and R be the left and right sequent in the cut-rule, respectively.
During the process of cut-elimination, the proofs ending into the premises of L
and R must be considered as 'black boxes' (only their 'interfaces', that is their final
sequents, are known). During cut-elimination, one can build new proofs out of these
black boxes. The unique constraint is the prohibition of having new hypotheses in the
final sequent of rewritten proof. This has two implications:

1. the variables bound by L or R (i.e. the auxiliary formulae of the rules) must be
suitably filled in (typically with cuts or introducing new rules binding them);

2. if a new axiom is introduced by the rewriting, then the hypothesis in the lhs
must be consumed (with a cut or by binding it via a logical rule) inside the
rewritten proof.

According to statics, a cut in an intuitionistic proof system corresponds to a term
of the kind

d(c(x1.Xu---,x
m.Xm),---,x".Xn).

that is just an IS's redex. The Xj represent the proofs ending in the upper sequents
of L and R (the 'black boxes' above), and the above conditions on the rewritten
proof are obviously reflected in ISs by left linearity and the assumption that the
right-hand sides of rules must be closed expressions.

Example 3.6
(Naturals) If we do not like to introduce all naturals as explicit constructors, we
could just work with two constructors 0 and succ, respectively associated with the
following right introduction rules:

A, I- n : nat
(nat, righto) l~ 0 : nat (nat, rights)

A h succ(n) : nat
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A typical destructor is add.

{nat,leftadd)
A h p : nat T, y : nat h t : A

A,F, x : nat h t[add(x'p)/y] : ^

where .4 can be any type. The following is an example of cut:

A h p : Mflt y : nat, & \- t : A
\- 0 : nat

A,x :nat, : A

A, 0

which is simplified into:

A h p : nat y : nat, &\-t :A

:A

The above elimination induces the IS-rule add(O, X) —> X, corresponding to the
equation t[add(x-p)/^][0/x] = t["/,]. Graphically:

reduces to:

\nat~ ®- A+

,

a
Example 3.7

(Lists) Lists are defined by means of two constructors cons and n i l of arity 00
and e, respectively. The typical destructors are hd and t l of arity 0. In the case of
lists of integers, we may write the following introduction rules for the type natlist:
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{natlist, rightnii) h n i l : natlist

A h n :nat T \-I : natlist

777

(natlist, rightcons)

(natlist, lefihd)

(natlist, left a)

A typical cut is:

A h n : nat F h / : natlist

A, F h cons(n, /) : natlist

A, F h cons(n, /) : natlist

F,y :nat\- t : A

Y, x : natlist \- t[hdM/y] : A

F,y : natlist h t : A

T, x : natlist h t[tl(x)/y] : A

&,y :nat\- t : A

0 , x : natlist h t[hd(x)/3-] : A

A,T,0 I- (thd(x)A][COns("''Vx]

In this case, the cut would be eliminated in the following way

A h n : nat &, y : nat \- t : A

A,@\-t[n/y] :A

corresponding to the reduction rule hd(cons(X, Y)) -> X. Graphically:

natlist+

reduces to:

Note here, by the way, the phenomenon of garbage creation (P1).

4 BOHM's source language

•

As already mentioned, it is possible to generalize Lamping's optimal implementation
technique from 2-calculus to an arbitrary interaction system. This means that

1. It is possible to translate an arbitrary IS-expression into a suitable graph
representation that involves Lamping control operators for representing the
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structural information (sharing), and new graphical form for the logical part
of the system (in particular, we shall have a new graphical form for each
operator of the signature).

2. Any IS-rewriting rule has an associated graph rewriting rule, corresponding
to the local interaction of two forms at their principal ports.

3. The graph rewriting rules are correct and optimal w.r.t. the given Interaction
System.

All three facts above have already been proved (Asperti and Laneve, 1993b, 1994),
and we shall not come back to these results in this paper. We merely apply those
theoretical results to a particular case, studying the implementation of a reasonable
core of a functional language. In particular, we present the translation and graph
reduction rules for the given source language, without ever tackling the correctness
and optimality issues. On the other hand, we shall discuss in some detail their
practical implementation in BOHM.

The source language we have considered is a sugared 1-calculus enriched with
some primitive data types (booleans, integers, lists) equipped by the usual operations,
and two more control flow constructs: an explicit fixpoint operator (letrec) and and
a conditional if-then-else statement.

In this section, we start by giving the formal syntax of the language. Then we
define its operational semantics in the form of an interaction system. Next we give
the graph encoding of each term, according to the general paradigm described in
Asperti and Laneve (1993b). Finally, we show the full set of graph reduction rules.

4.1 Syntax

The formal syntax of the language accepted by BOHM is the following:

(expr) ::= true
| false
| (num.const)
| (identifier)
| ((applist))
| \ (identifier).(expr)
| let (identifier) = (expr)in(expr)
| letrec (identifier) = (expr)
| if (expr)then(expr)else(expr)
| (expr)and(expr)
| (expr) or (expr)
| not(expr)
| (expr) < (expr)
| (expr) == (expr)
| (expr) > (expr)
| (expr) <= (expr)
| (expr) >= (expr)
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| (expr) <> (expr)
| {expr) + (expr)
| (expr) - (expr)
| (expr) * (expr)
| (expr)div(expr)
| (expr)mod(expr)

I {list)
| cons((expr), (expr))
| head((expr))
| tail((expr))
| isnil((expr))

(list) ::= ni7
| [(expr/ist)]

(exprlist) ::= (expr)
| (expr), (exprlist)

(applist) ::= (expr)
| (applist) (expr)

4.2 Reduction

In this section we provide the formal operational semantics of the language, in
the form of an IS. In particular, all rewriting rules will be written as destructor-
constructor interactions. In some cases, this will require the introduction of a few
auxiliary destructors. The full list of constructors, destructors and their respective
aritites is listed below.

constructors X : 1; true : e; false : s; m : e, for each integer m; nil : e; cons : 00.
destructors @ : 00; + : 00; +m : 0; - : 00; -m : 0; * : 00; *m : 0; div : 00; divm : 0;

mod : 00; modm : 0; and : 00; or : 00; not : 0; = = : 00; = = jn : 0; >: 00;
> m : 0; < : 00; <m: 0; > = : 00; >=m: 0; < = : 00; < = m : 0; < > : 00; <> m : 0;
head : 0; tail : 0; if-then-else : 000.

As already noted, letrec should be considered as a constructor-destructor pair.
Here are the proper interactions of the rewriting system:

• Beta-reduction
(ix.MN) -» M[N/x]

• Recursive definition
letrec x = M —» M[letrec x = M/x]

• Arithmetical operators
m+M -> +m(M)
+m(«) —* P, where p is the sum of m and n
m-M - - m ( M )
—m(") ~* P, where p is the difference of m and n
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m* M —• *m(M)
*m(») -* P, where p is the product of m and n
m div M —* divm(M)
divm(n) —> p, where p is the quotient of the division of m by n
mmodM —• modm(M)
modm(n) -> p, where p is the rest of the division of m by n

• Boolean operators
true and M —> M
false and M —> false
true or M —> true
false or M —> M
not false —• true
not true —> false

• Relational operators
m == M -* = = m (M)
==m {m) -> true
==m (n) —> false, if n ^= m
m < M -» < m (M)
<m (") - • true, if m is less than n
<m (») —» false, if m is not less than n
m> M - • >m (M)
>m («) -> true, if m is greater than n
>m («) —» false, if m is not greater n
m <= M —> <=m (M)
<=m (n) -> true, if m is not greater than n
<=m (") -»• false, if m is greater than n
m >= M -* >=m (M)
>=m (n) —> true, if m is not less than n
>=m (») - • false, if m is less than n
m <> M —• < > m (M)
<>m (w) —» false
< > m (n) —> true, if n ^ m

• Operator for list manipulation
head(cons(M,N)) —> M
tail(cons(M,N)) -» N
tail(nil) —> nil
isnil(cons(M,N)) —> false
isnil(nil) —> true

• The control flow operator if-then-else
if true then M else N —> M
if false then M else N —> M
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I M ] = [M ] „

781

[*]„ = [ k X.M ] =

X ) [ M N ] n= ; [ M ] n I : [ N ] n+1 :

•,[M]n;
X"ftXn

[true]n=(T)n [false] n= (F) „

[cons(a,l)]n=

[ M ] n [ N ] n

[M-N] = \£"DJn

[ M ] n [ N ] n

[M*N] = SES2R,
n =

[ M ] n [ N ] n

[MdivN] = (DIV

[Ml [N] ,

[MmodN]n=

[Ml [N] r

4.3 Graph encoding

In this section we shall define the translation rules for transforming the input term
in its initial graphical representation.

Any term N with n free variables will be represented by a graph with n +1 entries
(free edges): n for the free variables (the inputs), and one for the 'root' of the term
(the output). The three main operators of Lamping (fan, croissant and brackets) are
used for representing sharing.
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[MandN]n=

[ M ] n [ N ] n

[MorN] = £> R >

[ M ] R [ N ] n

[ M = N]n = (EQ

X
[ M ] n [ N ] n

[ M o N ] = (NOTE

[ M ] n [ N ] n

+ 1

[ M > N] =

7 N\-
[ M ] n [ N ] n

[ M >= N]n = (MEQO

[ M L [ N ] ,

[ M < N ] n = (LESS

[ M l [ N ] r

[M<=N] =

[ M l [ N ] r

[tail(M)]n= (CDR)

[ M L

[isnil(M)]n= CjESTNIL

?
[ M L

[if B then M else N] = Cif_then_eise [letrecf = M] =

Again, the rules below are a mere specialization to our particular source language
of a general translation method for ISs described in Asperti and Laneve (1993b).
The main differences with respect to Asperti and Laneve (1993b) are:

1. We shall follow Asperti's (1994) translation instead of Gonthier's; for the
formal relation between these different approaches see Asperti and Laneve
(1995).

2. The translation has been optimized in several places to take advantage of
the linear behaviour of most parts of the interaction rules (see remark 7.6 in
Asperti and Laneve, 1993b).

In all the previous rules, when the topmost form has more than one son, all
common variables in these sons are supposed to be shared by means of fans (with
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a level equal to the index of the translation function). For simplicitly, this has been
explicitly described only in the case of the application.

4.3.1 Implementation issues

The graph created by the previous rules is unoriented (you should not confuse the
arrow denoting the principal port of a form with an oriented edge). For this reason,
and to facilitate graph rewriting, all edges will be represented by a double connection
between nodes. In particular, for each port of a syntactical form F we must know
the other form F' which is connected with it at that port, and also to which port of
F' it is connected.

Obviously, each form also has a name (FAN, APP, ADD,...), and an index. The
typical representation of a ternary form may thus be described by the following
Struct type in C:

typedef struct form
•C

int name,
/* name of the form */
/* (FAN, APP, ADD, */
/* SUB, EQ, . . . ) */

index;
/* index of the form */

int nport[3];
/* numbers of the ports of adjacent */
/* forms where the three ports */
/* of th i s form are connected to */

struct form *nform[3];
/* pointers to the forms */
/* where the three ports */
/* of th i s form are connected to */

} FORM;

Given a pointer / to a form, the field f->nform[i] will denote the next form
g connected with / at port i. Similarly, f->nport [i] says to which port of g / is
connected.

In particular, (f->nform[i] )->nform[f->nport [i]] == f.

Remark By convention, the principal port of a form has number 0.

Even if the previous implementation introduces some redundancy, it allows us to
navigate in the graph in a very easy way.f

As a simple example, let us see the function that connects together two forms

f It seems possible to avoid a systematic use of bi-links, restricting them to particular edges
of the graphs (typically, those representing cut or axioms). Although this solution could
reasonably save some space and could also improve the performance of the system, it looks
more complex to implement, and we finally rejected it in the design of our prototype.
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at two specified ports (this is the most frequently used function of BOHM; each
atomic interaction calls connect 3-4 times, on average):

/ * the following function connects together the port portfl of * /

/ * fonnl to the port portf2 of form2 * /

connect(fonnl,portfI,form2,portf2)

FORM *forml;

int portfl;

FORM *form2;

int portf2;

{
fonnl->nport[portfl] = portf2;

forml->nform[portfl] = form2;

form2->nport[portf2] = portfl;

form2->nform[portf2] = fonnl;

4.3.2 Global definitions

The syntactical construct def ( identifier ) = ( expr } allows the user to declare an
expression as a global definition, binding it with an identifier name. Every time we
have a new global definition, the graph corresponding to the term is built up and
closed with a ROOT form that is pointed to by the identifier in the symbol table.

When we use a previously defined global expression, we simply attach a FAN
at the top of the corresponding graph, implicitly creating a new instance of the
expression. In this way, the global definition is shared by all its instances. Since a
global expression is a sharable data item, its graph must be created starting from
level 1, and not 0 as for usual expressions. This handling of global definitions is
responsible for an odd operational behaviour of the machine: actually, the second
time we evaluate the same expression containing global identifiers, the reduction
time can be much smaller than the first time. The reason is that we are sharing
with the previous call all partial evaluations which have already been performed on
global expressions. So, this choice allows us to profit from the sharing of terms and
their reductions following the philosophy of optimal reduction. However, in some
cases it also introduces a trade-off from the viewpoint of memory allocation. In fact,
the partially evalutated global expression may need more space than the original
term.

4.4 Graph reduction

Once the graph representing an expression has been built, the reduction proceeds
according to the following graph rewriting rules. Again, these rules are a special case
of a general paradigm for Interaction Systems developed by Asperti and Laneve
(1993b, 1994), so we shall not prove their correctness here. In fact, most of them are
intuitive:
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© 0

The rule for the recursion operator MU (the last rule above) deserves a few words.
Recall that it corresponds to the reduction rule letrec x = M —> Mfletrec x = M/x].
The idea is that, to preserve optimality, the two occurences of the body M in the
right-hand side of the reduction rule must be shared. The best way to understand
the graph rewriting rule is by 'reading back' the graph in the right-hand side. Obvi-
ously we start from the root, and immediately meet the first occurence of M; note
that we are entering this occurence from the *-side of the fan-in. If travelling along M
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we reach the variable x, according to Lamping's context semantics, we must exit
from the *-branch of the fan-out (that is, matching the initial fan-in). Now, we get
a new MU operator, whose body is nothing else that another instance of M. Note
that this time we are entering this instance from the o-side of the fan-in. When we
exit again through the variable x, we now discover that this variable is bound by
the new MU operator.

Square brackets and croissant are put in such a way as to guarantee the correct
matching of the newly introduced fan nodes, and to avoid any interference between
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a

b I c x

Fig. 4. Control rules.

them and other possible fans in the graph (see Asperti and Laneve (1994) for a
formal correctness proof).

Having denned the proper graph rewriting rules (i.e. those rules that correpond to
interactions between syntactical operators), we should finally add the rules relative
to the interaction between proper forms and control nodes (or control nodes alone).
Luckily, these rules have a high degree of parametricity. The idea is that, in these
interactions, one operator is active, and the other is passive. The active operator is
that with the lower index (in Gonthier's translation, the situation would be dual). If
the active operator is a fan, it duplicates the form it is traversing; if it is a croissant
it decrements the level of the form it traverses; and if it is a square bracket, it
increments it. When two control operators with a same index meet together, they
mutually erase each other.

According to the main law of optimal reduction, the interaction between a fan
and a syntactical form must be restricted to the case where the fan reaches the
form at its principal port. By analogy, this rule can be extended to all graphical
forms (as proved in Gonthier et al. (1992a)), and we followed this 'minimal' ap-
proach in BOHM. However, note that, for brackets and croissant, this is not strictly
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necessary from the optimality point of view. In fact, Lamping permitted a 'rapid
propagation' of brackets and croissant, no matter which port they were interacting
with. The practical relevance of this rapid propagation is still a matter for further
investigation.

BOHM's 'control rules' are shown in Figure 4.

4.4.1 Implementation issues

BOHM is a lazy (weak) machine. It does not perform the full reduction of a term,
but stops reducing when the topmost operator in the graph becomes a constructor.
This halting situation is easily recognized, since it means that the root of the
term becomes directly connected to some operator / at its principal port (i.e. by
convention, the port with number 0). In this case, the name of / is assumed to be
the result of the computation.

Reduction proceeds according to the following idea. We start looking for the
leftmost outermost redex. In particular, starting from the root of the term, we
traverse any operator that we reach at an auxiliary port, always exiting from its
principal port, until we reach an operator / at its principal port. Now two cases are
possible: either the previous operator was the root node (and this is the halting case);
or eventually we have found a redex (since the two final operators are eventually
connected at their principal ports). In this case, the redex is fired by applying the
associated graph reduction rule, and we start the process again.

To avoid having to rescan the term from the root every time, it is convenient to
push all operators leading to the first redex on a stack (similar to the stack of the
G-machine). After firing a redex it is enough to pop the last element from this stack,
and start searching for the next redex from this node.

The following code is the main loop of the reduction machine:

reduce_term(root)

FORM *root;

-C
FORM * f l ,

*f2,

•erase;

int type_error;

type_error = FALSE;

fl = lo_redex(root) ;

f2 = fl->nform[0];

while ((fl != root) && (!type_error))

{
if (fl->index <= f2->index)

reduce_redex(fI,f2);

else

reduce_redex(f2,f1);
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fl = lo_redex(pop());
f2 = fl->nfonn[0];

if(!type_error) rdbk(root);

where lo_redex is defined as follows:

FORM *lo_redex(f)

FORM *f;

{

FORM *temp;

temp = f;

while (temp->nport [0] != 0)
{

push(temp);
temp = temp->nform[0];

}
return temp;

reduce_redex(f I,f2) is just a big switch based on the name o f / I and /2 . For
example, let us see the code corresponding to a couple of typical interactions. This
is the code in the case the first form / I is AND:

case AND:
switch(f2->name)

{

case F:
connect(fl->nform[l],

f l ->nport [ l ] ,
f2,
0);

myfree(f1);

break;

case T:

connect(fl->nform[l] ,
f l ->npor t [ l ] ,
fl->nform[2],
fl->nport[2]);

myfree(f1);
myfree(f2);
break;

default:
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printf(" > type error\n");
type_error = TRUE;

break;

>

This is the complex case of MU (the most complex reduction in BOHM):

case MU:
allocate_form(&newl,CROISSANT,fl->index);

allocate.form(&new2,FAN,fl->index);

allocate_form(&new3,SQUARE,fl->index);

allocate.form(&new4,CROISSANT,fl->index);

allocate_form(&new5,FAN,fl->index);

allocate_form(&new6,SQUARE,fl->index);

connect(newl,l,fl->nform[0] ,fl->nport [0]);

connect(newl,0,new2,1);

connect(new3,0,new2,2);

connect(new2,0,fl->nform[l] ,fl->nport [1]);
connect(new5,0,fl->nform[2],fl->nport [2]);
connect(new5,l,new4,0);
connect(new5,2,new6,0);
connect(new6,l,f1,2);
connect(new3,1,f1,1);
connect(new4,1,f1,0);
fl->index++;

5 Safe operators

The notion of a safe operator was introduced for the first time in Asperti (1995).
From the implementation viewpoint, the main problem of Lamping-Gonthier's
optimal reduction technique is the accumulation of control operators that can easily
clutter the graph, leading to an exponential explosion of the reduction time. The
general idea is that there are some 'safe' cases where particular sequences of control
operators can be reduced to simpler configurations. The relevance of safe operators
and of the associated rules has already been proven by Asperti (1995) by means of
empirical results: in many typical cases, by adding these rules we can pass from an
exponential to a linear or polynomial reduction time (that is, something more than
a mere 'optimization').

The idea of safe operators and their associated reduction rules were originally
inspired by the categorical interpretation of optimal reduction passing through linear
logic, described in Asperti (1994). Actually, the 'safe rules' are nothing other than the
natural counterpart in sharing graphs of the three comonads equations associated
with the comonad '!' (the box) of linear logic.

In this paper we shall try to avoid any reference to category theory or linear logic,
providing a completely operational understanding of the problem.
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5.1 Accumulation of control operators

Consider the following sequence of control operators:

,-n+l -f

We immediately realize two important properties of such a configuration:

1. The pair of control operators may always be propagated together through
other operators (i.e. they can be seen as a unique 'compound' operator).

2. The total control effect of this 'compound' operator on the nodes they are
propagated through is just null.

Recall that the only problem with the optimal reduction technique is guarantee-
ing the correct matching of fan nodes (actually, brackets and croissants are just
introduced for this purpose). Since the above 'compund configuration' has no total
control effect on the mutual level of fans, the natural idea would be to reduce the
above configuration to an identity, i.e. a straight line:

e-n+l

Unfortunately, this is not possible in general. The problem is very simple: we forgot
to take into account a possible annihilation of the innermost operator, as described
by the following critical pair:

(-n+\ —|" [— n

Obviously, only the the first reduction is correct, while the second one can easily
lead to wrong and irreducible configurations (deadlocks). If it were possible to
exclude the possibility of such an annihiliation (i.e. the existence, at a given time, of
'out-forms' matching a given 'in-form'), the (*)-rule above would be completely (and
obviously) correct. This is exactly the idea behind a 'safe' operator.

Let us prove with an example that the above case of annihilation can actually
occur, in practice (this is not completely obvious). Consider the term

where / is the identity and P is any term. If you reduce this term according to a
leftmost outermost strategy in the system enriched by (*), after four beta reductions
you are left with the following row of control operators leading to P:

,-Q ,-1 -jO ,_! [-0 p

Now, the correct final configuration would be:

,-Q , -1 , -2 p

but pursuing a leftmost outermost reduction you would instead obtain the following
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deadlock situation:

A completely analogous problem concerns fan and garbage nodes (see section 6).

5.2 Safe operators

Safe operators are control operators which have a sort of 'global status' in the
graph. This means no residual of their information is still (or yet) propagating
inside the graph. In other words, you may look at a safe operator as a sort of
'fresh' node; note in particular that, generalizing Lamping's distinction between
fan-in and fan-out to all control operators, safe operators are eventually 'in'-forms.
Precisely,

1. all control operators are safe in the initial graph;

2. an operator becomes unsafe when some rule creates 'out'-residuals of its
information. This can merely happen when the safe operator interacts with a
(constructor-)binder of a higher index than its own;

3. an (unsafe) operator of index n that, during its broadcasting, reaches (at their
auxiliary ports) either a safe bracket of index n or n — 1 or a safe fan of index
n, becomes safe again.

From the implementation viewpoint, it is sufficient to add a tag to each node,
expressing its 'safeness'. The tag is modified in the obvious way, according to the
above-mentioned rules.

It is possible to prove that a residual of a safe operator (created by its broadcasting)
may only be annihilated by another residual of the same operator (the residual
relation is defined in the obvious way). Note, in particular, that rule 3 above is
operationally justified by the fact that, in the configurations described, the only
possibility to annihilate the 'outermost' form would be to annihilate the 'innermost'
form, first (the 'direction' is implicitly defined by the fact that all safe operators are
in-forms).

Remark Until we do not allow a 'rapid' propagation of brackets and croissants
through auxiliary ports of proper forms (that does not invalidate optimality, and
is completely correct), case 3 above in practice never happens. The reason for this
is that the propagation of control operators is interrupted too soon inside the box,
and they will never reach its extremity. In fact, this rule was not implemented in
the version of BOHM described in this paper; we just report it for the sake of
completeness.
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Theorem 5.1

The following 'comonad' rules

<=" n" ~»

are correct between safe operators.

Proof

An easy consequence of the following considerations:

1. all pairs of control operators in the left-hand side of a comonad equation may
always be propagated together (i.e. they can be seen as a unique operator);

2. the total control effect of this 'compound' operator on the nodes they are
propagated through is equal to the control effect of the right-hand side of the
rule (i.e. it is null for the first two equations, and it amounts to a double level
shift for the third equation);

3. if the innermost form of (a residual of) the pair is annihilated, then the
outermost form can be annihilated at the next step. Indeed, the two operators
are residuals of a 'compound' safe operator, and they can only be annihilated
by other residuals of the same 'compound' configuration.

•
As already noted in the previous section, point 3 in the previous proof generally

fails for unsafe operators.

Remark

1. According to our experimental results, only the first rule above seems to be
really essential, in practice. This may be intuitively explained by noticing that,
while the first comonad rule is a sort of '/^-conversion', the other rules are
more akin to '^-conversions'.

2. Remark 5.2 does not exclude the possibility of dynamically creating reducible
configurations for the comonad rules: consider, for instance, the reduction of
Xx.{I (I x))\ along this reduction we can twice apply the first comonad rule,
and in one case the redex is created along the reduction.
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N

Fig. 5. Creation of garbage.

M

N

©'
Fig. 6. Creation of garbage.

6 Garbage collection

In pure A-calculus, the creation of garbage is related to the presence of abstraction
nodes whose bound variable does not appear in the body. Such situations are
represented by introducing a new node type, called the erase operator, which is
connected to the bound port of the /l-node.

Consider the term (Xx.N)M, where x does not appear in N. As shown in Figure
5, after the ^-reduction, the term M appears disconnected from the main graph,
becoming garbage.

Actually, things are usually more complex, since M may share some subterms
with the main graph, and these subterms cannot be regarded as garbage; moreover,
the whole term M would remain connected to the main graph through the shared
subterms.

As far as we consider pure lambda calculus, garbage collection is not really
impelling; on the contrary, it becomes of dramatic importance in the enriched
language of BOHM. In fact, a lot of BOHM's rewriting rules create garbage. A
couple of typical examples are shown in Figure 6.

In the first case in Figure 6, the condition of the ifJhen^else construct is true, so
the subterm N, corresponding to the 'else branch' becomes garbage. In the second
case, the evaluation of the boolean expression reduces immediately to false, and the
remaining part of the expression is useless.
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Fig. 7. Garbage-fan interaction.

Other important cases concern lists; for instance, after an application of the
operator CAR, which selects the first element of a list, the tail of the list can be
discarded.

In the context of optimal reduction, it appears difficult to implement an efficient
garbage collection procedure using 'classical' algorithms (we mean 'marking active
elements - collecting garbage elements'), for the following reasons:

1. marking the active elements would require a complex visit of the graph, based
on the so-called context semantics, and the complexity of such a visit could
be exponential in the size of the graph;

2. we could limit the collection of garbage to a physically disconnected sub-
graph; however, particularly with BOHM's weak reduction strategy, garbage
collection would be delayed considerably in the reduction of the term, causing
a possible explosion of the garbage.

The second point deserves further explanation. Consider, for instance, the case of
a shared list (a fan over a cons). Suppose, moreover, that one branch of the fan
has become garbage (i.e. we have a garbage operator at one auxiliary port of the
fan). This situation often occurs with BOHM's rules. Obviously, we would like to
eliminate the fan and garbage operator, and attach the list to the active branch of
the fan. Adopting the policy in point 2 above, we could not collect any garbage
until we finished duplicating the whole list. In other words, in optimal reduction,
garbage should always be collected as soon as possible.

As pointed out by Lamping, an efficient way to integrate a garbage collector
in the optimal graph reduction technique is based on local interactions of erase
operators (®). The basic idea is that the erase operators are propagated along the
graph, collecting every node encountered during their walk.

In BOHM, all erase operators are mantained in an appropriate data structure (a
list); when garbage collection is activated, each of them proceeds interacting (i.e.
erasing) the forms it encounters and adding new erase operator to the list, until
possible.

Note that there are some situation in which no interaction is allowed; typically
when an erase operator reaches the bound port of an abstraction, or an auxiliary
port of an unsafe fan. This latter case is particularly important. Actually, when a
garbage operator reaches a fan at an auxiliary port, one would be tempted to apply
the rule in Figure 7.

Indeed, one of the two branches of the information shared by the fan has become
garbage, and the obvious solution would seem to be to simply drop this branch.
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Unfortunately, this rule is not correct in general, due to the problem described in
the following diagram:

That is, if we allow a fan-in(-out) to interact with an erase operator according to
the rule in Figure 7, we could preclude to some 'paired' fan-out(-in) the possibility
to annihilate itself. Luckily, the rule is perfectly correct for safe fan (for the trivial
reason that no 'paired' fan-out could possibly exist, in this case).

Another interesting point is the choice of an appropriate strategy for activating
the garbage collection procedure. Our empirical studies seem to suggest that the best
strategy is to attempt garbage collection every time some reduction rule generates
new garbage, i.e. as soon as the garbage is created. Operating in this way, we obtain
two important advantages:

• the size of the graph is always kept to a minimun along the reduction;
• collecting garbage as soon as possible prevents it from becoming involved in

useless interactions, resulting in a sensible improvement in performance.

Figure 8 contains the complete set of garbage rules for pure lambda calculus. They
are generalized in the obvious way to the other forms of the syntax. In particular, a
garbage operator can efface any syntactical form, no matter at which port it reaches
the form, unless it is a bound port. In this case it stops there. After collecting the
form, we broadcast the garbage operator to all other ports of it, and start the process
again.

Note that the erase node has no index, and its interactions are independent from
the index of the adjacent node. Note also that the first two rules for fans may only
be applied in case the fan is safe; otherwise, no interaction is possible, and the erase
operator is stopped.

6.1 Implementation issues

To improve the eflSciency of the garbage collection procedure, four new nodes have
been introduced (Figure 9). They do not represent either new syntactical elements
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Fig. 8. Garbage collection rules.

nor new control operators; these new forms are a sort of abbreviation for particular
configurations of other forms. In particular:

• The form UNS_FAN1 represents a configuration where an erase operator is
'blocked' on the 'first' auxiliary port of an unsafe fan.

• UNS.FAN2 is similar to the previous one, but relative to the 'second' auxiliary
port.

• The form LAMBDAUNB represents an abstraction node connected at its
bound port with an erase.

• MU-UNB is similar to the previous case, but relative to the fixed point
operator.

The introduction of these new forms has two important advantages:

• All erase nodes which cannot be propagated any further are merged into their
adjacent nodes, so it is easy to recognize when garbage collection is possible:
an erase operator is physically present in the graph if and only if it is 'active'.

• The forms UNS.FANl and UNS.FAN2 prevent many useless duplication
operations in the graph. Suppose X is an arbitrary operator that can interact
with the fan in Figure 10; without the four new forms, things would work
as shown in Figure 10. First X is duplicated by the fan, and then eventually
deleted by the garbage collection procedure. Using the operator UNS.FAN2
no duplication is performed (Figure 11).
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unsafeV// u n s fanl unsafeV/ * u n s fani

Fig. 9. New auxiliary forms.

\ \
X X C"bage X

i Collection

Fig. 10. Reduction without new forms.

\

uns_fan2\/ i

Fig. 11. Reduction with new forms.

Another annoying problem with the garbage collector is that it could inadvertedly
erase some operators in the leftmost-outermost-redex stack (see section 4.3.1). Our
solution has been to introduce a new tag for each form denoting if it is either in
or out the stack. Then, the garbage collector, instead of erasing forms which are in
the stack, will simply mark such elements as 'collected'; the form will be physically
disposed of when it is eventually popped from the stack.

To evaluate the performance of the garbage collector, BOHM is enriched with
some menus to select the desired collecting strategy. The possibilities are:

(1) Maximum Garbage Collection: the procedure is activated as soon as possible.
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(2) Garbage Collection Depending on Memory Occupation: the procedure is at-
tempted when the total number of allocated operators reaches a certain limit
fixed by the user.

(3) No Garbage Collection: garbage collection is not active.

The menus are shown by calling the program with option -s or by typing the
directive #option;; in the interactive environment.

7 Examples and benchmarks

In this section we shall discuss several examples of computations, with the aim of
providing a concrete measure of BOHM's performance. In particular, to give the gist
of optimality and its actual power, we shall compare the performance of our system
with a different, fully developed and largely diffused implementation: CamlLight. |
CamlLight (Leroy and Mauny, 1992) is a small, portable implementation of the ML
language (about 100K for the runtime system, and another 100K of bytecode for
the compiler) developed at INRIA-Rocquencourt. In spite of its limited dimensions
(versions for Macintosh and IBM PC are also available), the performance of Cam-
lLight is quite good for a bytecoded implementation: five to ten times slower than
SML-NJ.

Obviously, we chose a set of examples particularly suited to the optimal reduction
technique. However, it is not our intention to keep BOHM's actual performance
secret; in the total absence of sharing, BOHM is much slower than CamlLightJ:
approximately ten times for pure lambda calculus, and even worse (up to 50 times!)
for more numerical computations.

However, recall that:

1. BOHM is just an interpreter at a very high level (the graph is a real graph in
C, and we are continuously allocating and deallocating nodes from the heap!);

2. numerical computations are obviously slow, due to the quite cumbersome
handling of arithmetic;

3. experimentally, the slowdown of BOHM w.r.t. CamlLight looks constant, while
in many cases CamlLight is just exponential w.r.t BOHM.

The main problem of optimal reduction is that, to get a sufficient amount of sharing,
you should heavily use higher-order features in your program (like, say, iterating a
higher order, non-linear functional). In other words, functions should become the
real object of the computation. This is not often the case in the practice of functional
programming, but nevertheless, there are some examples where optimality can be

f We had no special reason for choosing CamlLight instead of some other functional
language. We just wished to offer a comparitive example.

% This gap has been substantially reduced with the new version of BOHM: its performance
in the worst case is now always comparable with typical lazy implementations, such as
Yale Haskell. Since the new version of BOHM contains some optimizations which are not
discussed in this paper, we decided to leave the old benchmarks.
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really useful: a typical case is the incremental modifications of arrays represented as
functions.!

However, the optimal handling of sharing is not the only advantage of BOHM.
In fact, another essential feature of BOHM is that it joins all the advantages of lazy
and strict reduction with, moreover, full evaluation of the argument (i.e. pursuing
reduction under the lambda). The example of Tartaglia's (Pascal's) triangle should
be illuminating, in this respect (see below).

All the examples discussed here can be found in a BOHM tar file, in the subdi-
rectory examples. The tests have been performed on a Sparc Station 5.

7.1 Reduction

Example 7.1
Our first example is a function for computing prime numbers based on Erathostenes'
sieve. In particular, (prime nm) is 1 if m is prime with respect to the n first prime
numbers, and 0 otherwise. In other words, (prime n) is the nth approximation
function in Erathostenes' sieve.

{The following program computes Erathostenes' sieve.}

{starting approximation function}
def constOne = \ n . l ; ;

{(min g n m) i s the n-th input value k of g (larger than m)
such that (g k)<>0 }
def min = letrec mi

= \g.\n.\m. if ((g m) <> 0)
then if n == 0 then m

else (mi g (n-1) (m+1))
else (mi g n (m+1)) ; ;

{(minln g n) is the n-th input value k of g such that (g k) <> 0}

def minln = \g.\n. (min g n 1);;

{criv computes the next approximation function in Erathostenes' sieve}

def criv = \n.\g-\x. let a = (minln g n) in

if ((x mod a) <> 0 or (x == a))

then (g x)

else 0;;

{(iterate n g f) = (g n (g n-1 (g n-2 ( (g 1 f)...))))}

def iterate = letrec it

f Another funny example, not discussed here, where BOHM is definitely (i.e. exponen-
tially) better than traditional implementations, is the direct evaluation of the denotational
semantics for imperative languages.
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Table 1. Erathostenes' sieve

801

Input CamlLight BOHM

(prime 2 7) 0.00 s 0.00 s
1952 interac.

125 proper interac.

(prime

(prime

(prime

(prime

(prime

(prime

2 50)

4 15)

5 3500)

6 20)

7 49)

10 50)

0.00 s

0.12 s

1.15 s

16.30 s

explodes

92

425

755

1228

1934

5594

655
proper

5601
proper

7904
proper

11937
proper

16990
proper

43463
proper

0.00 s
interac.
interac.

0.08 s
interac.
interac.

0.05 s
interac.
interac.

0.13 s
interac.
interac.

0.23 s
interac.
interac.

0.78 s
interac.
interac.

= \n.\g.\f. if n == 0 then f

else (g n (it (n-1) g f));;

{(prime n x) is 1 if x is prime w.r.t. the n first prime numbers,

and 0 otherwise}

def prime = \n. (iterate n criv constOne);;

Some examples of computation are shown in Table 1.
For BOHM, we respectively give the user time required for the reduction, the

number of proper interactions (i.e. interactions between syntactical operators), and
the total number of interactions (i.e. proper interactions plus control interactions).
In the case of CamlLight, we just give the user time.

Example 7.2
The second example concerns computation of the transitive closure of a graph using
the Roy-Warshall algorithm. Nodes are supposed to be integers, and the graph is
represented by the characteristic function g of its edges, i.e. gmn = 1 iff there exists
an arch from m to n, 0 otherwise.

Note that, with this representation, (ga) is the successor function of node a in the
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Table 2. Transitive closure of a graph

Input

(transclos

(transclos

(transclos

(transclos

(transclos

(transclos

(transclos

5 g 3

5 g 5

10 g

15 g

18 g

20 g

20 g

2)

4)

2 6)

5 10)

17 18)

5 15)

20 1)

CamlLight

0.02 s

0.00 s

0.13 s

6.58 s

57.67 s

explodes

192

192

274

662

1406

864

1590

BOHM

0.03 s
2439 interac.

proper interac.

0.02 s
1726 interac.

proper interac.

0.03 s
4212 interac.

proper interac.

0.10 s
8818 interac.

proper interac.

0.22 s
17901 interac.

proper interac.

0.18 s
11709 interac.

proper interac.

0.23 s
20531 interac.

proper interac.

graph. The Roy-Warshall algorithm is based on the iteration over all nodes n of
the graph of a function (phi ng) that connects the nodes a and b if and only if a is
connected to n and n is connected to b.

{ ( i t e r a t e n g f) = (g n (g n-1 (g n-2 ( . . . (g 1 f ) ) ) ) ) }
def i t e r a t e = l e t r ec i t = \n . \g . \ f . if n == 0

then f else (g n ( i t (n-1) g f ) ) ; ;

{Roy-Warshall's function phi}

def phi = \n.\g.\a.\b. let ga = (g a) in
if (((ga n) == 1) and ((g n b) == 1))

then 1 else (ga b ) ; ;

{ t r ans i t ive closure of a graph with n nodes}
def t ransc los = \n . ( i t e r a t e n ph i ) ; ;

As input graph, we take a graph g where each node n is connected to its predeces-
sor n-1: def g = \n. \m. if (n == (m+O) then 1 else 0. The results of some
significative computations are illustrated in Table 2.
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Example 7.3

Suppose we represent an array as a function, considering the index as an argument.
The following code contains a mergesort algorithm for this representation of arrays.
The integer 9999 is used as a marker for the end of the array. Here is the source
code:

{merge of two "arrays"}

def merge = letrec mergel

= \fl.\f2.\i.

let fll = (fl 1) in

let f21 = (f2 1) in

if fll < f21 then

if i == 1 then fll

else (mergel \x.(fl x+1) f2 i-1)

else

if i == 1 then f21

else (mergel fl \x.(f2 x+1) i-1)

{mergesort}
def mergesort = letrec mergesortl

= \f.\m.\n.
if m == n then \x.if x == 1 then (f m) else 9999

else let half = (m+n) div 2 in
let fl = (mergesortl f m half) in
let f2 = (mergesortl f half+1 n)

(merge fl f2); ;

As inputs, we consider arrays of different dimensions, all of them initially ordered
in a reversed way.

{examples of "arrays".}
def venti = \x.21-x;;
def quaranta = \x.41-x;;
def cinquanta = \x.51-x;;
def sessanta = \x.61-x;;

Some examples of computations can be found in Table 3.

Example 7.4

Our last example about BOHM's performance is a program for computing Tartaglia's
triangle (also and improperly known as Pascal's triangle). The n-th element of the
m-th row of this triangle is the n-th coefficient of the m-th power of a binomial. The
code is straightforward. We just remark the use of the function 'eval' to 'force' the
explicit evaluation of each row. This is needed to share this computation at later
steps.
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Table 3. Mergesort

Input

(mergesort venti 1 20

(mergesort venti 1 20

(mergesort quaranta 1

(mergesort quaranta 1

(mergesort quaranta 1

(mergesort cinquanta

(mergesort cinquanta

(mergesort cinquanta

(mergesort sessanta 1

10)

20)

40 15)

40 30)

40 40)

1 50 25)

1 50 40)

1 50 50)

60 60)

CamlLight

0.30 s

1.43 s

3.73 s

26.22 s

50.60 s

32.37 s

106.12 s

179.80 s

explodes

1890

3719

3857

9335

11957

8957

13408

20327

28406

BOHM

0.30 s
25247 interac.

proper interac.

0.53 s
43788 interac.

proper interac.

0.58 s
46955 interac.

proper interac.

1.35 s
109244 interac.
proper interac.

1.88 s
126713 interac.
proper interac.

1.35 s
105937 interac.
proper interac.

2.15 s
146007 interac.
proper interac.

3.13 s
216234 interac.
proper interac.

4.65 s
293919 interac.
proper interac.

{row 0}

def init = \x. if x == 1 then 1 else 0;;

{"eval" evaluates an input function f in the interval 0-n}

def eval = \f.\x. letrec evalaux = \n.

if n == 0 then 0 else

if x == n then (f n) else (evalaux (n-1));;

{next row in tartaglia's triangle}

def next = \f.\x. (f (x-l))+(f x);;

{tartaglia m n gives the n-th element in the m-th row of

tartaglia's triangle}
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Table 4. Tartaglia's triangle

805

Input

(tartaglia

(tartaglia

(tartaglia

(tartaglia

(tartaglia

(tartaglia

(tartaglia

9 5)

13

17

20

23

35

40

7)

9)

10)

12)

18)

20)

CamlLight

0.02 s

0.38 s

5.25 s

37.60 s

explodes

BOHM

33053
884 proper

81732
1841 proper

163345
3280 proper

264865
4850 proper

366833
6558 proper

1172111
18357 proper

1758878
26197 proper

0.27 s
interac.
interac.

0.62 s
interac.
interac.

1.12 s
interac.
interac.

1.88 s
interac.
interac.

2.78 s
interac.
interac.

8.75 s
interac.
interac.

14.73 s
interac.
interac.

def t a r t a g l i a = l e t r e c tar taux = \m. if m == 0 then i n i t e l se

\x . (eva l (next ( ta r taux (m-1))) x (m+1));;

7.2 Garbage collection

In this section we provide some results about the performance of the garbage
collection procedure.

Maximum allocation of nodes

In Table 5 we show the maximum dimension reached during the reduction of a
same initial graph (the maximum number of nodes allocated at a given time) with
and without garbage collection.
We start with some examples in pure A-calculus. In particular, we consider two
'primitive recursive' versions of the factorial and Fibonacci functions on Church
integers. Since the computation stops at weak head normal form, we shall supply
some extra-parameters (identities), to get an interesting computation. Here is the
source code:
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1188
1242
1303
1515
4544
20029
73661
1220
1247
1296
1418
2439
26984
288003

1178
1219
1276
1383
1797
2452
3226
1209
1234
1283
1381
1763
6228
57269
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Table 5. Maximum allocation during reduction

G.C. off G.C. on

(factprim one I I)
(factprim two I I)
(factprim three I I)
(factprim five I I)
(factprim ten I I)
(factprim (add ten five) 11)
(factprim (add ten ten) I I)
(fiboprim one I I)
(fiboprim two I I)
(fiboprim three I I)
(fiboprim five I I)
(fiboprim ten I I)
(fiboprim (add ten five) I I)
(fiboprim (add ten ten) 11)

def I = \x .x ; ;
def zero = \ x . \ y . y ; ;
def one = \x . \y . (x y ) ; ;
def two = \x . \y . (x (x y ) ) ; ;

def Pair = \ x . \ y . \ z . ( z x y ) ; ;
def Fst = \ x . \ y . x ; ;
def Snd = \ x . \ y .y ; ;

def Succ = \ n . \ x . \ y . ( x (n x y ) ) ; ;
def Add = \n . \m. \x . \y . (n x (m x y ) ) ; ;
def Mult = \n . \m. \x . (n (m x ) ) ; ;

def Nextl = \ p . l e t nl = (p Fst) in
le t n2 = (Succ (p Snd)) in

(Pair (Mult nl n2) n2) ; ;

def Nextfibo = \ p . l e t nl = (p Fst) in
le t n2 = (p Snd) in
(Pair (Add nl n2) n l ) ;

def Factprim = \n . (n Nextl (Pair one zero) F s t ) ; ;

def Fiboprim = \n . (n Nextfibo (Pair zero one) F s t ) ; ;

The previous definitions can be found in the file examples/purelambda in
BOHM's main directory. Loading this file will cause the initial allocation of 1030
nodes which obviously cannot be erased. The behaviour of the garbage collector is
shown in Table 5.
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Table 6. Final allocation space
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(factprim
(factprim
(factprim
(factprim
(factprim
(factprim
(factprim
(fiboprim
(fiboprim
(fiboprim
(fiboprim
(fiboprim
(fiboprim
(fiboprim

one I
two I
three
five I
ten I
(add
(add
one I
two I
three
five I
ten I
(add
(add

I)
I)
I I )
I)
I)
ten
ten
I)
I)
I I )
I)
I)
ten
ten

five)
ten)

five)
ten)

I
I

I
I

I)
I)

I)
I)

G.C. off

1128
1146
1199
1454
4447

19812
73274

1156
1144
1172
1302
3415

26957
287972

G.C. on

1112
1095
1077
1077
1077
1109
1113
1141
1101
1101
1101
1101
1097
1101

Garbage Op.

10
27
55

100
265
523
838

8
33
43
88

623
6117

66423

Final number of nodes

Table 6 shows, for the same terms as before, the dimension of the graph at the end
of reduction, and the total number of garbage-interactions performed by the G.C.

The performance of the garbage collection procedure is, in some cases, suprisingly
good. Consider, for example, the case of the A-term (factprim (add ten ten) 11), if
the G.C. is active, the remaining nodes after the reduction are only 1113 against a
final allocation of over 70,000 nodes. Moreover, and this is particularly interesting,
this result is obtained by performing only 838 garbage collecting operations! (the
reason is that garbage could be duplicated along the reduction).

Extended A-calculus

Let us now consider an example involving some syntactical constructs of the extended
source language. In particluar, we consider a quicksort algorithm for lists of integers.
The function genlist takes an integer n and returns the list of the first n integers in
inverse order.

{lenght of a list}

def lenght = letrec 1 = \x.if isnil(x) then 0

else 1 + (1 tail(x));;

{ l i s t l t f i e applies function f to a l l the elements of l i s t 1}
def l i s t l t = letrec l i t =

\f AlAe. i f i sni l ( l ) then e
else (f head(l) ( l i t f t a i l ( l ) e ) ) ; ;

{split a list in two sublists according the specified criterion t}

def partition = \t.\l.let switch =

\e.\12.if (t e) then [head(12),cons(e,head(tail(12)))]
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Table 7. Maximum allocation space

(quicksort (genlist
(quicksort (genlist
(quicksort (genlist
(quicksort (genlist
(quicksort (genlist
(quicksort (genlist

5))
10))
15))
20))
25))
30))

G.C. off

3109
9442

20627
37912
62547
95782

G.C. on

2542
6762

13557
23427
36872
54392

Garbage Op.

359
1259
2684
4634
7109

10109

Table 8. Total number of interactions

G.C. off G.C. on

(quicksort (genlist 5))
(quicksort (genlist 10))
(quicksort (genlist 15))
(quicksort (genlist 20))
(quicksort (genlist 25))
(quicksort (genlist 30))

5551
18446
40091
72111

116131
173776

5393
17403
36813
64623

101833
149443

else [cons(e,head(12)),head(tail(12))]

in (listlt switch 1 [nil.nil]);;

-[appends two lists}

def append = letrec a =

\ll.\12.if isnil(ll) then 12

else cons(head(ll),(a tail(ll) 12));;

{generates a list of n integers in inverted order (from n to 1)}

def genlist = letrec gen = \n.if n == 0 then nil

else cons(n,(gen n-1));;

-[returns the sorted list}

def quicksort = letrec qs =

\ l . i f isnil(l) then nil else

if (length 1) == 1 then 1 else

let 11 = head((partition \x.head(l) <= x tail(l))) in

let 12 = head(tail((partition \y.head(l) < y tail(l))))

in (append (qs 11) cons(headd), (qs 12)));;

Table 7 gives the maximum dimension of the graph and the number of G.C.

interactions.

Table 8 allows you to compare the total number of interactions with and without

G.C.
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As noted above, the immediate elimination of garbage generally avoids a lot of
useless operations. More precisely, this depends upon the elimination of safe fans,
which prevents the duplication of garbage.

8 Conclusions

In this paper, we have presented the main architecture of the Bologna Optimal
Higher-order Machine (BOHM). BOHM is the first prototype implementation of
Lamping's optimal graph reduction technique extended to a reasonable core of a
typical functional language. BOHM is just a high level interpreter written in C;
it was not meant to be a real implementation, but just to be effective enough to
provide some useful results about the actual performance of Lamping's technique.
These tests and benchmarks, partially reported in this paper, look very promising.

A lot of work is obviously left, especially in optimizing the design of Lamping's
algorithm and the architecture of the abstract machine. In particular, the following
topics look particularly interesting:

1. studying the actual relevance of 'fast propagation rules' for brackets and
croissants;

2. getting a better understanding and theoretical status for 'safe' operators;
3. investigating the possibility of collapsing long sequences of control (safe)

operators into a single object.

On the other hand, the natural idea of passing from an interpreter to a compiler
into native assembly code at present looks a bit premature, considering the current
state-of-the-art.
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