
14

Confinement versus screening

One of the most challenging problems of gauge dynamics in four dimensions is
how to show that QCD admits confinement. One of the measures of confinement
is the fact that the potential between an external quark and an external anti-
quark placed at a separation distance L, as in Fig. 14.1, is dominated by a linear
dependence, namely,

V = σL. (14.1)

The coefficient in this linear dependence is the string tension. Thus, a non-
confining behavior, which will be referred to as a screening behavior, implies
a vanishing string tension. Whereas in four dimensions the computation of the
string tension is a formidable task, in two dimensions, as will be shown in this
chapter, it is a fairly easy one. In this chapter we describe the extraction of the
string tension in various two-dimensional gauge systems.

We start by calculating the string tension for the massive Schwinger model in
both the fermionic and the bosonic languages. This is done in the small mass
limit and then we discuss the corrections due to going beyond this limit. We then
discuss the short range corrections to the confining potential. We focus on the
abelian case, believing that the non-abelian case is very similar. Next we com-
ment on the behavior of the string tension when finite temperature is introduced.
Then we move to non-abelian generalization. We compute the string tension for
the cases of matter in the fundamental and adjoint representations, followed by
the symmetric and anti-symmetric representations.

Much of this chapter is based on [15] and [16].
The string tension of the massive Schwinger model was calculated using

bosonizaton in [68]. The massless cases in gauge theories were analyzed in [116].
The next-to-leading order in small mass was computed by [4].

14.1 The string tension of the massive Schwinger model

We start with the derivation of the string tension in the massive Schwinger model,
in the fermionic language. Consider the partition function of two dimensional
massive QED2 ,

Z = (14.2)∫
DAμDΨ̄DΨ exp

(
i

∫
d2x

(
− 1

4e2 F 2
μν + Ψ̄i	∂Ψ−mΨ̄Ψ− qdynAμΨ̄γμΨ

))
,
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266 Confinement versus screening

q L q

Fig. 14.1. Quark anti-quark separated at a distance L.

where qdyn is the charge of the dynamical fermions. Gauge fixing terms were not
written explicitly. Let us add an external pair with charges ±qext at ±L, namely,

jext
0 = qext(δ(x + L)− δ(x− L)), (14.3)

so that the change of L is −jext
μ Aμ(x). Note that by choosing jext

μ which is
conserved, ∂μjext

μ = 0, the action including the coupling to the external current
is also gauge invariant.

Now, one can eliminate this charge by performing a local, space-dependent
left-handed rotation,

Ψ→ eiα(x) 1
2 (1−γ5 )Ψ (14.4)

Ψ̄→ Ψ̄e−iα(x) 1
2 (1+γ5 ) , (14.5)

where γ5 = γ0γ1 . We choose a left-handed rotation (or equally well a right-
handed one) rather than an axial one, since in the non-abelian case the former
will be easier to implement.

The new action is,

S =
∫

d2x

[
− 1

4e2 F 2
μν + Ψ̄i	∂Ψ− Ψ̄∂μα(x)γμ 1

2
(1− γ5)Ψ−mΨ̄e−iα(x)γ5 Ψ

− qdynAμΨ̄γμΨ− qext(δ(x + L)− δ(x− L))A0 +
α(x)qdyn

2π
F

]
, (14.6)

where the last term is induced by the chiral anomaly,

δS =
∫

d2x
α(x)qdyn

2π
F, (14.7)

with F the dual of the electric field, F = 1
2 εμν Fμν .

The external source and the anomaly term are similar, both being linear in
the gauge potential. This is the reason that the θ-vacuum, to be discussed in
Chapter 22, and electron-positron pair at the boundaries are the same in two
dimensions.

In the following we assume θ = 0, as otherwise we absorb it in to α. Choos-
ing the A1 = 0 gauge and integrating by parts, the anomaly term looks like an
external source,

qdyn

2π
A0∂1α(x). (14.8)
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14.1 The string tension of the massive Schwinger model 267

This term can cancel the external source by the choice,

α(x) = 2π
qext

qdyn
(θ(x + L)− θ(x− L)). (14.9)

Let us take the limit L→∞. The form of the action, in the region B of −L <

x < L is,

SB =
∫

B

d2x

(
− 1

4e2 F 2
μν + Ψ̄i	∂Ψ−mΨ̄e

−i2π
q e x t
q d y n

γ5 Ψ− qdynAμΨ̄γμΨ
)

.

(14.10)
Thus the total impact of the external electron-positron pair is a chiral rotation
of the mass term. This term can be written as,

Ψ̄e
−i2π

q e x t
q d y n

γ5 Ψ = cos
(

2π
qext

qdyn

)
Ψ̄Ψ− i sin

(
2π

qext

qdyn

)
Ψ̄γ5Ψ. (14.11)

The string tension is the vacuum expectation value (v.e.v.) of the Hamiltonian
density in the presence of the external source relative to the v.e.v. of the Hamil-
tonian density without the external source, in the L→∞ limit,

σ =<H> − <H0>0 , (14.12)

where |0>0 is the vacuum state with no external sources. The change in the
vacuum energy is due to the mass term. The change in the kinetic term which
appears in (14.6) does not contribute to the vacuum energy.

Thus,

σ = m cos
(

2π
qext

qdyn

)
<Ψ̄Ψ> −m sin

(
2π

qext

qdyn

)
<Ψ̄iγ5Ψ> −m <Ψ̄Ψ>0 .

(14.13)
The values of the condensates <Ψ̄Ψ> and <Ψ̄γ5Ψ> are needed. The easiest
way to compute these condensates is bosonization, but it can also be computed
directly in the fermionic language. We state here the final result for the m = 0
case (the derivation can be found in the references of this chapter),

<Ψ̄Ψ>m=0 = −e
exp(γ)
2π3/2 (14.14)

<Ψ̄γ5Ψ>m=0 = 0. (14.15)

Equation (14.15) is due to parity invariance (with our choice θ = 0). The
resulting string tension, to first order in m,

σ = me
exp(γ)
2π3/2

(
1− cos

(
2π

qext

qdyn

))
. (14.16)

Though this expression is only the leading term in a m/e expansion and might
be corrected, when qext is an integer multiple of qdyn the string tension is exactly
zero, since in this case the rotated action (14.10) is not changed from the original
one (14.2).
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268 Confinement versus screening

14.2 The Schwinger model in bosonic form

Next we derive the same result in the bosonized formulation.
The bosonized Lagrangian, in the gauge A1 = 0, is given by,

L =
1

2e2 (∂1A0)2 +
1
2
(∂μφ)2 + M 2 cos(2

√
πφ) +

qdyn√
π

A0∂1φ−A0jext , (14.17)

where M 2 = mμ, μ = exp(γ )
2π μ(φ) with μ(φ) = e√

π
qdyn the mass of the photon, for

e� m.
Chiral rotation corresponds to a shift in the field φ. Upon the transformation,

φ = φ̃ +
√

π
qext

qdyn
(θ(x + L)− θ(x− L)) . (14.18)

The Lagrangian (14.17) takes, in the region B, the form,

LB =
1

2e2 (∂1A0)2 +
1
2
(∂μφ̃)2 + M 2 cos

(
2
√

πφ̃ + 2π
qext

qdyn

)
+

qdyn√
π

A0∂1 φ̃.

(14.19)
Hence, similarly to the previous derivation, a local chiral rotation was used to
eliminate the external source. The calculation of the string tension is exactly the
same as in the previous section.

The relevant part of the Hamiltonian density is,

H = −M 2 cos
(

2
√

πφ̃ + 2π
qext

qdyn

)
. (14.20)

To zeroth order in (M
e )

2
, the vacuum is φ̃ = 0. Setting this choice in (14.20) and

subtracting the v.e.v. of the free Hamiltonian, we arrive at,

σQED = mμ

(
1− cos

(
2π

qext

qdyn

))
, (14.21)

where m is the electron mass, μ = e exp(γ )
2π3 / 2 , e the gauge coupling, γ the Euler

number and qext , qdyn are the external and dynamical charges, respectively (we
measure charge in units of e, thus qext and qdyn are dimensionless).

14.3 Beyond the small mass abelian string tension

The expression (14.21) contains only the leading m
e contribution to the abelian

string tension. This expression was computed in the previous section, using a
classical average. However, as we used the normal ordering scale μφ which is the
photon mass for e� m, taking φ̃ = 0 actually gives the full quantum answer,
as is evident by comparing with the fermionic calculation in the section before
that.

The full perturbative (in m) string tension can be written as,

σQED = mμ

∞∑
l=1

Cl

(
m

eqdyn

)l−1 (
1− cos

(
2πl

qext

qdyn

))
. (14.22)
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14.4 Correction to the leading long distance abelian potential 269

The value of the first coefficient is C1 = 1 and the next was found to be
C2 = −8.9exp(γ )

8π1 / 2 . Higher coefficients are not calculated yet.
Note that for finite m

e we have to minimize the potential,

V = M 2
(

1− cos
(

2
√

πφ + 2π
qext

qdyn

))
+

1
2
μ2

φφ2 . (14.23)

The minimum φ = φm obeys,

2
√

πM 2 sin
(

2
√

πφm + 2π
qext

qdyn

)
+ μ2

φφm = 0. (14.24)

Thus, for the first-order ( m
eqd y n

) correction, we get a C2 which is −( 1
2 )
√

π(exp γ).
This has the same sign, but a factor 1.41 larger, than the instanton contribution.

Note that all above results for the string tension are symmetric under change
of sign of the external charge, as expected on general grounds. However, when
a θF term is introduced, we get odd terms as well, like sin(lθ) sin(2πl qe x t

qd y n
). The

even terms are multiplied by cos(lθ).
Finally, let us remark that for very large m

e , the abelian case has a string
tension which is 1

2 e2q2
ext .

14.4 Correction to the leading long distance abelian potential

The potential (14.1) is the dominant long-range term. However, there are, of
course, corrections. In this section we present these corrections.

The equations of motions which follow from the bosonized Lagrangian (14.17)
are, in the static case,

− 1
e2 ∂2

1 A0 +
qdyn√

π
∂1φ− jext = 0 (14.25)

−∂2
1 φ + 2

√
πM 2 sin 2

√
πφ +

qdyn√
π

∂1A0 = 0. (14.26)

In order to solve these equation, it is useful to eliminate the bosonized matter
field φ. Using the approximation sin 2

√
πφ ∼ 2

√
πφ, we arrive at (in momentum

space),

A0(k) =
e2(k2 + 4πM 2)

k2
(
k2 +

(
4πM 2 + e2

π q2
dyn

))jext(k), (14.27)

where k is the Fourier transform of the space coordinate. We will discuss the
validity of our approximation for φ later in this section. The last equation can
be rewritten as,

A0(k) =
(

m2
1

m2
2

1
k2 +

(
1− m2

1

m2
2

)
1

k2 + m2
2

)
e2jext(k), (14.28)
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270 Confinement versus screening

where,

m2
1 = 4πM 2 , (14.29)

m2
2 = 4πM 2 +

e2

π
q2
dyn . (14.30)

Note that the photon propagator has two poles, a massless pole that repro-
duces the string tension and a massive pole which adds a screening term to
the potential. Note that there is no const.

L correction, which appears in higher
dimensions, since in the present case the string cannot fluctuate in transverse
directions.

Note also that in the massless case, when M 2 = 0, only the second term sur-
vives and the photon has only one pole with mass square e2

π q2
dyn . This result is

of course exact, independent of our approximation.
The resulting gauge field is,

A0(x) =
2π2M 2qext

q2
dyn

(| x + L | − | x− L |)

−e
√

π

2
qext

qdyn

(
e−

e√
π

qd y n |x+L | − e−
e√
π

qd y n |x−L |
)

, (14.31)

where we took M 2 � e2 for simplicity.
In order to calculate the potential we will use,

V =
1
2

∫
A0(x)jext(x)dx. (14.32)

Hence the potential is,

V = 2π2M 2 q2
ext

q2
dyn
× 2L +

e
√

π

2
q2
ext

qdyn

(
1− e

− e√
π

qd y n 2L
)

. (14.33)

The first term is the confining potential which exists whenever the quark mass
is non-zero. On top of this, there is always a screening potential.

The string tension which results from the above potential is,

σ = mμ× 2π2 q2
ext

q2
dyn

, (14.34)

which is exactly (14.21) in the approximation 2π qe x t
qd y n
� 1. This turns out to be

also the condition for sin 2
√

πφ ∼ 2
√

πφ that we assumed at the start of this
section. To see that, we solve for φ from eqn. (14.25) as,

φ(k) = −ik
qdyn√

π

e2

m2
2

(
1
k2 −

1
k2 + m2

2

)
jext(k). (14.35)

Define φ = φ1 + φ2 , where φ1 is the part with 1
k 2 , and φ2 with 1

k 2 +m 2
2
. The φ2

part goes to zero at long distances, i.e. k → 0. As for the φ1 part, its x-space
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14.5 Finite temperature 271

form is,

φ1(x) =
e2
√

πm2
2
qdynqext(θ(x + L)− θ(x− L)), (14.36)

which for small m
e reduces to,

φ1(x) ∼
√

π
qext

qdyn
(θ(x + L)− θ(x− L)). (14.37)

Thus 2
√

πφ small means,

(2π)
qext

qdyn
� 1, (14.38)

the condition mentioned before.
Note that we could generalize the argument to values of 2π qe x t

qd y n
that are close

to 2πn, with integer n.

14.5 Finite temperature

In this section we would like to comment on the behavior of the string tension in
the presence of finite temperature. It is interesting to check whether the string
is torn due to high temperature and whether the system undergoes a phase
transition from confinement to deconfinement.

The prescription for calculating quantities at finite temperature T is to for-
mulate the theory on a circle in Euclidean time with circumference β = T−1 .

For the purpose of calculating the string tension, we can follow the same steps
which we employed previously, leading to a modification of eqn. (14.16) as,

σ = −m <Ψ̄Ψ>T

(
1− cos 2π

qext

qdyn

)
. (14.39)

It is enough to calculate <Ψ̄Ψ>T , the condensate at finite temperature, in the
massless Schwinger model.

The chiral condensate behaves as,

<Ψ̄Ψ>(T →0)→ −
e

2π3/2 eγ , (14.40)

and

<Ψ̄Ψ>(T →∞)→ −2T e−
π3 / 2 T

e . (14.41)

This result indicates that the string is not torn even at very high temperatures.
The explicit expression shows that <Ψ̄Ψ>T is non-zero for all T . Thus, the system
does not undergo a phase transition. It is just energetically favorable to have the
electron-positron pair confined.
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272 Confinement versus screening

14.6 Two-dimensional QCD

The action of bosonized QCD2 with massive quarks in the fundamental repre-
sentation of SU(N) (see Chapter 8) is

Sfundamental =
1
8π

∫
Σ

d2x tr
(
∂μg∂μg†

)
(14.42)

+
1

12π

∫
B

d3yεijk tr(g†∂ig)(g†∂jg)(g†∂kg)

+
1
2
mμf und

∫
d2x tr(g + g†)−

∫
d2x

1
4e2 Fa

μν F aμν

− 1
2π

∫
d2x tr(ig†∂+gA− + ig∂−g†A+ + A+gA−g† −A+A−),

where e is the gauge coupling, m is the quark mass, μ = e exp(γ )

(2π)
3
2

, g is an N ×N

unitary matrix, Aμ is the gauge field and the trace is over U(N) indices. Note,
however, that only the SU(N) part of the matter field g is gauged.

When the quarks transform in the adjoint representation, the expression for
the action is,

Sadjoint =
1

16π

∫
Σ

d2x tr
(
∂μg∂μg†

)
(14.43)

+
1

24π

∫
B

d3yεijk tr
(
g†∂ig

) (
g†∂jg

) (
g†∂kg

)
+

1
2
mμadj

∫
d2x tr

(
g + g†

)
−
∫

d2x
1

4e2 Fa
μν F aμν

− 1
4π

∫
d2x tr

(
ig†∂+gA− + ig∂−g†A+ + A+gA−g† −A+A−

)
.

The action (14.43) differs from (14.42) by a factor of one half in front of the
WZW and interaction terms, because g is real and represents Majorana fermions.
Another difference is that g now is an (N 2 − 1)× (N 2 − 1) orthogonal matrix.
The two actions (14.42) and (14.43) can be schematically represented by one
action,

S = S0 +
1
2
mμR

∫
d2x tr

(
g + g†

)
(14.44)

− ikdyn

4π

∫
d2x

(
g∂−g†

)a
Aa

+ ,

where A− = 0 gauge was used, S0 stands for the WZW action and the kinetic
action of the gauge field, kdyn is the level (the chiral anomaly) of the dynamical
charges (k = 1 for the fundamental representation of SU(N) and k = N for the
adjoint representation).

Let us add an external charge to the action. We choose a static charge (with
respect to the light-cone coordinate x+) and therefore we can omit its kinetic
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14.6 Two-dimensional QCD 273

term from the action. Thus an external charge coupled to the gauge field would
be represented by,

− ikext

4π

∫
d2x

(
u∂−u†)a Aa

+ .

Suppose that we want to put a quark and an anti-quark at a very large separation.
A convenient choice of the charges would be a direction in the algebra in which
the generator has a diagonal form. The simplest choice is a generator of an
SU(2) subalgebra. Since a rotation in the algebra is always possible, the results
are insensitive to this specific choice. As an example we write down the generator
in the case of fundamental and adjoint representations,

T 3
fund = diag

⎛⎝1
2
,−1

2
, 0, 0, . . . , 0︸ ︷︷ ︸

N −2

⎞⎠

T 3
adj = diag

⎛⎜⎜⎝1, 0,−1,
1
2
,−1

2
,
1
2
,−1

2
, . . . ,

1
2
,−1

2︸ ︷︷ ︸
2(N −2) doublets

, 0, 0, . . . , 0︸ ︷︷ ︸
(N −2)2

⎞⎟⎟⎠ .

Generally T 3 can be written as

T 3 = diag(λ1 , λ2 , . . . , λi , . . . , 0, 0, . . .),

where {λi} are the ‘isospin’ components of the representation under the SU(2)
subgroup.

We take the SU(N) part of u as,

u =
[
exp−i4π

(
θ(x− + L)− θ

(
x− − L

))]
T 3

ext , (14.45)

for N > 2, and a similar expression but with a 2π factor for N = 2. T 3
ext represents

the ‘3’ generator of the external charge and u is static with respect to the light-
cone time coordinate x+. The theta function is used as a limit of a smooth
function which interpolates between 0 and 1 over a very short distance. In that
limit u = 1 everywhere except at isolated points, where it is not well defined.

The form of the action (14.44) in the presence of the external source is,

S = S0 +
1
2
mμR

∫
d2x

{
tr
(
g + g†

)
+
[
− ikdyn

4π

(
g∂−g†

)a
+ kextδ

a3 (δ (x− + L
)
− δ
(
x− − L

))]
Aa

+

}
.

The external charge can be eliminated from the action by a transformation of
the matter field. A new field g̃ can be defined as follows,

− ikdyn

4π

(
g̃∂−g̃†

)a
=− ikdyn

4π

(
g∂−g†

)a
+ kextδ

a3 (δ(x− + L)− δ(x− − L)
)
.
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This definition leads to the following equation for g̃†,

∂−g̃† = g̃†
(

g∂−g† + i4π
kext

kdyn
(δ(x− + L)− δ(x− − L))T 3

dyn

)
. (14.46)

The solution of 14.46 is,

g̃† = P exp
{∫

dx−
(

g∂−g† + i4π
kext

kdyn
(δ(x− + L)− δ(x− − L))T 3

dyn

)}
= e

i4π
k e x t
k d y n

θ(x−+L)T 3
d y n g†e

−i4π
k e x t
k d y n

θ(x−−L)T 3
d y n , (14.47)

where P denotes path ordering and we assume that T 3
dyn commutes with g∂−g†

for x− ≥ L and with g† for x− = −L (as we shall see, this assumption is self
consistent with the vacuum configuration).

Let us take the limit L→∞. For −L < x− < L, the above relation simply
means that,

g = g̃e
i4π

k e x t
k d y n

T 3
d y n .

Since the Haar measure is invariant (and finite, unlike the fermionic case) with
respect to unitary transformations, the form of the action in terms of the new
variable g̃ reads,

S = SWZW (g̃) + Skinetic(Aμ)− ikdyn

4π

∫
d2x

(
g̃∂−g̃†

)a
Aa

+

+
1
2
mμR

∫
d2x tr

(
g̃e

i4π
k e x t
k d y n

T 3
d y n + e

−i4π
k e x t
k d y n

T 3
d y n g̃†

)
, (14.48)

which is QCD2 with a chiraly rotated mass term.
The string tension can be calculated easily from (14.48). It is simply the vac-

uum expectation value (v.e.v.) of the Hamiltonian density, relative to the v.e.v.
of the Hamiltonian density of the theory without an external source,

σ =<H> − <H0> .

The vacuum of the theory is given by g̃ = 1. In terms of the variable g, this
configuration points in the ‘3’ direction and hence satisfies our assumptions while
solving eqn. (14.46). The v.e.v. is,

<H> = −1
2
mμR tr

(
e
i4π

k e x t
k d y n

T 3
d y n + e

−i4π
k e x t
k d y n

T 3
d y n

)
= −mμR

∑
i

cos
(

4πλi
kext

kdyn

)
.

Therefore the string tension is,

σ = mμR

∑
i

(
1− cos

(
4πλi

kext

kdyn

))
, (14.49)

which is the desired result.
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We expect that similar corrections as those in eqn. (14.22) will occur also in
non-abelian systems. For the fundamental/adjoint case, the following expression
may correct the leading term,

σQC D = mμR

∞∑
l=1

C̃l

(
m

ekdyn

)l−1∑
j

(
1− cos

(
4πλj l

kext

kdyn

))
. (14.50)

A few remarks should be made:

(i) The string tension (14.49) reduces to the abelian string tension (14.21) when
abelian charges are considered. It follows that the non-abelian generalization
is realized by replacing the charge q with the level k.

(ii) The string tension was calculated in the tree level of the bosonized
action. Perturbation theory (with m as the coupling) may cause changes,
eqn. (14.49), since the loop effects may add O(m2) contributions. However,
we believe that it would not change its general character. In fact, one fea-
ture is that the string tension vanishes for any m when ke x t

kd y n
is an integer,

as follows from eqn. (14.48), since the action does not depend then on kext

at all.
(iii) When no dynamical mass is present, the theory exhibits screening. This is

simply because non-abelian charges at the end of the world interval can be
eliminated from the action by a chiral transformation of the matter field.

(iv) When the test charges are in the adjoint representation kext = N , eqn.
(14.49) predicts screening by the fundamental charges (with kdyn = 1).

(v) String tension appears when the test charges are in the fundamental rep-
resentation and the dynamical charges are in the adjoint. The value of the
string tension is

σ = mμadj

(
2
(

1− cos
4π

N

)
+ 4 (N − 2)

(
1− cos

2π

N

))
(14.51)

as follows from eqn. (14.49) for this case.

The case of SU(2) is special. The 4π which appears in eqn. (14.49) is replaced
by 2π, since the bosonized form of the external SU(2) fundamental matter differs
by a factor of a half with respect to the other SU(N) cases. Hence, the string
tension in this case is 4mμadj.

(vi) We would like to add, that when computing the string tension in the pure
YM case with external sources in representation R, the Wilson loop gives
1
2 e2C2(R), while our way of defining external source gives 1

2 e2k2
ext . Thus we

need a factor C2 (R)
k 2

e x t
to bring our result to the Wilson loop case. Analogous

factors should be computed for the other cases, when dynamical matter is
also present.
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14.7 Symmetric and antisymmetric representations

The generalization of (14.49) to arbitrary representations is not straightforward.
However, we can comment about its nature (without rigorous proof).

Let us focus on the interesting case of the antisymmetric representation. One
can show that the WZW action with g taken to be 1

2 N(N − 1)× 1
2 N(N − 1)

unitary matrices, is a bosonized version of QCD2 with fermions in the antisym-
metric representation.

The antisymmetric representation is described in the Young-tableaux nota-
tion by two vertical boxes. Its dimension is 1

2 N(N − 1) and its diagonal SU(2)
generator is,

T 3
as = diag

( 1
2
,−1

2
,
1
2
,−1

2
, ...,

1
2
,−1

2︸ ︷︷ ︸
(N −2) doublets

, 0, 0, ..., 0
)
, (14.52)

and consequently k = N − 2. When the dynamical charges are in the funda-
mental and the external in the antisymmetric the string tension should vanish
because the tensor product of two fundamentals include the antisymmetric rep-
resentation. Indeed, (14.49) predicts this result.

The more interesting case is when the dynamical charges are antisymmetric
and the external are fundamentals. In this case the value of the string tension
depends on whether N is odd or even.

When N is odd the string tension should vanish because the anti-fundamental
representation can be built by tensoring the antisymmetric representation with
itself 1

2 (N − 1) times. When N is even string tension must exist.
Note that (14.49) predicts,

σ = 2mμas(N − 2)
(

1− cos
2π

N − 2

)
, (14.53)

which is not zero when N is odd, contrary to expectation.
The resolution of the puzzle seems to be the following. Non-abelian charge

can be static with respect to its spatial location. However, its representation
may change in time due to emission or absorption of soft gluons (without cost
of energy). Our semi-classical description of the external charge as a c-number
is insensitive to this scenario. We need an extension of (14.45) which takes into
account the possibilities of all various representations. One possible extension is,

ja
ext = δa3kext (1 + lN)

(
δ
(
x− + L

)
− δ
(
x− − L

))
, (14.54)

where l is an arbitrary positive integer. This extension takes into account the
cases which correspond to 1 + lN charges multiplied in a symmetric way. The
resulting string tension is,

σ = mμR

∑
i

(
1− cos

(
4πλi

kext

kdyn
(1 + lN)

))
, (14.55)

which includes the arbitrary integer l. What is the value of l that we should pick?
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The dynamical charges are attracted to the external charges in such a way
that the total energy of the configuration is minimal. Therefore the value of l

which is needed, is the one that guarantees minimal string tension.
Thus the extended expression for string tension is the following,

σ = min
l

{
mμR

∑
i

(
1− cos

(
4πλi

kext

kdyn
(1 + lN)

))}
. (14.56)

In the case of dynamical antisymmetric charges and external fundamentals
and odd N , l = 1

2 (N − 3) gives zero string tension. When N is even the string
tension is given by (14.53).

The expression (14.56) yields the right answer in some other cases also, like
the case of dynamical charges in the symmetric representation. The bosoniza-
tion for this case can be derived in a similar way to that of the antisymmetric
representation, and T 3 is given by

T 3
symm = diag

(
1, 0,−1,

1
2
,−1

2
,
1
2
,−1

2
, . . . ,

1
2
,−1

2︸ ︷︷ ︸
(N −2) doublets

, 0, 0, . . . , 0
)
. (14.57)

Hence k = N + 2. When the external charges transform in the fundamental rep-
resentation and N is odd, eqn (14.56) predicts zero string tension (as it should).
When N is even the string tension is given by

σ = 2mμsymm

((
1− cos

4π

N + 2

)
+ (N − 2)

(
1− cos

2π

N + 2

))
. (14.58)

We have discussed only the cases of the fundamental, adjoint, anti-symmetric
and symmetric representations, since we used bosonization techniques which are
applicable to a limited class of representations.
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