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Characterizing Two-Dimensional Maps
Whose Jacobians Have
Constant Eigenvalues

Marc Chamberland

Abstract. Recent papers have shown that C1 maps F : R
2 → R

2 whose Jacobians have constant eigen-

values can be completely characterized if either the eigenvalues are equal or F is a polynomial. Specifi-

cally, F = (u, v) must take the form

u = ax + by + βφ(αx + βy) + e

v = cx + dy − αφ(αx + βy) + f

for some constants a, b, c, d, e, f , α, β and a C1 function φ in one variable. If, in addition, the function

φ is not affine, then

(1) αβ(d − a) + bα2 − cβ2
= 0.

This paper shows how these theorems cannot be extended by constructing a real-analytic map whose

Jacobian eigenvalues are ±1/2 and does not fit the previous form. This example is also used to con-

struct non-obvious solutions to nonlinear PDEs, including the Monge–Ampère equation.

1 Introduction

A C1 function f : k2 → k2 (k = R or C) is unipotent if the eigenvalues of the Jacobian

matrix J( f ) all equal one for all points in k. Under various scenarios, it has been

shown that such functions are always invertible and can be classified explicitly. Chen

[4] proved the case when k = C and f is holomorphic, Chamberland [2] when k = R

and f is real-analytic, and most impressively, Campbell [1] when k = R and f is C 1.

Specifically, we have

Theorem 1.1 (Campbell) Let f : R
2 → R

2 be C1. Then J( f ) is unipotent if f is of

the form

(2) f (x, y) =

(

x + bφ(ax + by) + c, y − aφ(ax + by) + d
)

for some constants a, b, c, d ∈ R and some function φ of a single variable. If that is the

case, then f has an explicit global inverse. Conversely, if f is C 1 and J( f ) is unipotent,

then f is of the form above for a φ that is C1.
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Of course, one may extend this result to maps whose Jacobians have equal eigen-

values. To see this, add a multiple of the identity map to the map (2) to obtain

(u, v) =

(

sx + bφ(ax + by) + c, sy − aφ(ax + by) + d
)

,

whose Jacobian eigenvalues are both s. If s 6= 0, the map is invertible since au + bv =

s(ax + by) + ac + bd. If s = 0, this forces au + bv to be a constant, so the map is not

surjective.

In a different setting, Cima et al. [5] considered stability questions surrounding

the iteration of polynomial maps f : R
2 → R

2. They showed that if the eigenvalues of

the Jacobian were always less the one in magnitude, then there exists a fixed point of

f which is globally asymptotically stable. An important lemma they use is that since

the eigenvalues are bounded, they must actually be constant. Though the authors

pursue questions regarding stability, they essentially prove

Theorem 1.2 Let F : R
2 → R

2 be a polynomial map. Then the eigenvalues of the J(F)

are constant if and only if F = (u, v) takes the form

u = ax + by + βφ(αx + βy) + e(3)

v = cx + dy − αφ(αx + βy) + f(4)

for some constants a, b, c, d, e, f , α, β and a polynomial φ in one variable. If, in

addition, the function φ is not affine, then

(5) αβ(d − a) + bα2 − cβ2
= 0.

If the two eigenvalues are non-zero, then F has an explicit polynomial inverse.

From their proof, it is clear that F must take the form (3)–(4). If φ is not affine,

the fact that the eigenvalues are constant forces condition (5) to hold.

It seems logical to try and extend Theorem 1.2 to C1 maps, thus also generalizing

Theorem 1.1. Unfortunately, such structure does not exist, as is demonstrated by the

following result.

Theorem 1.3 Let F = (u, v) : R
2 → R

2 be defined by

u =

x

2
+ s(6)

v = − y

2
+ tan−1(x + s)(7)

where the function s : R
2 → R is defined implicitly by

(8) 0 = tan−1(x + s) − tan−1(s) + s − y.

The eigenvalues of this map’s Jacobian are ±1/2, yet this map does not have the form

(3)–(4) for any C1 function φ. Lastly, F is globally invertible.
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These results are relevant with respect to Jacobian conjectures. It has been shown

that if all unipotent polynomial functions are invertible in all dimensions, then the

Keller Jacobian Conjecture is true, that is, any polynomial map from kn to kn whose

Jacobian determinant is a non-zero constant is invertible; an excellent resource is the

recent book of van den Essen [8].

Section 2 gives a proof of Theorem 1.3. Sections 3 and 4 show the limitations of

earlier techniques to obtain this theorem and how special solutions to some nonlinear

PDEs exist. Specifically, Section 3 considers the approaches of Campbell and Cima et

al. and summarizes results for a class of Monge–Ampère equations, while Section 4

considers Chamberland’s approach and proves the existence of non-obvious solu-

tions to a planar PDE. Section 5 offers a new approach and shows how Theorem 1.3

is naturally produced.

2 Proof of Theorem 1.3

First note that the function s is well-defined since for each (x, y) ∈ R
2 the function

m(s) := tan−1(x + s)− tan−1(s) + s− y is bijective in the variable s. The injectivity is

shown by proving m ′(s) > 0, while the the boundedness of the first two terms yields

the surjectivity. The implicit function theorem guarantees that s is real-analytic. A

straight-forward calculation using implicit differentiation verifies that the eigenval-

ues of D(F) are ±1/2.

To prove that the function F cannot take the form (3)–(4), we argue by contra-

diction. Suppose there exists a C1 function φ and constants a, b, c, d, e, f , α, β such

that

x

2
+ s = ax + by + βφ(αx + βy) + e

− y

2
+ tan−1(x + s) = cx + dy − αφ(αx + βy) + f

Setting x = 0 implies via (8) that s = y and

y = by + βφ(βy) + e(9)

− y

2
+ tan−1(y) = dy − αφ(βy) + f(10)

Multiplying (9) by α and (10) by β then adding gives

(11) αy + β
(

− y

2
+ tan−1(y)

)

= α(by + e) + β(dy + f ).

Equation (11) implies β = 0, which yields the desired contradiction in (10).

The easiest way to show that the function F is globally invertible is to construct

the inverse. Solving for x in (6), use this with (7) to obtain

x = 2(u − s)(12)

y = 2
(

tan−1(2u − s) − v
)

(13)
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Substituting these into (8) yields

0 = n(s) := − tan−1(2u − s) − tan−1(s) + s + 2v.

As was done for the function m, one may show that n is bijective in s for any given u

and v, therefore we have constructed the inverse function. This completes the proof.

An important recent result actually gives the injectivity of the map F very easily.

Cobo et al. [6] have proven that any two-dimensional C1 map whose Jacobian eigen-

values do not intersect the interval (−ε, ε) for some ε > 0 must be injective. Since

the Jacobian eigenvalues are ±1/2, the injectivity follows immediately. This general

theorem also proves the so-called Chamberland conjecture [3] in dimension two.

3 Approaches of Campbell and Cima et al. and the Monge–Ampère
Equation

We wish to consider the approaches used by Campbell and Cima et al. and see why

their results cannot be extended. The latter approach allows us to use earlier results

of this paper to state a general theorem for the Monge–Ampère equation.

The approach used by Campbell [1] to prove Theorem 1.1 is highly dependent

on the fact that the eigenvalues of the Jacobian both equal one. He subtracts the

identity map from the original map to give a new function whose Jacobian matrix is

nilpotent. This plays a crucial role in the rest of the proof, therefore this proof admits

no obvious modification if the eigenvalues differ.

The approach of Cima et al. [5] takes a totally different route. As mentioned ear-

lier, restricting attention to polynomial maps whose Jacobian eigenvalues are bound-

ed forces these eigenvalues to be constant. Supposing F = (P,Q) is such a map, we

have

(14)
∂P

∂x
+
∂Q

∂y
= t1,

∂P

∂x

∂Q

∂y
− ∂P

∂y

∂Q

∂x
= t2

for some constants t1 and t2. Letting (P̄, Q̄) = F − (t1/2)I implies

∂P̄

∂x
+
∂Q̄

∂y
= 0,

∂P̄

∂x

∂Q̄

∂y
− ∂P̄

∂y

∂Q̄

∂x
= t̄2.

where t̄2 = t2 − t2
1/4. The first equation implies there is a function H : R

2 → R
2 such

that

P̄ = −∂H

∂y
, Q̄ =

∂H

∂x
.

Putting this into the second equation yields

(15)
∂2H

∂x2

∂2H

∂y2
−

( ∂2H

∂x∂y

) 2

= t̄2.

The authors then cite a result of Dillen [7] which states that polynomials H satisfying

this equation with t̄2 < 0 must (up to a complex affine transformation) take the form

(16) H(u, v) =

√

−t̄2uv + h(u)
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where h is a polynomial in one variable u. Dillen’s proof exploits the fact that H is a

polynomial and there is no obvious way to generalize this. We now compile several

theorems together to obtain the following general result.

Theorem 3.1 Let H be a C2 function. The Monge–Ampère equation

∂2H

∂x2

∂2H

∂y2
−

( ∂2H

∂x∂y

) 2

= c

has solutions as follows:

c positive:

H is quadratic.

c = 0:

H takes the form H(x, y) = ψ(ax + by) + cx + dy + e for some constants a, b, c, d, e

and a C2 function ψ in one variable.

c negative:

If H is a polynomial, H takes the form H(x, y) =

√
−cxy + h(x) up to an affine

transformation. There is a non-polynomial function H not of this form satisfying

∂H

∂x
= −y + 2 tan−1(x + s)

∂H

∂y
= −x − 2s

where the function s : R
2 → R is defined implicitly by

0 = tan−1(x + s) − tan−1(s) + s − y.

Proof The case c > 0 is due to Jörgens [10]. For the case c < 0, the polynomial sub-

case is due to Dillen [7], while the non-polynomial example is simply Theorem 1.3

reworked for this setting (and normalized by a constant factor to yield c = −1). The

only part left to prove is the case c = 0.

Suppose H satisfies
∂2H

∂x2

∂2H

∂y2
−

( ∂2H

∂x∂y

) 2

= 0.

Let u = x + Hy and v = y − Hx. Then

ux + vy = 2, uxvy − uyvx = 1.

This implies that the map f = (u, v) is C1 and unipotent, so by Theorem 1.1, we have

Hy = bφ(ax + by) + d, Hx = −aφ(ax + by) + c

for some constants a, b, c, d and some C1 function φ. Integrating gives the desired

result.

As noted by Kusano and Swanson [11], there is virtually nothing known about

solutions of Monge–Ampère equations in unbounded domains.
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4 Chamberland’s Approach

This section considers generalizing the approach of Chamberland [2] to maps where

the two eigenvalues of D( f ), λ1 and λ2, are real and distinct. We shall assume that

the map f = (u, v) is real-analytic. By Schur’s Theorem of matrix analysis (see, for

example, [12, p. 308]), there exist real-analytic functions A and θ from R
2 to R such

that (using the abbreviation s = sin(θ) and c = cos(θ))

[

ux uy

vx vy

]

=

[

c s

−s c

] [

λ1 A

0 λ2

] [

c −s

s c

]

=

[

λ1 + s2(λ2 − λ1) + csA cs(λ2 − λ1) + c2A

cs(λ2 − λ1) − s2A λ1 + c2(λ2 − λ1) − csA

]

.

(17)

Note that although one may add any multiple of π to a solution θ, this function

will be unique after it is specified at one point. Using the identities uxy = uyx and

vxy = vyx, terms from (17) imply

∂

∂y

(

s2(λ2 − λ1) + csA
)

=

∂

∂x

(

cs(λ2 − λ1) + c2A
)

∂

∂y

(

cs(λ2 − λ1) − s2A
)

=

∂

∂x

(

c2(λ2 − λ1) − csA
)

which may be expanded as

(λ2 − λ1)2scθy + (c2 − s2)Aθy + csAy = (λ2 − λ1)(c2 − s2)θx − 2scAθx + c2Ax

(18)

(λ2 − λ1)(c2 − s2)θy − 2scAθy − s2Ay = −(λ2 − λ1)2csθx − (c2 − s2)Aθx − csAx

(19)

Multiplying (18) by 2sc and (19) by c2 − s2 then adding yields

(20) (λ2 − λ1)θy + s2Ay = −Aθx + csAx.

Similarly, multiplying (18) by c2 − s2 and (19) by 2sc then subtracting yields

(21) Aθy + csAy = (λ2 − λ1)θx + c2Ax.

Multiplying (20) by θx and (21) by θy then adding simplifies to

(22) A(θ2
x + θ2

y) = (cAx − sAy)(cθy + sθx).

Similarly, multiplying (20) by θy and (21) by θx then subtracting yields

(23) (λ2 − λ1)(θ2
x + θ2

y) = (cAx − sAy)(sθy − cθx).
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Since θ is real-analytic, so is θ2
x + θ2

y , so either θ is a constant function (a trivial case),

or θ2
x + θ2

y is never zero on an open set. On any open set where this is the case, (23)

implies sθy − cθx 6= 0, so (22) and (23) may be combined to give

(24) A = (λ2 − λ1)
cθy + sθx

sθy − cθx

.

Using this form of A in equation (23) simplifies to

(25) 0 = s(θxθy y − θyθxy) − c(θxθxy − θyθxx)

Solving such an equation is formidable, but it is tempting to think that θ must take

the form

θ = φ(αx + βy)

for some one-variable function φ and constants α and β. However, if this were the

case, A must also take this form, forcing u and v to take the form

u = ax + by + m(αx + βy) + e

v = cx + dy + n(αx + βy) + f

for some constants a, b, c, d, e, f , α, β and one-variable functions m and n. Since the

eigenvalues of the Jacobian are constant, we have αm ′ + βn ′ is constant. This forces

(u, v) to take the form (3)–(4). Since the function from Theorem 1.3 is not of this

form, we conclude with

Theorem 4.1 There is a real-analytic solution θ : R
2 → R to the equation

0 = (θxθy y − θyθxy) sin(θ) − (θxθxy − θyθxx) cos(θ)

which is not of the form φ(αx + βy) for some constants α and β.

5 Generating Theorem 1.3

As seen in the last two sections, none of the three previous approaches hint at how

to construct functions as seen in Theorem 1.3. This section presents a new approach

which constructs the function in Theorem 1.3 naturally.

First, note that if the Jacobian of a C1 map F : R
2 → R

2 has constant eigenvalues

which are complex, the map must be affine. This stems from the previously cited

result of Jörgens [10] (see the c > 0 case of Theorem 3.1). Working backwards in the

proof of Cima et al. (see the previous section), F is forced to be affine. We therefore

assume that the eigenvalues are real. As in Cima et al., having constant eigenvalues

λ1 and λ2 of D(F) implies

∂P

∂x
+
∂Q

∂y
= λ1 + λ2

∂P

∂x

∂Q

∂y
− ∂P

∂y

∂Q

∂x
= λ1λ2.
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Letting G = (P̄, Q̄) = F − λ2I gives

∂P̄

∂x
+
∂Q̄

∂y
= k(26)

∂P̄

∂x

∂Q̄

∂y
− ∂P̄

∂y

∂Q̄

∂x
= 0

where k = λ1 − λ2. If P̄ and Q̄ are both constant functions, then (P,Q) is affine, so

let us assume without loss of generality that ∇P̄ is non-zero at some point (x̄, ȳ). A

classical application of the implicit function theorem (see [13, Section 9.6]) allows us

to write Q̄ = g(P̄) for some C1 function g in a neighbourhood of (x̄, ȳ) (this same

result was used by Campbell [1]). In the interest of constructing a function like that

in Theorem 1.3, assume that g can be extended to the range of P̄. We may also assume

that g is not constant otherwise this leads to trivial cases. From equation (26) we have

(27)
∂P̄

∂x
+ g ′(P̄)

∂P̄

∂y
= k.

Since this is a quasilinear PDE, the method of characteristics may be used here (this

technique was used by Chamberland [2]). This gives a parametrization of the char-

acteristics (with parameter t) as

(28) ẋ = 1, ẏ = g ′(P̄), ˙̄P = k.

The case k = 0, that is, λ1 = λ2, will not produce a function which we want by

Theorem 1.1, so let let us suppose then that k 6= 0, that is, λ1 6= λ2. At t = 0, let

(29) x = 0, y = s, P̄ = h(s)

for a parameter s and some one-variable function h. The existence of a solution P̄

is guaranteed by the Cauchy-Kowalewski theorem; see Garabedian [9]. Combining

(28) and (29) forces x = t , and hence P̄ = kx + h(s) and

(30) 0 = m(s) :=
1

k
g
(

kx + h(s)
)

− 1

k
g
(

h(s)
)

+ s − y.

For a function s to be implicitly defined globally, there must exist a unique s for each

fixed (x, y) ∈ R
2. This is accomplished if the function m is bijective in s. Perhaps the

simplest way to satisfy this invertibility condition is to take h(s) = s, g(z) = tan−1(z),

λ1 = 1/2 and λ2 = −1/2 (which imply k = 1). This produces the function used in

Theorem 1.3.

Obviously many other choices for the functions g, h and the constant k are pos-

sible to give the desired invertibility. Such functions show that the classification and

explicit invertibility seen in the Theorems 1.1 and 1.2 are luxuries reserved for special

classes of maps, so Jacobian Conjecture results, such as those of Cobo et al., are truly

valuable.
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