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Abstract

We analyse the vorticity production of lake-scale circulation in wind-induced shallow
flows using a linear elliptic partial differential equation. The linear equation is derived
from the vorticity form of the shallow-water equation using a linear bed friction formula.
The features of the wind-induced steady-state flow are analysed in a circular basin with
topography as a concave paraboloid, having a quadratic pile in the middle of the basin.
In our study, the size of the pile varies by a size parameter. The vorticity production
due to the gradient in the topography (and the distance of the boundary) makes the
streamlines parallel to topographical contours, and beyond a critical size parameter,
it results in a secondary vortex pair. We compare qualitatively and quantitatively the
steady-state circulation patterns and vortex evolution of the flow fields calculated by
our linear vorticity model and the full, nonlinear shallow-water equations. From these
results, we hypothesize that the steady-state topographical vorticity production in lake-
scale wind-induced circulations can be described by the equilibrium of the wind friction
field and the bed friction field. Moreover, the latter can also be considered as a linear
function of the velocity vector field, and hence the problem can be described by a linear
equation.

2010 Mathematics subject classification: primary 35Q35; secondary 76D17.

Keywords and phrases: vorticity equilibrium, shallow water, linear circulation model,
large-scale environmental flow.

1. Introduction

Various forms of the shallow-water vorticity equation have been applied to describe
the large-scale horizontal motions and different wave phenomena in oceans, lakes and
other water bodies. Depending on the goal of the analysis, various terms of the vorticity
equation can be neglected or simplified. For instance, it is not rare that for certain
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problems the governing equations can be reduced to linear equations [6, 12, 13, 28–
30, 33, 34]. Even though nowadays high-speed computers can easily solve nonlinear
equation systems, the solution of a linear equation is still faster, and the knowledge
about the rates of participation between the terms in a complex vorticity equilibrium
is valuable.

The nonlinearity of the shallow-water vorticity equation arises from the curl of the
nonlinear acceleration (which is usually manifested in the advection of vorticity and
the vortex stretching terms) on the one hand, and the consideration of the bottom
friction term as a nonlinear (usually quadratic) function of the velocity vector field
on the other. This full nonlinear model can be used in a wide range of shallow flows,
such as modelling large scale [24] and small scale [11] transient vortex structures
over isolated topographical obstacles, jet flowing through a circular reservoir at
low Reynolds number [3] and also computing wind-induced large-scale steady-state
circulations in a shallow lake [23]. Zimmerman [37] and Dippner [9] showed the
importance of the vorticity advection and stretching terms by modelling transient
vortex structures using the characteristic values of certain seabays. However, the large
time-scale and steady-state simulations of large vortex structures do not necessarily
need to consider all the nonlinear terms or even the eddy viscosity term, as the
following examples will show.

The effect of vorticity source from wind stress curl on large-time-scale topographic
waves was investigated by Shilo et al. [31, 32], who neglected the eddy viscosity
term and used linear bottom friction connection. Laval et al. [20, 21] and Rubbert and
Köngeter [25] also neglected the advection of the vorticity, and showed that the bottom
stress has larger influence on the vorticity equilibrium than the vortex stretching term
analysing a similar problem of Shilo et al. Józsa et al. [15, 16] analysed the effect of the
wind stress curl solving the full nonlinear equation, and showed the dominant effect
of wind and bottom friction terms on large-scale wind-induced circulations in shallow
lakes.

Simons [33, 34] discussed how the basic features of all circulations can be modelled
satisfactorily with a linear model of the friction terms. Schwab and Beletsky [30] have
compared different nonlinear and linear models and showed the important role of the
bottom friction term considered with either quadratic or linear connection (in both
cases, the influence of the bottom friction term is of the same magnitude). Csanady [6]
described the long-term topographic waves in coastal zones with simple linear vorticity
equilibrium between the bottom friction and the Coriolis term. Huang [12] also
described waves with linear equilibrium of bottom and wind stresses in a shallow
lake, and showed the role of the (linear) bottom friction on the dissipation of the
vorticity waves. Jamart [13] described the steady-state wind-driven circulations with
linear model of the bottom, wind stresses and the Coriolis term. Schwab [28, 29] used
a linear model to generate impulse response functions, and estimated the water-level
displacements from wind field data using convolution instead of using any dynamical
equations. All these results also confirm that the basic features of large-scale wind-
induced circulations can be described by linear models to a certain degree.
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In this paper, we are looking at the accuracy of a linear vorticity equilibrium model
on the topographical vorticity production in wind-induced circulation of a shallow
lake. The topography is considered as a concave paraboloid: a quadratic pile in a
quartic basin. The quadratic pile increases by a size parameter. It should be noted
here that the full nonlinear vorticity equation involving varying topography in time
was deduced by Da et al. [7]. Our goal is to show that the linear vorticity model
may describe qualitatively and quantitatively the large-scale features of the steady
states corresponding to piles with different sizes. To validate our model, we compare
the results with a ratified shallow-flow model which considers the full shallow-water
equations, including quadratic bottom friction connection.

2. The vorticity equation

We consider the steady-state vorticity equilibrium between the bottom friction τb

and wind-generated surface friction τw fields:

∇ ∧
τb

h
= ∇ ∧

τw

h
, (2.1)

where h describes the water depth with constant surface level

∇ =

[
∂

∂x
,
∂

∂y

]
,

and ∧ denotes the curl of planar vector fields. Assuming a linear connection between
the bottom friction field and the depth integrated velocity vector field q, we can write

τb = Cbρq, (2.2)

where ρ is the (constant) density of the water and Cb is a linear friction coefficient with
dimension s−1. We introduce the stream function ψ of the depth integrated velocity
vector field:

q =

[
−
∂ψ

∂y
,
∂ψ

∂x

]
. (2.3)

The wind friction field is assumed to be constant:

τw = CwρairW2[cos δ, sin δ] (2.4)

with the dimensionless friction coefficient Cw, wind speed W and wind direction δ.
Substituting formulae (2.2)–(2.4) into equation (2.1) and assuming no slip boundary
condition results in the following Dirichlet problem on an Ω ⊂ R2 domain:h∆ψ − ∇h · ∇ψ = κh

(
∂h
∂y

cos δ −
∂h
∂x

sin δ
)

in Ω,

ψ = 0 on ∂Ω,
(2.5)

where

κ =
CwρairW2

Cbρ
, (2.6)
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which has the dimension m2 s−1. Considering

κh
(
∂h
∂y

cos δ −
∂h
∂x

sin δ
)
∈ L2(Ω) and ψ ∈ C2(Ω) ∩C(Ω),

where Ω = Ω ∪ ∂Ω, we write the weak form of (2.5) as

B(ψ, φ) = Fφ, for all φ ∈ L2(Ω), (2.7)

with
B(ψ, φ) =

∫
Ω

(h∇ψ · ∇φ + 2∇h · ∇ψφ) dA

and
Fφ = −

∫
Ω

κh
(
∂h
∂y

cos δ −
∂h
∂x

sin δ
)
φ dA,

where φ ∈ L2(Ω) is a test function and dA is the area element in R2.

3. Bifurcating vortex solution for varying topography

3.1. Depth function We are assuming a circular-shaped shallow lake with the depth
function

h = 1 − 10−11r2(r2 − ε2), ε ∈ (0, 700), (3.1)

which describes the depth variation of a convex quartic basin and a concave quadratic
pile added to the basin with a size parameter ε and r2 = x2 + y2. The topography can
be written in the form

b = 10−11r2(r2 − ε2).

Figure 1 shows the topography and the constant water level.
The radius of the lake is the first root of the depth function (3.1)

R =

√
ε2 +

√
ε4 + 4 × 1011

2
, (3.2)

and
R|ε=0 = 562.34 m, R|ε=700 = 803.13 m.

The depth function (3.1) has nonnegative extrema at r = 0 and r = ε/
√

2, which are
the top and the bottom of the pile, respectively, and an inflexion point in between at
r = ε/

√
6.

The water depth at the top of the pile and at the maximal depth is

h(0) = 1, h(ε/
√

2) = 1 +
ε4

4 × 1011 ,

respectively. Hence, if we denote the maximal depth by H then

H|ε=0 = 1.00 m, H|ε=700 = 1.60 m.
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Figure 1. Topography of a convex quartic basin with a concave quadratic pile with constant water level
generally (left), and for ε = 0 and ε = 700 specifically (right).

We measure the shallowness of the lake as the quotient of its depth and diameter:

H
2R

∣∣∣∣∣
ε=0

= 0.002� 1,
H
2R

∣∣∣∣∣
ε=700

= 0.002� 1.

The ε = 0 limit is a convex quartic basin; the flow pattern in such a case with a uniform
wind friction field is a pair of counter-rotating circulating domains [12, 15, 16].
Vorticity is produced with increasing ε around the centre with radius ε. To measure
this production, we assume that the characteristic depth gradient S is the local depth
gradient maximum at the inflexion point of the depth function:

S = hr(ε/
√

6) =

√
6

45 × 1010 ε
3,

S |ε=700 = 0.002.

3.2. Galerkin discretization and parameter quantification Expanding the weak
form (2.7) in polar coordinates (r, ϕ) leads to∫ 2π

0

∫ R

0
{h(∂rψ∂rφ + r−2∂ϕψ∂ϕφ) + ∂rhφ(2∂rψ + κh sin(ϕ − δ))}r dr dϕ = 0, (3.3)

where both h(r) and R depend on ε parametrically according to formulae (3.1)
and (3.2), respectively. We seek the solution with the Galerkin procedure (see [26]
for general details) in the form

ψk =

k∑
j=1

c jψ̂ j(r, ϕ) =

k∑
j=1

c j% j(r) sin(ϕ − δ), c j ∈ R. (3.4)
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The polar angle related higher harmonics should not be taken into account, since
the topography is independent of the polar angle. The radial basis functions are
constructed by a Gram–Schmidt process from the sequence r(r − R), r2(r − R),
r3(r − R) . . . , in order to naturally satisfy the boundary conditions. We use the
following three basis functions to obtain the solution:

%1 =

√
30
R5 r(r − R),

%2 =

√
210
R7 r(2r2 − 3rR + R2),

%3 =

√
90
R9 r(r − R)(14r2 − 14rR + 3R2), (3.5)

for which ∫ R

0
%i% j dr = δi j, i = 1, . . . , k, j = 1, . . . , k,

where δi j is the Kronecker delta symbol. The radial elements ensure that the boundary
condition ψ = 0 on ∂Ω is satisfied, which now reads

%i(R) = 0, i = 1, . . . , k.

We determine κ using formula (2.6). The density of air and water are

ρair = 1.2 kg m−3, ρ = 1000 kg m−3, (3.6)

respectively. A specific wind speed and wind friction coefficient are chosen in
accordance with existing work in the literature [5, 17, 35, 36] as

W = 3 m s−1, Cw = 1.5 × 10−3, (3.7)

respectively. Let the bottom friction coefficient be

Cb = 2 × 10−4 s−1, (3.8)

in agreement with Simons [33]. Substituting (3.6)–(3.8) into formula (2.6) yields

κ = 0.08 m2 s−1, (3.9)

and we are specifying northern wind,

δ =
π

2
. (3.10)

For the sake of simplicity, we identify the test functions φ of the weak form (3.3)
with the basis elements in Vk:

φi = ψ̂i, (3.11)
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described by formulae (3.4)–(3.5). Using the parameter (3.9) and the wind
direction (3.10) and considering the basis functions (3.4)–(3.5) and condition (3.11),
the weak form (3.3) leads to the following system of algebraic equations for the c j:

π

∫ R

0
r dr

(
h

k∑
j=1

c j
∂% j

∂r
∂%i

∂r
+
∂h
∂r
%i

(
2

k∑
j=1

c j
∂% j

∂r

)
+ 0.08 · h + r−2

k∑
j=1

c j% j%i

)
= 0.

(3.12)

We are left with a one-parameter (ε) family of solutions of the form (3.4) with c j
coefficients resulting from equation (3.12). For ε = 0, we find a simple vortex pair
solution arranged symmetrically with respect to the wind direction. With increasing ε,
the streamlines develop the tendency to gradually align with the circular topographical
contour lines around the centre. The range of modified streamlines gets wider with the
increase in ε, until a critical parameter value εcrit is reached. At this parameter value,
a qualitative change occurs in the flow pattern: a small secondary vortex pair emerges
at the centre. This secondary flow structure gradually grows with further increase in ε.

The above scenario indicates the existence of a steady-state bifurcation in the
system. Indeed, floating-point root approximation for various ε confirms that a new
positive real root of the polynomial (3.4) appears at

εcrit = 436. (3.13)

Note that Chen [4] found Hopf bifurcations in wind-induced unsteady quasi-
geostrophic flows. In contrast, the bifurcation parameter (3.13) characterizes the
steady-state flow patterns. The solution is a single vortex pair or a double vortex pair,
if ε < εcrit or ε > εcrit, respectively.

4. Comparing the results with a nonlinear shallow-flow model

In order to show that lake-scale circulation pattern and vortex evolution can be
reliably estimated by our simple linear model, we compare our results with flow
fields calculated by a full nonlinear model. The full model solves the incompressible
Reynolds-averaged shallow-water equations invoking the assumption of Boussinesq
(see [1] for details) and of hydrostatic pressure without neglecting advective and
eddy viscosity terms, as well as applying a nonlinear bed friction formula. The
model consists of a continuity equation and two momentum equations for the two
horizontal depth-averaged velocity components, respectively. We chose the Mike21
software by DHI [8] to solve the dynamic shallow-water equations numerically.
Mike21 had been previously applied extensively, and successfully verified in many
wind-driven coastal, estuarine and lake environments [19, 22, 27]. Therefore, we
give only a brief description of the solver here, and for further details we refer
to the model documentation [8]. The numerical solution is obtained by an element
centred, Godunov-type finite-volume scheme [8, 10] with second order accurate time
integration. The maximum time-step was set to 10 s to ensure the Courant–Friedrich–
Levy stability condition [1]. The spatial domain is discretized with an unstructured
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triangular mesh which is able to capture complex bathymetry and curved shorelines.
The spatial resolution is determined by a mesh refinement test in order to obtain mesh-
independent results. The applied cell size was 25 m.

The wind stress acting on the water surface is determined in the same way as is
done by the linear model, using formula (2.4) with an aerodynamic drag coefficient
with the same value as (3.7). The extra stress terms arising from Reynolds-averaging
are calculated by eddy viscosity concept using the Smagorinsky scheme [1] with a
coefficient of 0.28.

For bed friction, we apply in the model Manning’s formulation which uses
roughness coefficient n with dimension s m−1/3, and the bottom shear stress is related to
square of depth-averaged velocity. In order to approximate the bed friction fields of the
two models to each other, we can match bottom shear stresses through their formulae
(since neither the linear nor the quadratic coefficients have tensorial properties [14]).
If we denote the depth-averaged velocity vector field by v, the linear bottom friction
expression (2.2) takes the form

τb = Cbρq = Cbρhv. (4.1)

The quadratic bottom friction law reads

τb = C fρv|v|, (4.2)

where the quadratic drag coefficient C f is calculated by Manning’s formula,

C f = gn2h−1/3,

in which g = 9.81 m s−2 is the gravitational acceleration, and n is the roughness
coefficient. Equating the friction formulae (4.1)–(4.2) and substituting the depth
variations with an average depth h̄ = 1 m and the depth-averaged velocities with an
average value |v̄| = 0.02 m s−1 according to the topography (3.1) and the results of the
linear model simulation, respectively, we obtain the roughness coefficient

n = 0.032 s m−1/3. (4.3)

We use this value (4.3) in the nonlinear model, which is a typical value for roughness
coefficient for similar problems [8, 18] as well as the linear friction coefficient (3.8).

The results show good quantitative and qualitative correspondence. The streamline
pattern can be viewed for ε = 0 and ε = 700 in Figures 2 and 3, respectively. Since
the solution is a vortex pair symmetric to the y-axis, one vortex from the vortex pair
is shown for each model for the sake of comparison. Considering the streamfunction
values, a small deviation can be seen which is related to the different bed friction
formulations which were equaled via lake-averaged velocity and depth, as mentioned
above. The sign of the deviation is different in the two plotted cases. According to a
sensitivity analysis, these differences cannot be reduced by further friction coefficient
calibration.

Since the linear model assumes a horizontal water surface (rigid-lid approximation)
and the basin is rotationally symmetric, the estimated streamline patterns are also
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Figure 2. Streamfunction representation of the circulation pattern for ε = 0. Left: the solution of the
nonlinear model (continuous). Right: the solution of the linear model (dashed).

symmetric to the x-axis. In contrast, the full model is not able to apply the rigid-
lid approximation, thus the water surface is tilted from the initial horizontal level, that
is, the water level increases (decreases) on the leeward (windward) shore. Surface-
level deviations are very low (less than 1 cm) at the north (windward) and south
(leeward) ends of the basin. Nevertheless, as a result, in case of northerly wind, lake-
scale circulation patterns (both primary and secondary vortices) obtained by the full
model are not symmetrical to the x-axis.

To determine the critical ε-value of the second vortex pair and the locations of
vortex cores along the basin’s radius, 15 cases were modelled by the full model. In
these 15 cases, ε varies from 0 to 700 in steps of 100, and in steps of 10 from 420 to
450 to gain more detailed insight close to the critical value of ε, when the formation
of the second vortex pair occurs. Streamline functions are calculated from the steady-
state velocity fields determining first its curl, and then solving a Poisson equation with
a finite-element method on the same mesh.

The bifurcation of the vortex pattern appears in the solution of the nonlinear model
as well with

εcrit = 423.

Figure 4 shows the positions of the vortex centres. The appearance of the second vortex
pair and the evolution of the vortex cores as a function of ε shows good qualitative
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Figure 3. Streamfunction representation of the circulation pattern for ε = 700. Left: the solution of the
nonlinear model (continuous). Right: the solution of the linear model (dashed).

agreement between the two models. The difference in the exact positions may arise
from neglecting all nonlinearities in our model. However, the greatest difference is
still less than 10% compared to the radius of the lake.

5. Conclusion

We analysed the evolution of a secondary vortex pair due to topographical vorticity
production, away from the boundary in a shallow lake flow generated by uniform wind
stress field. If we consider the difference between the two mathematical models that
we have compared, the compliance of the results is good; the large-scale features of
the problem can be modelled satisfactorily with a linear vorticity equation.

For calculating the steady-state solutions, 10–20 min computation time was needed
with the full nonlinear model, while the running time of the linear model was just a few
seconds. Beside shallow lakes and reservoirs, where knowing the circulation patterns
is essential for many environmental reasons, our model can also be a useful tool to
support the design of stormwater ponds. For stormwater or retention ponds, wind and
topography might determine the large-scale circulation pattern and the resident time
in the pond, from which the sediment retention capability can be evaluated [2]. Also,
our model can provide quick estimates of basin-scale circulation patternx for various
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Figure 4. Vortex centres calculated with the linear model (continuous lines) and with the nonlinear model
(circles) as a function of the size parameter (ε). Centre locations are measured from the centre of the
basin. The area shaded grey represents the radius of the lake.

topographies and wind directions, from which the residence time distribution in the
pond can be calculated in order to find an ideal geometry and size.

In order to apply our model to such problems, it is important to consider a realistic
topography and the effect of the inhomogeneous wind stress field.
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