ON ONE-FACTORIZATIONS OF COMPLETE GRAPHS

Dedicated to the memory of Hanna Neumann

W. D. WALLIS

(Received 21 March 1972)
Communicated by G. Szekeres

1. Introduction

We use standard graph notation and definitions, as in [1]: in particular K_{n} is the complete graph on n vertices and $K_{n, n}$ is the regular complete bigraph of order $2 n$.

Given a graph G, a factor of G is a spanning subgraph of G and a factorization is a sequence of edge-disjoint factors whose union is G. A one-factor is a factor which is a regular graph of degree 1 ; a one-factorization is a factorization whose factors are all one-factors. It is well-known that $K_{2 n}$ and $K_{n, n}$ always have onefactorizations. If $K_{2 n}$ has vertex-set $\{1,2, \cdots, 2 n\}$ then [1, p. 85] $\mathscr{G}_{2 n}=\left\{G_{1}, G_{2}, \cdots\right.$, $\left.G_{2 n-1}\right\}$ is a one-factorization where

$$
\begin{equation*}
G_{i}=\{(2 n, i)\} \cup\{(i-j, i+j): j=1,2, \cdots, n-1\} \tag{1}
\end{equation*}
$$

$i-j$ and $i+j$ being taken as integers modulo $2 n-1$ in the range $\{1,2, \cdots, 2 n-1\}$. If the vertices of $K_{n, n}$ are written as $1_{1}, 2_{1}, \cdots, n_{1}, 1_{2}, 2_{2}, \cdots, n_{2}$ where the induced subgraph of $1_{\alpha}, 2_{\alpha}, \cdots, n_{\alpha}$ is null then $\mathscr{X}_{n}=\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ is a one-factorization if

$$
\begin{equation*}
X_{i}=\left\{\left(j_{1},(j-i+1)_{2}\right): j=1,2, \cdots, n\right\}, \tag{2}
\end{equation*}
$$

$j-i+1$ being taken as integers modulo n in the range $\{1,2, \cdots, n\}$.
Two factorizations \mathscr{F} and \mathscr{F}^{\prime} of G are isomorphic if there is a permutation of the vertices of G which sends each member of \mathscr{F} into a member of \mathscr{F}^{\prime}. It is easy to see that, up to isomorphism, K_{2}, K_{4} and K_{6} have unique one-factorizations. There are six non-isomorphic one-factorizations of K_{8}. We shall prove

Theorem 1. When $n \geqq 4$, there are two non-isomorphic one-factorizations of $K_{2 n}$.

Given any positive integers i, k and n, we shall write $d_{i k}$ for the greatest common divisor ($i-k, 2 n-1$) of $i-k$ and $2 n-1$, and

$$
v_{i k}=(2 n-1) / d_{i k}
$$

\equiv will denote congruence modulo $2 n-1$.

2. Divisions

Suppose $F_{i_{1}}, F_{i_{2}}, \cdots, F_{i t}$ are members of a factorization \mathscr{F} of a graph G. We say that they form a t-division if $F_{i_{1}} \cup F_{i_{2}} \cup \cdots \cup F_{i t}$ is a disconnected graph, and refer to the vertex-sets of the components of the union as the components of the division. If $F_{i_{1}}, F_{i_{2}}, \cdots, F_{i_{\mathrm{t}}}$ are a t-division then $F_{i}, F_{i_{\beta}}$ will necessarily be a 2 division if $\alpha \neq \beta$, and each component of the t-division will be a union of the components of the 2-division.

If \mathscr{F} is a one-factorization of G then $F_{i_{1}} \cup F_{i_{2}} \cup \cdots \cup F_{i_{t}}$ is regular of degree t. Therefore each component of a t-division contains more than t vertices. In particular if G is of order $2 n$ then an $(n-1)$-division has two components of order n; no n-division can occur. (ln fact no ($n-1$)-division can occur when n is odd, as the components have one-factors and consequently must be of even order.)

Lemma 1. If G_{i} and G_{k} are any two factors in $\mathscr{G}_{2 n}$ then $G_{i} \cup G_{k}$ consists of a cycle of length $v_{i k}+1$ and $\frac{1}{2}\left(d_{i k}-1\right)$ cycles of length $2 v_{i k}$.

Proof. Since $G_{i} \cup G_{k}$ is a regular graph of degree 2, it is a union of disjoint cycles. If one such cycle is

$$
\gamma_{0}, \gamma_{1}, \cdots, \gamma_{t},
$$

where $\gamma_{0}=\gamma_{t}$, it is necessarily true that $\left\{\gamma_{0}, \gamma_{1}\right\},\left\{\gamma_{2}, \gamma_{3}\right\}, \cdots,\left\{\gamma_{2 x}, \gamma_{2 x+1}\right\}, \cdots$ are all in the same one-factor. The edge $\left\{\gamma_{t-1}, \gamma_{0}\right\}$ cannot be in this one-factor, because γ_{0} cannot have degree 2 in a one-factor. So all the cycles are of even length, and the edges are alternately in G_{i} and G_{k}.

Suppose the cycle containing vertex $2 n$ is of length $2 m$; write it as

$$
\begin{equation*}
\alpha_{0}, \alpha_{1}, \cdots, \alpha_{2 m-1}, \alpha_{2 m} \tag{3}
\end{equation*}
$$

where $\alpha_{0}=\alpha_{2 m}=2 n$. Without loss of generality we can assume $\alpha_{1}=i$ and $\alpha_{2 m-1}=k$. Since (3) is a cycle, $\alpha_{2 x-1} \neq k$ when $0<x<m$. The edge $\left\{\alpha_{2 x}, \alpha_{2 x+1}\right\}$ belongs to G_{i}, and from (1) the typical edge of G_{i} (other than $\{2 n, i\}$) has form $\{j, 2 i-j\}$, so

$$
\begin{equation*}
\alpha_{2 x+1} \equiv 2 i-\alpha_{2 x} \tag{4}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\alpha_{2 x} \equiv 2 k-\alpha_{2 x-1} \tag{5}
\end{equation*}
$$

provided $\alpha_{2 x}$ is not $2 n$ and $\alpha_{2 x-1}$ is not i or k. So

$$
\alpha_{2 x+1} \equiv 2(i-k)+\alpha_{2 x-1}
$$

$$
\equiv 2 x(i-k)+i
$$

provided $1 \leqq x \leqq m-1$. In particular

$$
\begin{equation*}
\alpha_{2 x+1}=k \text { if and only if }(2 x+1)(i-k) \equiv 0 \tag{6}
\end{equation*}
$$

provided that $\alpha_{t} \neq i, k$ or $2 n$ for $1<t<2 x+1$. Since $x=m-1$ is to be the smallest positive solution of $\alpha_{2 x+1}=k$, and $2 x+1=v_{i k}$ is the smallest positive solution of $(2 x+1)(i-k) \equiv 0$, we have $2 m=v_{i k}+1$, and the cycle (3) is of length $v_{i k}+1$.

Now consider any z not in the cycle (3). Suppose that the cycle containing z in $G_{i} \cup G_{k}$ if of length $2 l$; call it

$$
\begin{equation*}
\beta_{0}, \beta_{1}, \cdots, \beta_{2 l} \tag{7}
\end{equation*}
$$

where $z=\beta_{0}=\beta_{21}$. Without loss of generality we may assume $\left\{\beta_{0}, \beta_{1}\right\} \in G_{i}$ and $\left\{\beta_{2 l-1}, \beta_{2 l}\right\} \in G_{k}$. Analogously to (4) and (5) we obtain

$$
\begin{aligned}
& \beta_{2 x+1} \equiv 2 i-\beta_{2 x} \\
& \beta_{2 x} \equiv 2 k-\beta_{2 x-1}
\end{aligned}
$$

and consequently

$$
\beta_{2 x+1} \equiv 2(x-y)(i-k)+\beta_{2 y+1} .
$$

Since none of i, k or $2 n$ can occur in this cycle, we need place no restriction on this equation, provided the subscripts $2 x+1$ and $2 y+1$ are reduced modulo $2 k$, so

$$
\begin{equation*}
\beta_{2 x+1}=\beta_{2 y+1} \text { if and only if } 2(x-y)(i-k) \equiv 0 \tag{8}
\end{equation*}
$$

By definition $\beta_{2 x+1}=\beta_{2 y+1}$ if and only if $2 l$ divides $(2 x+1)-(2 y+1)$, that is, if and only if l divides $x-y$. But $2(x-y)(i-k) \equiv 0$ if and only if $v_{i k}$ divides $2(x-y)$, that is, if and only if $v_{i k}$ divides $x-y$ (since $v_{i k}$ is odd). So $l=v_{i k}$, and the cycle (8) has length $2 v_{i k}$.

We have shown that $G_{i} \cup G_{k}$ has one cycle of length $v_{i k}+1$ and all other cycles of length $2 v_{i k}$. Since G has $2 n$ vertices, the number of cycles of length $2 v_{i k}$ must be

$$
\frac{2 n-v_{i k}-1}{2 v_{i k}}
$$

that is $\frac{1}{2}\left(d_{i k}-1\right)$.
Theorem 2. When $n>2, \mathscr{G}_{2 n}$ cannot contain an ($n-1$)-division.
Proof. An ($n-1$)-division would have two components of order n. Suppose $n>2$, so that $n-1 \geqq 2$, and let G_{i} and G_{k} be two different factors in an ($n-1$)division. The 2 -division $\left\{G_{i}, G_{k}\right\}$ has one component of size $v_{i k}+1$ and $\left(d_{i j}-1\right)$ components of size $2 v_{i k}$. So one of the components of the $(n-1)$-division must be a union of disjoint sets of size $2 v_{i k}$. So $v_{i k}$ divides n; since $v_{i k}$ also divides $2 n-1$
we have $v_{i k}=1$ and $d_{i k}=2 n-1$, which is impossible since $1 \leqq i, k \leqq 2 n-1$ and $i \neq k$.

Theorem 3. If $n \neq 5$, no 2 -division of $\mathscr{G}_{2 n}$ has a component of order $2 n-4$.
Proof. Consider the 2 -division $\left\{G_{i}, G_{k}\right\}$ whose components have sizes $2 v_{i k}$ and $v_{i k}+1$. Since $v_{i k}$ divides the odd number $2 n-1$ and as observed in the above proof $v_{i k}>1, v_{i k} \geqq 3$. If $v_{i k}+1=2 n-4$ we have $v_{i k}=2 n-5\left|2 n-1, v_{: k}\right| 4$, which is a contradiction. If $2 v_{i k}=2 n-4$ then $v_{i k} \mid(2 n-4,2 n-1)$, so $v_{i k} \mid 3$; so $v_{i k}=3$ and $n=5$.

3. Proof of theorem 1

We shall exhibit:
(A) a one-factorization $\mathscr{H}_{2 n}$ of $K_{2 n}$ which contains an ($n-1$)-division, for every even n;
(B) a one-factorization $\mathscr{L}_{2 n}$ of $K_{2 n}$ which contains a 2-division with a component of order $2 n-4$, for every odd n greater than 5 ;
(C) two non-isomorphic one-factorizations of K_{10}.

Theorem 2 together with (A) proves Theorem 1 for even n, Theorem 3 together with (B) proves Theorem 1 for odd n greater than 5 , and (C) completes the proof.

PART (A). In this case n is even, so K_{n} is one-factorable. Label the vertices of $K_{2 n}$ as $1_{1}, 2_{1}, \cdots, n_{1}, 1_{2}, 2_{2}, \cdots, n_{2}$, and let $F_{\alpha, 1}, F_{\alpha, 2}, \cdots, F_{\alpha, n-1}$ be the factors in some one-factorization of the K_{n} with vertices $1_{\alpha}, 2_{\alpha}, \cdots, n_{\alpha}$.

Then write

$$
\begin{array}{ll}
H_{i}=F_{1 . i} \cup F_{2 . i} & i=1,2, \cdots, n-1 \\
H_{i}=X_{i-n+1} & i=n, n+1, \cdots, 2 n-1
\end{array}
$$

where X_{i} are as defined in (2). Write $\mathscr{H}_{2 n}=\left\{H_{1}, H_{2}, \cdots, H_{2 n-1}\right\}$. Then clearly $\mathscr{H}_{2 n}$ is a one-factorization of $K_{2 n}$ and contains an ($n-1$)-division

$$
\left\{H_{1}, H_{2}, \cdots, H_{n-1}\right\}
$$

PART (B). When n is odd, write $n=2 m+1$, and write the vertices of $K_{4 m+2}$ as $1_{1}, 2_{1}, \cdots,(2 m+1)_{1}, 1_{2}, 2_{2}, \cdots,(2 m+1)_{2}$. Write $G_{\alpha, 1}, G_{\alpha .2}, \cdots, G_{\alpha .2 m}$ for the factors in the one-factorization $\mathscr{G}_{2 m+2}$ of the K_{m+2} with vertices $1_{\alpha}, 2_{\alpha}, \cdots,(2 m+2)_{\alpha}$, as defined in (1), for $\alpha=1,2$; write $G_{\alpha, i}^{*}$ for $G_{\alpha, i}$ with (i_{α}, $\left.(2 m+2)_{\alpha}\right)$ deleted; and write

$$
L_{i}^{*}=G_{1, i}^{*} \cup G_{2, i}^{*} \cup\left\{\left(i_{j}, i_{2}\right)\right\}
$$

Now carry out the vertex-permutation defined by

$$
\begin{aligned}
(2 m+2-i)_{\alpha} & \mapsto(2 i)_{\alpha} \\
(i+1)_{\alpha} & \mapsto(2 i+1)_{\alpha} \\
1_{\alpha} & \mapsto 1_{\alpha}
\end{aligned}
$$

for $i=1,2, \cdots, m$ and $a=1,2$, writing L_{i} for the result of applying the permutation to L_{i}^{*}. Then $L_{1}, L_{2}, \cdots, L_{2 m+1}$ are edge-disjoint one-factors of $K_{4 m+2}$, and their union contains all the edges of the form (j_{1}, k_{1}) and (j_{2}, k_{2}) where $j \neq k$ and all the edges $\left(j_{1}, j_{2}\right)$, but no edge of the form $\left(j_{1}, k_{2}\right)$ with $j \neq k$. Now define

$$
L_{i}=X_{i-2 m}, i=2 m+2,2 m+3, \cdots, 4 m+1
$$

where X_{i} are as defined in (2) with n replaced by $2 m+1$.

$$
\begin{aligned}
\mathscr{L}_{4 m+2}= & \left\{L_{1}, L_{2}, \cdots, L_{4 m+1}\right\} \text { is a one-factorization of } K_{4 m+2} . \text { Now } \\
L_{1}= & \left\{\left(1_{1}, 1_{2}\right),\left(2_{1}, 3_{1}\right), \cdots,\left((2 x)_{1},(2 x+1)_{1}\right), \cdots,\left((2 m)_{1},(2 m+1)_{1}\right)\right. \\
& \left.\left(2_{2}, 3_{2}\right), \cdots,\left((2 x)_{2},(2 x+1)_{2}\right), \cdots,\left((2 m)_{2},(2 m+1)_{2}\right)\right\} \\
L_{2 m+4}= & \left\{\left(1_{1},(2 m-1)_{2}\right),\left(2_{1},(2 m)_{2}\right),\left(3_{1},(2 m+1)_{2}\right),\left(4_{1}, 1_{2}\right), \cdots,\left((2 m+1)_{1}\right.\right. \\
& \left.\left.(2 m-2)_{2}\right)\right\}
\end{aligned}
$$

and $L_{1} \cup L_{2 m+4}$ contains the cycle

$$
1_{1}, 1_{2}, 4_{1}, 5_{1}, 2_{2}, 3_{2}, 6_{1}, 7_{1}, \cdots,(2 m-1)_{2}, 1_{1}
$$

of length $4 m-2$, that is $2 n-4$.
PART (C). Suitable 1-factorizations of K_{10} are G_{10}, which contains the 3-division $\left\{F_{1}, F_{4}, F_{7}\right\}$, and

$\{(1,10)$,	$(2,3)$,	$(4,5)$,	$(6,7)$,	$(8,9)\}$,
$\{(2,10)$,	$(1,4)$,	$(3,9)$,	$(5,6)$,	$(7,8)\}$,
$\{(3,10)$,	$(1,8)$,	$(2,4)$,	$(5,7)$,	$(6,9)\}$,
$\{(4,10)$,	$(1,3)$,	$(2,6)$,	$(5,8)$,	$(7,9)\}$,
$\{(5,10)$,	$(1,9)$,	$(2,7)$,	$(3,8)$,	$(4,6)\}$,
$\{(6,10)$,	$(1,5)$,	$(2,9)$,	$(3,7)$,	$(4,8)\}$,
$\{(7,10)$,	$(1,2)$,	$(3,4)$,	$(5,9)$,	$(6,8)\}$,
$\{(8,10)$,	$(1,7)$,	$(2,5)$,	$(3,6)$,	$(4,9)\}$,
$\{(9,10)$,	$(1,6)$,	$(2,8)$,	$(3,5)$,	$(4,7)\}$,

which contains no 3-division.

Reference

[1] F. Harary, Graph Theory, (Addison-Wesley, Reading, Mass., 1969).

University of Newcastle

New South Wales
Australia

