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1. Introduction

We use standard graph notation and definitions, as in [1]: in particular Kn is
the complete graph on n vertices and Kn „ is the regular complete bigraph of order 2n.

Given a graph G, a factor of G is a spanning subgraph of G and a factorization
is a sequence of edge-disjoint factors whose union is G. A one-factor is a factor
which is a regular graph of degree 1; a one-factorization is a factorization whose
factors are all one-factors. It is well-known that K2n and Kn „ always have one-
factorizations. If K2n has vertex-set {1,2, •••,2n} then [1, p. 85] &2n = {GUG2, •••,
G2n-i} is a one-factorization where

(1) G, = {(2n,i)} u {(i-j,i +j):j = l,2,-,n - 1},

i — j and i + j being taken as integers modulo 2« — 1 in the range {1,2, • • •,2n - 1 } .
If the vertices of Kn „ are written as I1,2u---,n1,l2,22,---,n2 where the induced
subgraph of 1^2;,, •••,«„ is null then Xn = {XuX2,---,Xn} is a one-factorization if

(2) Xi = {(ju(J-i + l)2)-J=l,2,-,n},

j — i + 1 being taken as integers modulo n in the range {1,2, •••, n}.

Two factorizations !F and J5"' of G are isomorphic if there is a permutation
of the vertices of G which sends each member of J5" into a member of #"'. It is
easy to see that, up to isomorphism, K2, K4 and K6 have unique one-factorizations.
There are six non-isomorphic one-factorizations of K8. We shall prove

THEOREM 1. When n ^ 4, there are two non-isomorphic one-factorizations
of K2n.

Given any positive integers i,k and n, we shall write dik for the greatest
common divisor (j — k,2n — 1) of i — k and In — 1, and
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= will denote congruence modulo 2n — 1.

2. Divisions

Suppose Fh, Fi2,--,Fh are members of a factorization & of a graph G. We
say that they form a t-division if Ftl u Fh u ••• U Fjt is a disconnected graph, and
refer to the vertex-sets of the components of the union as the components of the
division. If Fh, FJ2, •••,F,-t are a /-division then Ft, Fi/S will necessarily be a 2-
division if a # /?, and each component of the (-division will be a union of the
components of the 2-division.

If IF is a one-factorization of G then F,-, u Ffj u • • • U Fit is regular of degree
t. Therefore each component of a (-division contains more than t vertices. In
particular if G is of order 2n then an (n — l)-division has two components of order
n; no n-division can occur. (In fact no (n — l)-division can occur when n is odd,
as the components have one-factors and consequently must be of even order.)

LEMMA 1. / / Gt and Gk are any two factors in @2n
 tnen &i U Gk consists of a

cycle of length vj(. + 1 and\(dik — 1) cycles of length 2vik.

PROOF. Since G, u Gk is a regular graph of degree 2, it is a union of disjoint
cycles. If one such cycle is

where y0 = y,, it is necessarily true that {yo>7i}. {y^lz}, —, {V2x, 72x+i}.— are
all in the same one-factor. The edge {y,-i,y0} cannot be in this one-factor,
because y0 cannot have degree 2 in a one-factor. So all the cycles are of even
length, and the edges are alternately in G, and Gk.

Suppose the cycle containing vertex 2n is of length 2m; write it as

(3) <Xo>al>""">a2rn-l;a2m

where a0 = oc2m = 2n. Without loss of generality we can assume tx1 = i and
a2m-i = £• Since (3) is a cycle, a.2x-\ # k when 0 < x < m. The edge {u2x, «2*+i}
belongs to G,, and from (1) the typical edge of G, (other than {2n, i}) has form
{J,2i-j}, so

(4) cc2x+i = 2i-a2x,

and similarly

(5) a 2 j t s 2 f e - a 2 x _ 1 ,

provided a.2x is not 2« and a2x_i is not i or k. So
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= 2x{i -k) + i,

provided l g i x ^ m — 1. In particular

(6) <x2x+l = k if and only if (2x + 1)(£ - k) = 0,

provided that a, # i, k or 2« for 1 < £ < 2x + 1. Since x = m — 1 is to be the
smallest positive solution of a2 x + 1 = /c, and 2x + 1 = vi([ is the smallest positive
solution of (2x + l)(i — k) = 0, we have 2m = vjk + 1, and the cycle (3) is of
length vik + 1.

Now consider any z not in the cycle (3). Suppose that the cycle containing z
in G; u Gk if of length 21; call it

(7) Po>Pu—>P2i>

where z = /?0 = j32(. Without loss of generality we may assume {P0,Pi} e G,- and
{Pn-i, Pii\eGk- Analogously to (4) and (5) we obtain

p2x+1 = 2 i - / J 2 x ,

/J2, s 2k-p2x_u

and consequently

Since none of i, k or 2n can occur in this cycle, we need place no restriction on this
equation, provided the subscripts 2x + 1 and 2y + 1 are reduced modulo 2k, so

(8) P2x+1 = &,+1 if and only if 2(x - j ) (i - k) = 0.

By definition j92x+1 = ^2),+ 1 if and only if 21 divides (2x + l)-(2y + 1), that is,
if and only if / divides x — y. But 2{x — y)(i — k) = 0 if and only if vik divides
2(x — y), that is, if and only if vik divides x ~ y (since vik is odd). So / = vik, and
the cycle (8) has length 2\ik.

We have shown that G, U Gk has one cycle of length vik + 1 and all other
cycles of length 2vik. Since G has 2n vertices, the number of cycles of length 2vik

must be
2« — vik — 1

that is i(<*» - 1).

THEOREM 2. W/ien n > 2, ^ 2 n cannot contain an (n — l)-division.

PROOF. An (n —l)-division would have two components of order n. Suppose
n > 2, so that n — 1 ^ 2, and let Gt and Gk be two different factors in an (n — 1)-
division. The 2-division {GhGk} has one component of size vik + 1 and (dtJ — 1)
components of size 2vit. So one of the components of the (n — l)-division must be
a union of disjoint sets of size 2v,k. So vik divides n; since vik also divides 2n — 1
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we have vik = 1 and dik = 2n — 1, which is impossible since 1 ^ i, k ^ 2n — 1
and i ^ k.

THEOREM 3. Ifn =£ 5, no 2-division of 'S2n has a component of order 2n—4.

PROOF. Consider the 2-division {Gh Gk} whose components have sizes 2vik

and vik + 1. Since vik divides the odd number 2n — 1 and as observed in the above
proof vik > 1, vik ^ 3 . If vik + 1 = 2n — 4 we have vik = 2n — 5\ 2n — 1, v-t |4,
which is a contradiction. If 2vik = 2n — 4 then v j t [ (2«-4, 2n— 1), so vik 13; so
vik = 3 and n = 5.

3. Proof of theorem 1

We shall exhibit:
(A) a one-factorization^f 2n of Kln which contains an (n — l)-division, for every
even n;
(B) a one-factorization ^?2n °f -̂ 2n which contains a 2-division with a component
of order 2n — 4, for every odd n greater than 5;
(C) two non-isomorphic one-factorizations of Kl0.

Theorem 2 together with (A) proves Theorem 1 for even n, Theorem 3
together with (B) proves Theorem 1 for odd n greater than 5, and (C) completes
the proof.

PART (A). In this case n is even, so Kn is one-factorable. Label the vertices
of K2n as l l s 2U •••,«!, 12, 22,--,n2, and let F^u Fx 2, •••,F(Ln_l be the factors in
some one-factorization of the Kn with vertices la,2X, •••,nx.

Then write

Hi = Xi_n+1 i = n,n + \,---,2n- 1

where Xt are as denned in (2). Write 3^ln = {HUH2, •••,Hln.x). Then clearly

3f 2n is a one-factorization of K 2 n and contains an (n — l)-division

{HUH2, •••,Hn_1}.

PART (B). When n is odd, write n = 2m + 1, and write the vertices of
K4 m + 2 as 1,, 2 1 , - , ( 2 m + l)1 , 12, 22, - , ( 2 m + 1)2. Write Gail, G , . 2 , - ,G a 2 m

for the factors in the one-factorization @2m+2 of the K m+2 with vertices
lx, 2X, •••,(2m + 2)a, as denned in (1), for a = 1,2; write G*t for Gai with (ia,
(2m + 2)a) deleted; and write

L*=G*,.UG2*iu{(i J , , -2)}.

Now carry out the vertex-permutation denned by

(2m + 2 - 0 . H> (20.
(» + 1), w (2i + 1).

1. •-> 1-
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for i = 1,2, ••-,m and a = 1,2, writing Lf for the result of applying the permutation
to L* Then L,,L2, •••,L2m+1 are edge-disjoint one-factors of K4m+2, and their
union contains all the edges of the form (ji./cj) and 0'2,/c2) where j # k and all
the edges (JiJz)> but no edge of the form (jlt k2) with / # k. Now define

Li = Xi-2m, i = 2m + 2, 2m + 3,-~, Am + 1

where Xt are as defined in (2) with n replaced by 2m + 1.

•Sf74m+2 = {i-i,1-2, •••>^4m+i} is a one-factorization of X4 m + 2 . Now

( 2 2 , 3 2 ) , - , ((2x)2,(2x + 1 ) 2 ) , - , ((2m)2, (2m

(2m -

and Lt u L 2 m + 4 contains the cycle

I i , l2 .41 ,5 l ,22 ,32 ,61 ,71 ,"- , (2m - 1)2, lx

of length 4m - 2, that is 2n - 4.

PART (C). Suitable 1-factorizations of Kl0 are G10, which contains the
3-division {F1,F4 ,F7}, and

{(1,10),
{(2,10),
{(3,10),
{(4,10),
{(5,10),
{(6,10),
{(7,10),
{(8,10),
{(9,10),

(2,3),
(1,4),
(1,8),
(1,3),
(1,9),
(1,5),
(1,2),
(1,7),
(1,6),

(4,5),
(3,9),
(2,4),
(2,6),
(2,7),
(2,9),
(3,4),
(2,5),
(2,8),

(6,7),
(5,6),
(5,7),
(5,8),
(3,8),
(3,7),
(5,9),
(3,6),
(3, 5),

(8,9)},
(7,8)},
(6,9)},
(7,9)},
(4,6)},
(4,8)},
(6,8)},
(4,9)},
(4,7)},

which contains no 3-division.
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