ON ONE-FACTORIZATIONS OF COMPLETE GRAPHS

Dedicated to the memory of Hanna Neumann

W. D. WALLIS

(Received 21 March 1972)

Communicated by G. Szekeres

1. Introduction

We use standard graph notation and definitions, as in [1]: in particular K_n is the complete graph on *n* vertices and $K_{n,n}$ is the regular complete bigraph of order 2*n*.

Given a graph G, a factor of G is a spanning subgraph of G and a factorization is a sequence of edge-disjoint factors whose union is G. A one-factor is a factor which is a regular graph of degree 1; a one-factorization is a factorization whose factors are all one-factors. It is well-known that K_{2n} and $K_{n,n}$ always have onefactorizations. If K_{2n} has vertex-set $\{1, 2, \dots, 2n\}$ then [1, p. 85] $\mathscr{G}_{2n} = \{G_1, G_2, \dots, G_{2n-1}\}$ is a one-factorization where

(1)
$$G_i = \{(2n, i)\} \cup \{(i - j, i + j): j = 1, 2, \dots, n - 1\},\$$

i - j and i + j being taken as integers modulo 2n - 1 in the range $\{1, 2, \dots, 2n - 1\}$. If the vertices of $K_{n,n}$ are written as $1_1, 2_1, \dots, n_1, 1_2, 2_2, \dots, n_2$ where the induced subgraph of $1_a, 2_a, \dots, n_a$ is null then $\mathscr{X}_n = \{X_1, X_2, \dots, X_n\}$ is a one-factorization if

(2)
$$X_i = \{(j_1, (j-i+1)_2): j = 1, 2, \cdots, n\},\$$

j - i + 1 being taken as integers modulo n in the range $\{1, 2, \dots, n\}$.

Two factorizations \mathscr{F} and \mathscr{F}' of G are isomorphic if there is a permutation of the vertices of G which sends each member of \mathscr{F} into a member of \mathscr{F}' . It is easy to see that, up to isomorphism, K_2 , K_4 and K_6 have unique one-factorizations. There are six non-isomorphic one-factorizations of K_8 . We shall prove

THEOREM 1. When $n \ge 4$, there are two non-isomorphic one-factorizations of K_{2n} .

Given any positive integers i, k and n, we shall write d_{ik} for the greatest common divisor (i - k, 2n - 1) of i - k and 2n - 1, and

167

 \equiv will denote congruence modulo 2n - 1.

2. Divisions

Suppose $F_{i_1}, F_{i_2}, \dots, F_{i_t}$ are members of a factorization \mathscr{F} of a graph G. We say that they form a *t*-division if $F_{i_1} \cup F_{i_2} \cup \dots \cup F_{i_t}$ is a disconnected graph, and refer to the vertex-sets of the components of the union as the components of the division. If $F_{i_1}, F_{i_2}, \dots, F_{i_t}$ are a *t*-division then F_i , F_{i_β} will necessarily be a 2-division if $\alpha \neq \beta$, and each component of the *t*-division will be a union of the components of the 2-division.

If \mathscr{F} is a one-factorization of G then $F_{i_1} \cup F_{i_2} \cup \cdots \cup F_{i_t}$ is regular of degree t. Therefore each component of a t-division contains more than t vertices. In particular if G is of order 2n then an (n-1)-division has two components of order n; no n-division can occur. (In fact no (n-1)-division can occur when n is odd, as the components have one-factors and consequently must be of even order.)

LEMMA 1. If G_i and G_k are any two factors in \mathscr{G}_{2n} then $G_i \cup G_k$ consists of a cycle of length $v_{ik} + 1$ and $\frac{1}{2}(d_{ik} - 1)$ cycles of length $2v_{ik}$.

PROOF. Since $G_i \cup G_k$ is a regular graph of degree 2, it is a union of disjoint cycles. If one such cycle is

$$\gamma_0, \gamma_1, \cdots, \gamma_t,$$

where $\gamma_0 = \gamma_r$, it is necessarily true that $\{\gamma_0, \gamma_1\}, \{\gamma_2, \gamma_3\}, \dots, \{\gamma_{2x}, \gamma_{2x+1}\}, \dots$ are all in the same one-factor. The edge $\{\gamma_{t-1}, \gamma_0\}$ cannot be in this one-factor, because γ_0 cannot have degree 2 in a one-factor. So all the cycles are of even length, and the edges are alternately in G_i and G_k .

Suppose the cycle containing vertex 2n is of length 2m; write it as

$$(3) \qquad \qquad \alpha_0, \alpha_1, \cdots, \alpha_{2m-1}, \alpha_{2m}$$

where $\alpha_0 = \alpha_{2m} = 2n$. Without loss of generality we can assume $\alpha_1 = i$ and $\alpha_{2m-1} = k$. Since (3) is a cycle, $\alpha_{2x-1} \neq k$ when 0 < x < m. The edge $\{\alpha_{2x}, \alpha_{2x+1}\}$ belongs to G_i , and from (1) the typical edge of G_i (other than $\{2n, i\}$) has form $\{j, 2i - j\}$, so

$$\alpha_{2x+1} \equiv 2i - \alpha_{2x},$$

and similarly

$$\alpha_{2x} \equiv 2k - \alpha_{2x-1},$$

provided α_{2x} is not 2n and α_{2x-1} is not *i* or *k*. So

$$\alpha_{2x+1} \equiv 2(i-k) + \alpha_{2x-1}$$

$$\equiv 2x(i-k)+i$$

provided $1 \leq x \leq m - 1$. In particular

(6)
$$\alpha_{2x+1} = k \text{ if and only if } (2x+1)(i-k) \equiv 0,$$

provided that $\alpha_t \neq i, k$ or 2n for 1 < t < 2x + 1. Since x = m - 1 is to be the smallest positive solution of $\alpha_{2x+1} = k$, and $2x + 1 = v_{ik}$ is the smallest positive solution of $(2x + 1)(i - k) \equiv 0$, we have $2m = v_{ik} + 1$, and the cycle (3) is of length $v_{ik} + 1$.

Now consider any z not in the cycle (3). Suppose that the cycle containing z in $G_i \cup G_k$ if of length 2l; call it

$$(7) \qquad \qquad \beta_0, \beta_1, \cdots, \beta_{2l},$$

where $z = \beta_0 = \beta_{2l}$. Without loss of generality we may assume $\{\beta_0, \beta_1\} \in G_i$ and $\{\beta_{2l-1}, \beta_{2l}\} \in G_k$. Analogously to (4) and (5) we obtain

$$\beta_{2x+1} \equiv 2i - \beta_{2x},$$

$$\beta_{2x} \equiv 2k - \beta_{2x-1}$$

and consequently

$$\beta_{2x+1} \equiv 2(x-y)(i-k) + \beta_{2y+1}$$

Since none of *i*, *k* or 2n can occur in this cycle, we need place no restriction on this equation, provided the subscripts 2x + 1 and 2y + 1 are reduced modulo 2k, so

(8)
$$\beta_{2x+1} = \beta_{2y+1}$$
 if and only if $2(x-y)(i-k) \equiv 0$.

By definition $\beta_{2x+1} = \beta_{2y+1}$ if and only if 2*l* divides (2x + 1) - (2y + 1), that is, if and only if *l* divides x - y. But $2(x - y)(i - k) \equiv 0$ if and only if v_{ik} divides 2(x - y), that is, if and only if v_{ik} divides x - y (since v_{ik} is odd). So $l = v_{ik}$, and the cycle (8) has length $2v_{ik}$.

We have shown that $G_i \cup G_k$ has one cycle of length $v_{ik} + 1$ and all other cycles of length $2v_{ik}$. Since G has 2n vertices, the number of cycles of length $2v_{ik}$ must be

$$\frac{2n-v_{ik}-1}{2v_{ik}}$$

,

that is $\frac{1}{2}(d_{ik} - 1)$.

THEOREM 2. When n > 2, \mathscr{G}_{2n} cannot contain an (n - 1)-division.

PROOF. An (n-1)-division would have two components of order *n*. Suppose n > 2, so that $n - 1 \ge 2$, and let G_i and G_k be two different factors in an (n - 1)-division. The 2-division $\{G_i, G_k\}$ has one component of size $v_{ik} + 1$ and $(d_{ij} - 1)$ components of size $2v_{ik}$. So one of the components of the (n - 1)-division must be a union of disjoint sets of size $2v_{ik}$. So v_{ik} divides *n*; since v_{ik} also divides 2n - 1

169

we have $v_{ik} = 1$ and $d_{ik} = 2n - 1$, which is impossible since $1 \le i$, $k \le 2n - 1$ and $i \ne k$.

THEOREM 3. If $n \neq 5$, no 2-division of \mathscr{G}_{2n} has a component of order 2n-4.

PROOF. Consider the 2-division $\{G_i, G_k\}$ whose components have sizes $2v_{ik}$ and $v_{ik} + 1$. Since v_{ik} divides the odd number 2n - 1 and as observed in the above proof $v_{ik} > 1$, $v_{ik} \ge 3$. If $v_{ik} + 1 = 2n - 4$ we have $v_{ik} = 2n - 5 | 2n - 1$, $v_{ik} | 4$, which is a contradiction. If $2v_{ik} = 2n - 4$ then $v_{ik} | (2n - 4, 2n - 1)$, so $v_{ik} | 3$; so $v_{ik} = 3$ and n = 5.

3. Proof of theorem 1

We shall exhibit:

(A) a one-factorization \mathscr{H}_{2n} of K_{2n} which contains an (n-1)-division, for every even n;

(B) a one-factorization \mathcal{L}_{2n} of K_{2n} which contains a 2-division with a component of order 2n - 4, for every odd n greater than 5;

(C) two non-isomorphic one-factorizations of K_{10} .

Theorem 2 together with (A) proves Theorem 1 for even n, Theorem 3 together with (B) proves Theorem 1 for odd n greater than 5, and (C) completes the proof.

PART (A). In this case *n* is even, so K_n is one-factorable. Label the vertices of K_{2n} as $1_1, 2_1, \dots, n_1, 1_2, 2_2, \dots, n_2$, and let $F_{\alpha,1}, F_{\alpha,2}, \dots, F_{\alpha,n-1}$ be the factors in some one-factorization of the K_n with vertices $1_{\alpha}, 2_{\alpha}, \dots, n_{\alpha}$.

Then write

$$H_i = F_{1,i} \cup F_{2,i} \qquad i = 1, 2, \dots, n-1$$

$$H_i = X_{i-n+1} \qquad i = n, n+1, \dots, 2n-1$$

where X_i are as defined in (2). Write $\mathscr{H}_{2n} = \{H_1, H_2, \dots, H_{2n-1}\}$. Then clearly \mathscr{H}_{2n} is a one-factorization of K_{2n} and contains an (n-1)-division

 $\{H_1, H_2, \cdots, H_{n-1}\}.$

PART (B). When n is odd, write n = 2m + 1, and write the vertices of K_{4m+2} as $1_1, 2_1, \dots, (2m+1)_1, 1_2, 2_2, \dots, (2m+1)_2$. Write $G_{\alpha,1}, G_{\alpha,2}, \dots, G_{\alpha,2m}$ for the factors in the one-factorization \mathscr{G}_{2m+2} of the K_{m+2} with vertices $1_{\alpha}, 2_{\alpha}, \dots, (2m+2)_{\alpha}$, as defined in (1), for $\alpha = 1, 2$; write $G_{\alpha,i}^*$ for $G_{\alpha,i}$ with $(i_{\alpha}, (2m+2)_{\alpha})$ deleted; and write

$$L_i^* = G_{1,i}^* \cup G_{2,i}^* \cup \{(i_1, i_2)\}.$$

Now carry out the vertex-permutation defined by

$$\begin{array}{rccc} (2m+2-i)_{\alpha} & \mapsto & (2i)_{\alpha} \\ (i+1)_{\alpha} & \mapsto & (2i+1)_{\alpha} \\ & 1_{\alpha} & \mapsto & 1_{\alpha} \end{array}$$

for $i = 1, 2, \dots, m$ and a = 1, 2, writing L_i for the result of applying the permutation to L_i^* . Then $L_1, L_2, \dots, L_{2m+1}$ are edge-disjoint one-factors of K_{4m+2} , and their union contains all the edges of the form (j_1, k_1) and (j_2, k_2) where $j \neq k$ and all the edges (j_1, j_2) , but no edge of the form (j_1, k_2) with $j \neq k$. Now define

$$L_i = X_{i-2m}, i = 2m + 2, 2m + 3, \dots, 4m + 1$$

where X_i are as defined in (2) with *n* replaced by 2m + 1.

$$\begin{aligned} \mathscr{L}_{4m+2} &= \{L_1, L_2, \cdots, L_{4m+1}\} \text{ is a one-factorization of } K_{4m+2}. \text{ Now} \\ L_1 &= \{(1_1, 1_2), (2_1, 3_1), \cdots, ((2x)_1, (2x+1)_1), \cdots, ((2m)_1, (2m+1)_1), \\ &\qquad (2_2, 3_2), \cdots, ((2x)_2, (2x+1)_2), \cdots, ((2m)_2, (2m+1)_2)\}, \\ L_{2m+4} &= \{(1_1, (2m-1)_2), (2_1, (2m)_2), (3_1, (2m+1)_2), (4_1, 1_2), \cdots, ((2m+1)_1, \\ &\qquad (2m-2)_2)\}, \end{aligned}$$

and $L_1 \cup L_{2m+4}$ contains the cycle

$$1_1, 1_2, 4_1, 5_1, 2_2, 3_2, 6_1, 7_1, \cdots, (2m-1)_2, 1_1$$

of length 4m - 2, that is 2n - 4.

PART (C). Suitable 1-factorizations of K_{10} are G_{10} , which contains the 3-division $\{F_1, F_4, F_7\}$, and

{(1, 10),	(2, 3),	(4, 5),	(6,7),	(8,9)},
{(2, 10),	(1,4),	(3,9),	(5,6),	(7,8)},
{(3, 10),	(1,8),	(2,4),	(5,7),	(6,9)},
{(4, 10),	(1, 3),	(2,6),	(5,8),	(7,9)},
{(5,10),	(1,9),	(2,7),	(3,8),	(4,6)},
{(6, 10),	(1, 5),	(2,9),	(3,7),	(4, 8)},
{(7, 10),	(1,2),	(3,4),	(5,9),	(6,8)},
{(8, 10),	(1,7),	(2, 5),	(3,6),	(4,9)},
{(9,10),	(1,6),	(2,8),	(3, 5),	(4,7)},

which contains no 3-division.

Reference

[1] F. Harary, Graph Theory, (Addison-Wesley, Reading, Mass., 1969).

University of Newcastle New South Wales Australia