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Abstract

Thirty-five years ago, thunks were used to simulate call-by-name under call-by-value in Algol

60. Twenty years ago, Plotkin presented continuation-based simulations of call-by-name

under call-by-value and vice versa in the λ-calculus. We connect all three of these classical

simulations by factorizing the continuation-based call-by-name simulation Cn with a thunk-

based call-by-name simulationT followed by the continuation-based call-by-value simulation

Cv extended to thunks.

K ¤ thunks

¤ CPS

4

#n

#v

We show thatT actually satisfies all of Plotkin’s correctness criteria for Cn (i.e. his Indifference,

Simulation and Translation theorems). Furthermore, most of the correctness theorems for Cn

can now be seen as simple corollaries of the corresponding theorems for Cv and T.

Capsule Review

Many Continuation-Passing Style (CPS) transformations are complex and can be staged into

conceptually different passes. This paper shows that the call-by-name CPS transformation

developed by Reynolds and Plotkin can be split into a thunk-introduction phase followed

by a call-by-value CPS transformation. Moreover, it proves that the first phase is sufficient

for simulation purposes, formalising folklore from the days of Algol 60. The paper stands by

itself, but readers may profit from having a copy of Plotkin’s 1975 paper nearby.

† Supported by the Danish Research Academy and by the DART project (Design, Analysis
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1 Introduction

In his seminal paper ‘Call-by-name, call-by-value and the λ-calculus’, Plotkin (1975)

presents simulations of call-by-name by call-by-value (and vice versa). Both of

Plotkin’s simulations rely on continuations. Since Algol 60, however, programming

wisdom has it that thunks can be used to obtain a simpler simulation of call-

by-name by call-by-value. We show that composing a thunk-based call-by-name

simulationT with Plotkin’s continuation-based call-by-value simulation Cv actually

yields Plotkin’s continuation-based call-by-name simulation Cn (sections 2 and 3).

Revisiting Plotkin’s correctness theorems (section 4), we provide a correction to his

Translation property for Cn, and show that the thunk-based simulation T satisfies

all of Plotkin’s properties for Cn. The factorization of Cn by Cv and T makes

it possible to derive correctness properties for Cn from the corresponding results

for Cv and T. This factorization has also found several other applications already

(section 5). The extended version of this paper (Hatcliff and Danvy, 1995) gives a

more detailed development as well as all proofs.

2 Continuation-based and thunk-based simulations

We consider Λ, the untyped λ-calculus parameterized by a set of basic constants b

(Plotkin, 1975, p. 127).

e ∈ Λ

e ::= b | x | λx.e | e0 e1

The sets Valuesn[Λ] and Valuesv[Λ] below represent the set of values from the

language Λ under call-by-name and call-by-value evaluation, respectively.

v ∈ Valuesn[Λ]

v ::= b | λx.e

v ∈ Valuesv[Λ]

v ::= b | x | λx.e
...where e ∈ Λ

Figure 1 displays Plotkin’s call-by-name CPS transformation Cn (which simulates

call-by-name under call-by-value). (Note: the term ‘CPS’ stands for ‘Continuation-

Passing Style’. It was coined in Steele’s MS thesis (Steele, 1978).) Figure 2 displays

Plotkin’s call-by-value CPS transformation Cv (which simulates call-by-value under

call-by-name). Figure 3 displays the standard thunk-based simulation of call-by-

name using call-by-value evaluation of the language Λτ. Λτ extends Λ as follows:

e ∈ Λτ

e ::= ... | delay e | force e

The operator delay suspends the evaluation of an expression – thereby coercing

an expression to a value. Therefore, delay e is added to the value sets in Λτ:

v ∈ Valuesn[Λτ]

v ::= ... | delay e

v ∈ Valuesv[Λτ]

v ::= ... | delay e
...where e ∈ Λτ

The operator force triggers the evaluation of such a suspended expression. This is

formalized by the following notion of reduction.
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Cn〈[·]〉 : Λ→Λ

Cn〈[v]〉 = λk.kCn〈v〉
Cn〈[x]〉 = λk.x k

Cn〈[e0 e1]〉 = λk.Cn〈[e0]〉 (λy0.y0 Cn〈[e1]〉 k)

Cn〈·〉 : Valuesn[Λ]→Λ

Cn〈b〉 = b

Cn〈λx.e〉 = λx.Cn〈[e]〉

Fig. 1. Call-by-name CPS transformation.

Cv〈[·]〉 : Λ→Λ

Cv〈[v]〉 = λk.kCv〈v〉
Cv〈[e0 e1]〉 = λk.Cv〈[e0]〉 (λy0.Cv〈[e1]〉 (λy1.y0 y1 k))

Cv〈·〉 : Valuesv[Λ]→Λ

Cv〈b〉 = b

Cv〈x〉 = x

Cv〈λx.e〉 = λx.Cv〈[e]〉

Fig. 2. Call-by-value CPS transformation.

T : Λ→Λτ

T〈[b]〉 = b

T〈[x]〉 = force x

T〈[λx.e]〉 = λx.T〈[e]〉
T〈[e0 e1]〉 = T〈[e0]〉 (delay T〈[e1]〉)

Fig. 3. Call-by-name thunk transformation.

C+
v 〈[·]〉 : Λτ→Λ

...

C+
v 〈[force e]〉 = λk.C+

v 〈[e]〉 (λy.y k)

C+
v 〈·〉 : Valuesv[Λτ]→Λ

...

C+
v 〈delay e〉 = C+

v 〈[e]〉

Fig. 4. Call-by-value CPS transformation (extended to thunks).
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Definition 1 (τ-reduction)

force (delay e) −→τ e

We also consider the conventional notions of reduction β, βv, η, and ηv (Barendregt,

1984; Plotkin, 1975; Sabry and Felleisen, 1993).

Definition 2 (β, βv, η, ηv-reduction)

(λx.e1) e2 −→β e1[x := e2]

(λx.e) v −→βv
e[x := v] v ∈ Valuesv[Λ]

λx.e x −→η e x 6∈ FV(e)

λx.v x −→ηv
v v ∈ Valuesv[Λ] ∧ x 6∈ FV(v)

For a notion of reduction r, −→r also denotes construct compatible one-step

reduction, −→−→r denotes the reflexive, transitive closure of −→r , and =r denotes

the smallest equivalence relation generated by −→r (Barendregt, 1984). We will also

write λr ` e1 = e2 when e1 =r e2 (similarly for the other relations).

Figure 4 extends Cv (see Figure 2) to obtain C+
v which CPS-transforms thunks.

C+
v faithfully implements τ-reduction in terms of βv (and thus β) reduction. We write

βi below to signify that the property holds indifferently for βv and β.

Property 1

For all e ∈ Λτ, λβi ` C+
v 〈[force (delay e)]〉 = C+

v 〈[e]〉.

Proof

C+
v 〈[force (delay e)]〉 = λk.(λk.k (C+

v 〈[e]〉)) (λy.y k)

−→βi λk.(λy.y k)C+
v 〈[e]〉

−→βi λk.C+
v 〈[e]〉 k

−→βi C+
v 〈[e]〉

The last step holds since a simple case analysis shows that C+
v 〈[e]〉 always has the

form λk.e′ for some e′ ∈ Λ.

3 Connecting the continuation-based and thunk-based simulations

Cn can be factored into two conceptually distinct steps: (1) the suspension of

argument evaluation (captured in T); and (2) the sequentialization of function

application to give the usual tail-calls of CPS terms (captured in C+
v ).

Theorem 1

For all e ∈ Λ, λβi ` (C+
v ◦T)〈[e]〉 = Cn〈[e]〉.

Proof

By induction over the structure of e:

case e ≡ b:

(C+
v ◦T)〈[b]〉 = C+

v 〈[b]〉
= λk.k b

= Cn〈[b]〉
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case e ≡ x:

(C+
v ◦T)〈[x]〉 = C+

v 〈[force x]〉
= λk.(λk.k x) (λy.y k)

−→βi λk.(λy.y k) x

−→βi λk.x k

= Cn〈[x]〉

case e ≡ λx.e′:

(C+
v ◦T)〈[λx.e′]〉 = C+

v 〈[λx.T〈[e′]〉]〉
= λk.k (λx.(C+

v ◦T)〈[e′]〉)
=βi λk.k (λx.Cn〈[e′]〉) ...by the ind. hyp.

= Cn〈[λx.e′]〉

case e ≡ e0 e1:

(C+
v ◦T)〈[e0 e1]〉 = C+

v 〈[T〈[e0]〉 (delay T〈[e1]〉)]〉
= λk.(C+

v ◦T)〈[e0]〉 (λy0.(λk.k (C+
v ◦T)〈[e1]〉) (λy1.y0 y1 k))

−→βi λk.(C+
v ◦T)〈[e0]〉 (λy0.(λy1.y0 y1 k) (C+

v ◦T)〈[e1]〉)
−→βi λk.(C+

v ◦T)〈[e0]〉 (λy0.y0 (C+
v ◦T)〈[e1]〉 k)

=βi λk.Cn〈[e0]〉 (λy0.y0 Cn〈[e1]〉 k) ...by the ind. hyp.

= Cn〈[e0 e1]〉

This theorem implies that the diagram in the abstract commutes up to βi-equivalence,

i.e. indifferently up to βv- and β-equivalence. Note that C+
v ◦ T and Cn only differ

by administrative reductions. In fact, if we consider optimizing versions of Cn and

Cv that remove administrative redexes, then the diagram commutes up to identity

(i.e. up to α-equivalence).

Figures 5 and 6 present two such optimizing transformations Cn.opt and Cv.opt.

The output of Cn.opt is βvηv equivalent to the output of Cn, and similarly for

Cv.opt and Cv, as shown by Danvy and Filinski (Danvy and Filinski, 1992, pp. 387,

367). Both are applied to the identity continuation. In Figures 5 and 6, they are

presented in a two-level language à la Nielson and Nielson (1992). Operationally,

the overlined λ’s and @’s correspond to functional abstractions and applications

in the program implementing the translation, while the underlined λ’s and @’s

represent abstract-syntax constructors. It is simple to transcribe Cn.opt and Cv.opt into

functional programs.

The optimizing transformation C+
v.opt is obtained from Cv.opt by adding the follow-

ing definitions:

C+
v.opt〈[force e]〉 = λk.C+

v.opt〈[e]〉@ (λy0.y0 @ (λy1.k@ y1))

C+
v.opt〈delay e〉 = λk.C+

v.opt〈[e]〉@ (λy.k@ y)

Taking an operational view of these two-level specifications, the following theorem

states that, for all e ∈ Λ, the result of applying C+
v.opt to T〈[e]〉 (with an initial

continuation λa.a) is α-equivalent to the result of applying Cn.opt to e (with an initial

continuation λa.a).
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Cn.opt〈[·]〉 : Λ→ (Λ→Λ)→Λ

Cn.opt〈[v]〉 = λk.k@Cn.opt〈v〉
Cn.opt〈[x]〉 = λk.x@ (λy.k@ y)

Cn.opt〈[e0 e1]〉 = λk.Cn.opt〈[e0]〉@ (λy0.y0 @ (λk.Cn.opt〈[e1]〉@ (λy1.k@ y1)) @ (λy2.k@ y2))

Cn.opt〈·〉 : Valuesn[Λ]→Λ

Cn.opt〈b〉 = b

Cn.opt〈λx.e〉 = λx.λk.Cn.opt〈[e]〉@ (λy.k@ y)

Fig. 5. Optimizing call-by-name CPS transformation.

Cv.opt〈[·]〉 : Λ→ (Λ→Λ)→Λ

Cv.opt〈[v]〉 = λk.k@Cv.opt〈v〉
Cv.opt〈[e0 e1]〉 = λk.Cv.opt〈[e0]〉@ (λy0.Cv.opt〈[e1]〉@ (λy1.y0 @ y1 @ (λy2.k@ y2)))

Cv.opt〈·〉 : Valuesv[Λ]→Λ

Cv.opt〈b〉 = b

Cv.opt〈x〉 = x

Cv.opt〈λx.e〉 = λx.λk.Cv.opt〈[e]〉@ (λy.k@ y)

Fig. 6. Optimizing call-by-value CPS transformation.

Theorem 2

For all e ∈ Λ, (C+
v.opt◦T)〈[e]〉@ (λa.a) ≡ Cn.opt〈[e]〉@ (λa.a).

Proof

A simple structural induction similar to the one required in the proof of Theorem 1.

We show only the case for identifiers (the others are similar). The overlined constructs

are computed at translation time, and thus simplifying overlined constructs using

β-conversion yields equivalent specifications.

case e ≡ x:

(C+
v.opt◦T)〈[x]〉 = λk.(λk.k@ x) @ (λy0.y0 @ (λy1.k@ y1))

= λk.(λy0.y0 @ (λy1.k@ y1)) @ x

= λk.x@ (λy1.k@ y1)

= Cn.opt〈[x]〉

4 Revisiting Plotkin’s correctness properties

Figure 7 presents single-step evaluation rules specifying the call-by-name and call-by-

value operational semantics of Λ programs (closed terms). The (partial) evaluation

functions evaln and evalv are defined in terms of the reflexive, transitive closure

(denoted 7−→∗) of the single-step evaluation rules.

evaln(e) = v iff e 7−→∗n v
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Call-by-name:

(λx.e0) e1 7−→n e0[x := e1]

e0 7−→n e
′
0

e0 e1 7−→n e
′
0 e1

Call-by-value:

(λx.e) v 7−→v e[x := v]

e0 7−→v e
′
0

e0 e1 7−→v e
′
0 e1

e1 7−→v e
′
1

(λx.e0) e1 7−→v (λx.e0) e′1

Fig. 7. Single-step evaluation rules.

evalv(e) = v iff e 7−→∗v v

The evaluation rules for Λτ are obtained by adding the following rules to both the

call-by-name and call-by-value evaluation rules of Figure 7.

e 7−→ e′

force e 7−→ force e′
force (delay e) 7−→ e

For a language l, Programs[l] denotes the closed terms in l. For meta-language

expressions E1, E2, we write E1 ' E2 when E1 and E2 are both undefined, or else

both are defined and denote α-equivalent terms. We will also write E1 'r E2 when

E1 and E2 are both undefined, or else are both defined and denote r-convertible

terms for the convertibility relation generated by some notion of reduction r.

Plotkin expressed the correctness of his simulations Cn and Cv via three prop-

erties: Indifference, Simulation and Translation. Indifference states that call-by-name

and call-by-value evaluation coincide on terms in the image of the CPS transfor-

mation. Simulation states that the desired evaluation strategy is properly simulated.

Translation states how the transformation relates program calculi for each evalu-

ation strategy (e.g. λβ, λβv). Let us restate these properties for Plotkin’s original

presentation of Cn (hereby noted Pn) (Plotkin, 1975, p. 153), that only differs from

Figure 1 at the line for identifiers.

Pn〈[x]〉 = x

Theorem 3

[Plotkin, 1975] For all e ∈ Programs[Λ],

1. Indifference: evalv(Pn〈[e]〉 I ) ' evaln(Pn〈[e]〉 I )

2. Simulation: Pn〈evaln(e)〉 ' evalv(Pn〈[e]〉 I )

where I denotes the identity function and is used as the initial continuation.

Plotkin also claimed the following Translation property:

Claim 1

[Plotkin, 1975] For all e1, e2 ∈ Λ,
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Translation: λβ ` e1 = e2 iff λβv ` Pn〈[e1]〉 = Pn〈[e2]〉

iff λβ ` Pn〈[e1]〉 = Pn〈[e2]〉

iff λβv ` Pn〈[e1]〉 I = Pn〈[e2]〉 I

iff λβ ` Pn〈[e1]〉 I = Pn〈[e2]〉 I

The Translation property purports to show that β-equivalence classes are preserved

and reflected by Pn. The property, however, does not hold because

λβ ` e1 = e2 6⇒ λβi ` Pn〈[e1]〉 = Pn〈[e2]〉.

The proof breaks down at the statement ‘It is straightforward to show that λβ `
e1 = e2 implies λβv ` Pn〈[e1]〉 = Pn〈[e2]〉 ...’ (Plotkin, 1975, p. 158). In some cases,

ηv is needed to establish the equivalence of the CPS-images of two β-convertible

terms. For example, λx.(λz.z) x −→β λx.x but

Pn〈[λx.(λz.z) x]〉 = λk.k (λx.λk.(λk.k (λz.z)) (λy.y x k)) (1)

−→βv
λk.k (λx.λk.(λy.y x k) (λz.z)) (2)

−→βv
λk.k (λx.λk.(λz.z) x k) (3)

−→βv
λk.k (λx.λk.x k) (4)

−→ηv
λk.k (λx.x) ...ηv is needed for this step (5)

= Pn〈[λx.x]〉. (6)

Since the two distinct terms at lines (4) and (5) are βi-normal, confluence of βi
implies λβi 6` Pn〈[e1]〉 = Pn〈[e2]〉.

In practice, though, ηv reductions such as those required in the example above

are unproblematic if they are embedded in proper CPS contexts (e.g. contexts

in the language of terms in the image of Pn closed under βi reductions). When

λk.k (λx.λk.x k) is embedded in a CPS context, x will always bind to a term of the

form λk.e during evaluation. In this case, the ηv reduction can be expressed by a βv

reduction. If the term, however, is not embedded in a CPS context (e.g. [·] (λy.y b)),

the ηv reduction is unsound, i.e., it fails to preserve operational equivalence as

defined by Plotkin (Plotkin, 1975, pp. 144, 147). Such reductions are unsound due to

‘improper’ uses of basic constants. For example, λx.b x −→ηv
b but λx.b x 6≈v b (take

C = [·]) where ≈v is the call-by-value operational equivalence relation defined by

Plotkin (Hatcliff and Danvy, 1995, p. 9). Note, finally, that a simple typing discipline

eliminates improper uses of basic constants, and consequently give soundness for ηv.

The simplest solution for recovering the Translation property is to change the

translation of identifiers from Pn〈[x]〉 = x to λk.x k – obtaining the translation Cn

given in Figure 1.†
For the example above, the modified translation gives

λβi ` Cn〈[λx.(λz.z) x]〉 = Cn〈[λx.x]〉.

† In the context of Parigot’s λµ-calculus (Parigot, 1992), de Groote independently noted the
problem with Plotkin’s Translation theorem and proposed a similar correction (de Groote,
1994).
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The following theorem gives the correctness properties for Cn.

Theorem 4

For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(Cn〈[e]〉 I ) ' evaln(Cn〈[e]〉 I )

2. Simulation: Cn〈evaln(e)〉 'βi evalv(Cn〈[e]〉 I )

3. Translation: λβ ` e1 = e2 iff λβv ` Cn〈[e1]〉 = Cn〈[e2]〉

iff λβ ` Cn〈[e1]〉 = Cn〈[e2]〉

iff λβv ` Cn〈[e1]〉 I = Cn〈[e2]〉 I

iff λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I

The Indifference and Translation properties remain the same. The Simulation

property, however, holds up to βi-equivalence while Plotkin’s Simulation for Pn

holds up to α-equivalence. For example,

Cn〈evaln((λz.λy.z) b)〉 = λy.λk.k b

whereas

evalv(Cn〈[(λz.λy.z) b]〉 I ) = λy.λk.(λk.k b) k.

In fact, proofs of Indifference, Simulation and most of the Translation can be

derived from the correctness properties of C+
v andT (see section 5). All that remains

of Translation is to show that λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I implies λβ ` e1 = e2

and this follows in a straightforward manner from Plotkin’s original proof for Pn

(Hatcliff and Danvy, 1995, p. 31). The following theorem gives the Indifference,

Simulation, and Translation properties for Cv:

Theorem 5

[Plotkin, 1975] For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evaln(Cv〈[e]〉 I ) ' evalv(Cv〈[e]〉 I )

2. Simulation: Cv〈evalv(e)〉 ' evaln(Cv〈[e]〉 I )

3. Translation: If λβv ` e1 = e2 then λβv ` Cv〈[e1]〉 = Cv〈[e2]〉

Also λβv ` Cv〈[e1]〉 = Cv〈[e2]〉 iff λβ ` Cv〈[e1]〉 = Cv〈[e2]〉

The Translation property states that βv-convertible terms are also convertible in

the image of Cv. In contrast to the theory λβ appearing in the Translation property

for Cn (Theorem 4), the theory λβv is incomplete in the sense that it cannot prove

the equivalence of some terms whose CPS images are provably equivalent using λβ

or λβv (Sabry and Felleisen, 1993). The properties of Cv as stated in Theorem 5 can

be extended to the transformation C+
v defined on the language T – the set of terms

in the image of T closed under βiτ reduction. It is straightforward to show that the

following grammar generates exactly the set of terms T (Hatcliff and Danvy, 1995,

pp. 32, 33).

t ::= b | force x | force (delay t) | λx.t | t0 (delay t1)

Theorem 6

For all t ∈ Programs[T ] and t1, t2 ∈ T ,
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1. Indifference: evaln(C+
v 〈[t]〉 I ) ' evalv(C+

v 〈[t]〉 I )

2. Simulation: C+
v 〈evalv(t)〉 ' evaln(C+

v 〈[t]〉 I )

3. Translation: If λβvτ ` t1 = t2 then λβv ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉

Also λβv ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉 iff λβ ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉

Proof

For Indifference and Simulation it is only necessary to extend Plotkin’s colon-

translation proof technique and definition of stuck terms to account for delay and

force. The proofs then proceed along the same lines as Plotkin’s original proofs for

Cv (Plotkin, 1975, pp. 148–152). Translation follows from the Translation component

of Theorem 5 and Property 1 (Hatcliff and Danvy, 1995, p. 39).

Thunks are sufficient for establishing a call-by-name simulation satisfying all of

the correctness properties of the continuation-passing simulation Cn. Specifically,

we prove the following theorem which recasts the correctness theorem for Cn

(Theorem 4) in terms ofT. The last two assertions of the Translation component of

Theorem 4 do not appear here, since the identity function as the initial continuation

only plays a rôle in CPS evaluation.

Theorem 7

For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(T〈[e]〉) ' evaln(T〈[e]〉)
2. Simulation: T〈[evaln(e)]〉 'τ evalv(T〈[e]〉)
3. Translation: λβ ` e1 = e2 iff λβvτ ` T〈[e1]〉 = T〈[e2]〉

iff λβτ ` T〈[e1]〉 = T〈[e2]〉

Proof

The proof of Indifference is trivial: one can intuitively see from the grammar for

T (which includes the set of terms in the image of T closed under evaluation

steps) that call-by-name and call-by-value evaluation will coincide since all function

arguments are values.

The proof of Simulation is somewhat involved. It begins by inductively defining

a relation
τ∼ ⊆ Λ × Λτ such that e

τ∼ t holds exactly when λτ ` T〈[e]〉 = t. The

crucial step is then to show that for all e ∈ Programs[Λ] and t ∈ Programs[Λτ] such

that e
τ∼ t, e 7−→n e′ implies that there exists a t′ such that t 7−→+

v t′ and e′
τ∼ t′

(Hatcliff and Danvy, 1995, Sect. 2.3.2).

Translation is established by first defining a translation T−1 : Λτ→Λ that simply

removes delay and force constructs. One then shows that T and T−1 establish an

equational correspondence (Sabry and Felleisen, 1993) between theories λβ and λβvτ

(and λβ and λβτ). Translation follows as a corollary of this stronger result (Hatcliff

and Danvy, 1995, Sect. 2.3.3).

Representing thunks via abstract suspension operators delay and force simplifies

the technical presentation and enables the connection between Cn and Cv presented

in section 3. Elsewhere (Hatcliff, 1994) we show that the delay/force representation
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TL : Λ→Λ

TL〈[b]〉 = b

TL〈[x]〉 = x b ...for some arbitrary basic constant b

TL〈[λx.e]〉 = λx.TL〈[e]〉
TL〈[e0 e1]〉 = TL〈[e0]〉 (λz.TL〈[e1]〉) ...where z 6∈ FV(e1)

Fig. 8. Thunk introduction implemented in Λ.

of thunks and associated properties (i.e. reduction properties and translation into

CPS) are not arbitrary, but are determined by the relationship between strictness

and continuation monads (Moggi, 1991).

Figure 8 presents the transformation TL that implements thunks directly in Λ

using what Plotkin described as the ‘protecting by a λ’ technique (Plotkin, 1975,

p. 147). An expression is delayed by wrapping it in an abstraction with a dummy

parameter. A thunk is forced by applying it to a dummy argument.

The following theorem recasts the correctness theorem for Cn (Theorem 4) in

terms of TL:

Theorem 8
For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(TL〈[e]〉) ' evaln(TL〈[e]〉)
2. Simulation: TL〈[evaln(e)]〉 'βi evalv(TL〈[e]〉)
3. Translation: λβ ` e1 = e2 iff λβv ` TL〈[e1]〉 = TL〈[e2]〉

iff λβ ` TL〈[e1]〉 = TL〈[e2]〉
Proof

Follows the same pattern as the proof of Theorem 7 (Hatcliff and Danvy, 1995,

Sect. 2.4).

5 Applications

5.1 Deriving correctness properties of Cn

When working with CPS, one often needs to establish technical properties for both

a call-by-name and a call-by-value CPS transformation. This requires two sets of

proofs that both involve CPS. By appealing to the factoring property, however, often

only one set of proofs over call-by-value CPS terms is necessary. The second set

of proofs deals with thunked terms which have a simpler structure. For instance,

Indifference and Simulation for Cn follow from Indifference and Simulation for C+
v

andT and Theorem 1. Here we show only the results where evaluation is undefined

or results in a basic constant b. See Hatcliff and Danvy (1995, p. 31) for a derivation

of Cn Simulation for arbitrary results.

For Indifference, let e, b ∈ Λ where b is a basic constant. Then

evalv(Cn〈[e]〉 (λy.y)) = b

⇔ evalv((C+
v ◦T)〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of βv

⇔ evaln((C+
v ◦T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Indifference)

⇔ evaln(Cn〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of β
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For Simulation, let e, b ∈ Λ where b is a basic constant. Then

evaln(e) = b

⇔ evalv(T〈[e]〉) = b ...Theorem 7 (Simulation)

⇔ evaln((C+
v ◦T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Simulation)

⇔ evalv((C+
v ◦T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Indifference)

⇔ evalv(Cn〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of βv

For Translation, it is not possible to establish Theorem 4 (Translation for Cn) in

the manner above since Theorem 6 (Translation for C+
v ) is weaker in comparison.

However, the following weaker version can be derived: Let e1, e2 ∈ Λ. Then

λβ ` e1 = e2

⇔ λβvτ ` T〈[e1]〉 = T〈[e2]〉 ...Theorem 7 (Translation)

⇒ λβi ` (C+
v ◦T)〈[e1]〉 = (C+

v ◦T)〈[e2]〉 ...Theorem 6 (Translation)

⇔ λβi ` Cn〈[e1]〉 = Cn〈[e2]〉 ...Theorem 1

⇒ λβi ` Cn〈[e1]〉 I = Cn〈[e2]〉 I ...compatibility of =βi

5.2 Deriving a CPS transformation directed by strictness information

Strictness information indicates arguments that may be safely evaluated eagerly

(i.e., without being delayed) – in effect, reducing the number of thunks needed in

a program and the overhead associated with creating and evaluating suspensions

(Bloss et al., 1988; Mycroft, 1981; Okasaki et al., 1994). In an earlier work (Danvy

and Hatcliff, 1993), we gave a transformation Ts that optimizes thunk introduction

based on strictness information. We then used the factorization of Cn by C+
v and

T to derive an optimized CPS transformation Cs for strictness-analysed call-by-

name terms. This staged approach can be contrasted with Burn and Le Métayer’s

monolithic strategy (Burn & Le Métayer, 1996).

The resulting transformation Cs yields both call-by-name-like and call-by-value-

like continuation-passing terms. Due to the factorization, the proof of correctness

for the optimized transformation follows as a corollary of the correctness of the

strictness analysis and the correctness of T and C+
v .

Amtoft (1993) and Steckler and Wand (1994) have proven the correctness of

transformations which optimize the introduction of thunks based on strictness

information.

5.3 Deriving a call-by-need CPS transformation

Okasaki, Lee and Tarditi (1994) have also applied the factorization to obtain a

‘call-by-need CPS transformation’ Cneed. The lazy evaluation strategy characterizing

call-by-need is captured with memo-thunks (Bloss et al., 1988). Cneed is obtained by

extending C+
v to transform memo-thunks to CPS terms with store operations (which

are used to implement the memoization) and composing it with the memo-thunk

introduction.

Okasaki et al. (1994) optimize Cneed by using strictness information along the lines

discussed above. They also use sharing information to detect where memo-thunks
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can be replaced by ordinary thunks. In both cases, optimizations are achieved by

working with simpler thunked terms as opposed to working directly with CPS terms.

5.4 Alternative CPS transformations

Thunks can be used to factor a variety of call-by-name CPS transformations.

In addition to those discussed here, one can factor a variant of Reynolds’s CPS

transformation directed by strictness information (Hatcliff, 1994; Reynolds, 1974),

as well as a call-by-name analogue of Fischer’s call-by-value CPS transformation

(Fischer, 1993; Sabry and Felleisen, 1993).

Obtaining the desired call-by-name CPS transformation via C+
v and T de-

pends on the representation of thunks. For example, if one works with TL (see

Figure 8) instead of T, Cv ◦ TL still gives a valid CPS simulation of call-

by-name by call-by-value. However, βi equivalence with Cn is not obtained (i.e.

λβi 6` Cn〈[e]〉 = (Cv◦TL)〈[e]〉), as shown by the following derivations:

(Cv◦TL)〈[x]〉 = Cv〈[x b]〉
= λk.(x b) k

(Cv◦TL)〈[e0 e1]〉 = Cv〈[TL〈[e0]〉 (λz.TL〈[e1]〉)]〉
= λk.(Cv◦TL)〈[e0]〉 (λy.(y (λz.(Cv◦TL)〈[e1]〉)) k)

The representation of thunks given by TL is too concrete in the sense that the

delaying and forcing of computation is achieved using specific instances of the more

general abstraction and application constructs. When composed withTL, Cv treats

the specific instances of thunks in their full generality, and the resulting CPS terms

contain a level of inessential encoding of delay and force.

5.5 The factorization holds for types

Plotkin’s continuation-passing transformations were originally stated in terms of

untyped λ-calculi. These transformations have been shown to preserve well-typedness

of terms (Griffin, 1990; Harper and Lillibridge, 1993; Meyer and Wand, 1985;

Murthy, 1990). The thunk transformation T also preserves well-typedness of terms,

and the relationship between C+
v ◦ T and Cn is reflected in transformations on

types (Hatcliff and Danvy, 1995, Sect. 4).

6 Related work

Ingerman (1961), in his work on the implementation of Algol 60, gave a general

technique for generating machine code implementing procedure parameter passing.

The term thunk was coined to refer to the compiled representation of a delayed

expression as it gets pushed on the control (Raymond, 1992). Since then, the term

thunk has been applied to other higher-level representations of delayed expressions

and we have followed this practice.
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Bloss, Hudak and Young (1988) study thunks as the basis of an implementation

of lazy evaluation. Optimizations associated with lazy evaluation (e.g. overwriting a

forced expression with its resulting value) are encapsulated in the thunk. They give

several representations with differing effects on space and time overhead.

Riecke (1991) has used thunks to obtain fully abstract translations between

versions of PCF with differing evaluation strategies. In effect, he establishes a fully

abstract version of the Simulation property for thunks. The Indifference property is

also immediate for Riecke, since all function arguments are values in the image of his

translation (and this property is maintained under reductions). The thunk translation

required for full abstraction is much more complicated than our transformation

T and consequently it cannot be used to factor Cn. In addition, since Riecke’s

translation is based on typed-indexed retractions, it does not seem possible to use it

(and the corresponding results) in an untyped setting as we require here.

Asperti and Curien formulate thunks in a categorical setting (Asperti, 1992;

Curien, 1986). Two combinators freeze and unfreeze, which are analogous to delay

and force but have slightly different equational properties, are used to implement

lazy evaluation in the Categorical Abstract Machine. In addition, freeze and unfreeze

can be elegantly characterized using a co-monad.

In his original paper (Plotkin, 1975, p. 147), Plotkin acknowledges that thunks

provide some simulation properties but states that “...these ‘protecting by a λ’ tech-

niques do not seem to be extendable to a complete simulation and it is fortunate that

the technique of continuations is available.” (Plotkin, 1975, p. 147). By ‘protecting

by a λ’, Plotkin refers to a representation of thunks as λ-abstractions with a dummy

parameter, as in Figure 8. In a set of unpublished notes, however, he later showed

that the ‘protecting by a λ’ technique is sufficient for a complete simulation (Plotkin,

1978).

An earlier version of section 3 appeared in the proceedings of WSA’92 (Danvy

and Hatcliff, 1992). Most of these proofs have been checked in Elf (Pfenning, 1991)

by Niss and the first author (Niss and Hatcliff, 1995). Elsewhere (Hatcliff, 1994),

we also consider an optimizing version of T that does not introduce thunks for

identifiers occurring as function arguments:

Topt〈[e x]〉 = Topt〈[e]〉 x

Topt generates a language Topt which is more refined than T (referred to in Theorem

6).

Finally, Lawall and Danvy (1993) investigate staging the call-by-value CPS trans-

formation into conceptually different passes elsewhere.

7 Conclusion

We have connected the traditional thunk-based simulationT of call-by-name under

call-by-value and Plotkin’s continuation-based simulations Cn and Cv of call-by-

name and call-by-value. Almost all of the technical properties Plotkin established

for Cn follow from the properties of T and C+
v (the extension of Cv to thunks).

When reasoning about Cn and Cv, it is thus often sufficient to reason about C+
v
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and the simpler simulation T. We have also given several applications involving

deriving optimized continuation-based simulations for call-by-name and call-by-need

languages and performing CPS transformation after static program analysis.
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