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SEMIGROUPS WHOSE IDEMPOTENTS FORM A SUBSEMIGROUP

JEAN-CAMILLE BIRGET, STUART MARGOLIS
AND JOHN RHODES

We prove that if the “type-II-construct” subsemigroup of a finite semigroup S is
regular, then the “type-II” subsemigroup of S is computable (actually in this case,
type-II and type-II-construct are equal). This, together with certain older results
about pseudo-varieties of finite semigroups, leads to further results:

(1) We get a new proof of Ash’s theorem: If the idempotents in a finite
semigroup S commute, then S divides a finite inverse semigroup. Equivalently:
The pseudo-variety generated by the finite inverse semigroups consists of those
finite semigroups whose idempotents commute.

(2) We prove: If the idempotents of a finite semigroup S form a subsemigroup
then S divides a finite orthodox semigroup. Equivalently: The pseudo-variety
generated by the finite orthodox semigroups consists of those finite semigroups
whose idempotents form a subsemigroup.

(3) We prove: The union of all the subgroups of a semigroup S forms a
subsemigroup if and only if S belongs to the pseudo-variety UG * G if and only
if S1r belongs to UG. Here UG denotes the pseudo-variety of finite semigroups
which are unions of groups.

For these three classes of semigroups, type- II is equal to type-II construct.

1. INTRODUCTION

In this paper we simplify the new techniques of Ash ({1, 2]) and combine them
with Rhodes’ and Tilson’s ideas ([21, 23]) concerning the “type-II” subsemigroup of a
finite semigroup. This leads to Theorem 3.1 which shows how to compute the type I
subsemigroup Srr of a finite semigroup §, if the “type-II-construct” subsemigroup S,
of S is regular. With this assumption, Srr is equal to S.. In the general case (where S
is any finite semigroup) it is still unknown whether Sy is computable from § (see [11,
19, 21]). A stronger question is whether S;; is equal to S. (the “type- II-construct”
subsemigroup of §, constructed from the idempotents of S via “weak conjugation” -
-see Section 2 for exact definitions). Next, we combine our Theorem 3.1 with results

about the variety generated by the finite inverse semigroups (Margolis and Pin [14,
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15, 18], who use Simon’s lemma [22]), and about the variety generated by the finite
orthodox semigroups (Thérien [25]). This leads to the following results:

(1) We give a new proof of Ash’s theorem [1, 2]: If S is a finite semigroup whose
idempotents commute then S divides a finite inverse semigroup.

(2) We prove: If S is a finite semigroup whose idempotents form a subsemigroup
then S divides a finite orthodox semigroup.
(The two last results, and essentially the same proof technique, were already presented
in [3]).

(3) We prove: The union of all the subgroups of a semigroup § forms a subsemi-
group if and only if S belongs to the pseudo variety UG * G, if and only if Sy € UG.

For these three classes of semigroups, the “type-II” subsemigroup Srr is equal to
the “type-II-construct” subsemigroup.

A LITTLE BIT OF HISTORY.

The type-II subsemigroups arose from Rhodes’ complexity theory of finite semi-
groups, in the 1960’s (see [7] and [10}). Since no techniques are known for computing
the complexity of a semigroup (and in fact it is not known whether the complexity is
computable at all), Rhodes and Tilson developed lower bounds, involving the type-II
subsemigroups Syr and the “constructible type-II” subsemigroups S. (see [21]). The
“type-II conjectures” or “Rhodes conjectures” were first stated in [11]. Margolis [13]
discovered that, in the case of a finite semigroup S whose idempotents commute we
have: S divides a finite inverse semigroup if and only if S;r = Sc = E(S). So he posed
the following quesiton (which is equivalent to the strong type-II conjecture “S;r =7S.”
for this special class of semigroups): Does a finite semigroup S divide a finite inverse
semigroup if and only if the idempotents of S commute! The detailed proof of this
equivalence follows from Margolis’ and Pin’s work [14, 15, 16]. Margolis’ question was
answered affirmatively by Chris Ash [1, 2].

In [3] and in this paper we combine Ash’s construction (in simplified form) and
the older type-II results of [21]; we also use some results on varieties, obtained by
Margolis and Pin [14, 15, 16] (using Simon [22] and by Thérien [25] (further clarified
by Tilson’s derived categories [24].)

2. RELATIONAL MORPHISMS INTO GROUPS

All semigroups used in this paper are finite (except for free semigroups). A pseudo-
variety (of finite semigroups) is a class of finite semigroups closed under finite direct
product and under division. From now on we will use the word “variety” to mean
“pseudo-variety”. See for example [7, 12, 18, 10] for standard definitions and results.
Tilson first demonstrated the usefulness of the following notion:
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DEFINITION: A relational morphism between two semigroups § and T is a sub-
semigroup T of § X T such that the projection of = into § is surjective. We denote
the set of these by R(S, T'). Equivalently, a relational morphism 7 from S to T is a
relation § — T satisfying:

(Vs € S)(s7 # 0) &(Vs1, 52 € S)((817)(s27) C (s182)7).

Notation: To express that s(€ S) is related to (€ T) by 7 we write “(s,t) € " or
“tesr” or s € (t)ri”

DEFINITION: Let V and W be varieties and F the set of finite semigroups. We
define '

VIIW = {S|(S € F)&(3T € W, 7 € R(5,T))
(Vf=FfeT)((f)r" eV)}

One can check easily that VW is a variety of finite semigroups.

DEFINITION: The Malcev produce VmW of the varieties V and W is

{S|(S € F)&(IT € W, $ € Mor(S, T))
(Vf=FeT)((flg~" e V)}.

We will consider the variety of finite semigroups (V m W) generated by Vm W,
It turns out that the above two “products” of varieties are equivalent:

FAcT 2.1. Forany varieties V and W of finite semigroups V_!W = (V mW).

PRrOOF: [C]If § € V7!W then there exists a relational morphism 7: § — T with
TeWand (Vf=f?€T): (f)r~! € V. We view T as a subsemigroup of § x T'. Let
a: 7™ — S be the projection of 7 onto S, and let 8: 7 — T be the projection of 7 into
T. Then we have 7 = a~!f (composition of the inverse of @, and B). If f = f2 €T
then (f)8~! = {(s,f) € S xT | (s,f) € 7} = (f)r~!. Moreover, by assumption,
(f)r~! € V. Therefore (f)B~! € V, and thus 7 € (VmW). Since (VmW) is
closed under homomorphic images it follows that S(= (7)a) belongs to (VmW).

[2] This is obvious, since every functional morphism ¢ is also a relational mor-

phism. 0

We will be interested in varieties of the form (V mG) where G is the variety of
all finite groups. Restating Fact 2.1 in the case of (VmG) , we get: S € (VmG)
if and only if there exists a relational morphism 7: § — G (for some finite group G,
with identity element 1) such that (1)77! € V.

https://doi.org/10.1017/50004972700017986 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017986

164 J. Birget, S. Margolis and J. Rhodes [4]

This motivates the following notion, which was introduced by Rhodes and Tilson
[21] in the study of lower bounds for semigroup complexity.

DEFINITION: For any finite semigroup S, the type-II subsemigroup Siris {s € S|
(VG € G)(VT € R(S,G)): s € (1)1}

REMARK: Ifin the definition of Sy the groups are allowed to be arbitrary (infinite)
then Srr is empty. The groups must at least be torsion.

Fact 2.2. ((1)-(4) are from [21],

(1) Sir is a subsemigroup of S.

(2) Every idempotent of S belongs to Syy.

(3) Ifs € Sirandthe elementsr and z of S satisfy rzr = r (so r is regular,
but z might be non-regular), then rsz and zsr also belong to Syr. (We
say that Sy is closed under “weak conjugation”).

(4) There exists some finite group G and a relational morphism 7: § — G
such that Sy = (1)1

(5) Se€(VmQG) if and only if S;; € V. (This connects (... mG) and the
type-II concept).

PRrOOF: For (1), (2) and (3) see [21] and [23].
(4) For everye element n € S — Sy; we can pick a finite group G, and a morphism
Tn: § — Gp such that n ¢ (1)7;!. Let us take the finite direct product [[{G, | n €
S — S11} = [[ Gn and the relational morphism 7: § — [[ G, defined by

T={(8, (-1 9n,--)) €S X [[Gn | (¥n € § = S11)((5,9n) € ™)}

Then we have:
(Vne S - Su)(n ¢ (1)7"1) , by the choice of 7, and 7. However, (Vs € Su)(s € (1)7"1)
by definition of Srr. Thus Syy is precisely to (1)772.
(5) S € (VmG) if and only if (1)7=! € V for some finite group G with identity
1, and some relational morphism 7: § —» G (Fact 2.1). Certainly Sir < (1)77?, thus
S € V if (1)77! € V. Conversely, by (4), there exists 7: S — G with (1)~ = S;.
If Sy7 € V then (1)77 (= Sy1) belongsto V.

We emphasise that the definition of Syy, and also the description of the group G
in (4) above, is non-constructive. It is still an open question whether S;7 is computable
from S (assuming for example that we are given the multiplication table of §). The
“type-II conjecture” of Rhodes is that Sy; is computable ([11] and [19]). A stronger
conjecture of Rhodes is that S;; can be obtained by using (1), (2) and (3) of fact (2.2).
More precisely:
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DEFINITION: For a finite semigroup S, the type-II construct subsemigroup, de-
noted by S., is the smallest semigroup of S that contains the idempotents of S and
that is closed under weak conjugation.

Clearly S. is a subsemigroup of Sy (by Fact 2.2), and S, is computable. Rhodes’
“strong type-II conjecture” is that S, = Sy;.

A major result of Rhodes and Tilson is:

FacT 2.3. Let Reg(S) denote the set of regular elements of S. Then SN
Reg(S) = S. N Reg(S). Thus for the regular elements of S, membership in Sy is
decidable. In particular, if S is regular then Sr; = Sc, and so Sy1 is computable in
that case.

PROOF: See [21], and [23] for a simplified proof. 0

A consequence of Facts 2.3 and 2.2(5) is that if S is regular and membership in
the variety V is decidable, then membership in (V m@G) is decidable.

For completeness we close this section by showing the connection with a paper of
McAlister {17]. McAlister derives structure theorems for arbitrary regular semigroups
S in terms of groups, fundamental regular semigroups, and CIG(S), (=the conjugate
closure of the idempotents). More precisely, CIG(S) is defined to be the smallest
subsemigroup T (necessarily regular) of S containing the idempotents, and such that
aTb C T whenever both aba = a and bab = b. Clearly, CIG(S) C S.. It is not difficult
to construct examples of finite (non-regular) semigroups where this inclusion is strict.
However, we have the following result for regular semigroups:

FacT 2.4. Let S be a regular semigroup. Then S, = CIG(S).

PROOF: Define a sequence of subsemigroups T;, of S by:
To = (E(S)),
Tit1 = (U{aTibU bTia | a, b € S, aba = a}).
Clearly T; € Ti41, for ¢ 2 0, and S. = U;»eT;. It suffices to prove by induction
on i, that if S is regular then T; < CIG(S). The statement is clear for i = 0. So
assume T; < CIG(S). Let a,b € S be such that aba = a. We need only show
that for all ¢t € T;, ath,bta € CIG(S). Since S is regular, there exists b such that
bb'b = b and b’ = b'bb'. Then atb = abatb = abb'batb = (ab)(b'(bat)b). But ab,ba €
E(S) < Ty < CIG(S), since t € T;, and (ba)t € T; and by induction bat € CIG(S).
Thus z = b'(bat)b € CIG(S) and abz = atb € CIG(S). A similar proof shows that
bta € CIG(S) as well. 1!

and for 7 > 0:

3. THEOREMS

In this section we state our main theorem. Other theorems (for example Ash’s
theorem, and its analogue for orthodox and for solid semigroups) are then derived, using
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the main theorem together with other results (about semidirect-product decompositions

of the varieties generated by inverse, respectively, orthodox semigroups).

THEOREM 3.1. Let S be any finite semigroup. Then Sr; consists only of regular
elements of S il and only if S. is regular. Moreover, if S, is regular then Srr = S.,
and the regular elements of S form a subsemigroup.

PRroOOF: We will prove the easy parts of this theorem now, and postpone the hard
part.

(a) That if Sy; consists only of regular elements of § then S;; = S. (and hence
S, is regular):
This follows immediately from Rhodes and Tilson’s theorem (Fact 2.3).

(b) That if S, is regular then the regular elements of S form a subsemigroup:

Let r;, 72 € S be two regular elements. By regularity, there exist idempotents
e1,f2 € S such that ry = ey, r, =g f2. Therefore rir2 =L eir2 =g e f2, thus
173 =p €1f2. Obviously e, f, € S.. Since we assume that S, is regular we conclude
that e; f2, and hence ry7; (being D-related to e f2), is regular. ]

What we still have to show is the following:

If S, is regular then Sr; consists only of regular elements of S.

This will be done in Section 4 and 5, where we will show that if s is a non-
regular element of S then one can construct a finite group G and a relational morphism
7: 5 — G such that (3)r does not contain the identity element of G - (assuming S. is
regular).

In Section 7 we give an example, showing the following:

If the regular elements of S form a subsemigroup, this does not imply that S. and
Syr are regular. We give another characterisation of “ S, is regular”, and show that the
proof scheme used in this paper works only when S, is regular.

We now apply the main theorem.
Fact 3.2. Let S be a finite semigroup whose set of idempotents E(S) is a

subsemigroup. Then Sir = E(S). Hence (by Fact 2.2(5)), for any variety V, S €
(VmG) if and only if E(S) € V.

PROOF: By the main theorem we only have to show that S. = E(S). (Then indeed
Sc will be regular, hence S. = Srr). It is enough to show that E(S) is closed under
weak conjugation. Let e € E(S) and s,t € S be such that sts = s. Then ts € E(S)
and therefore tse € E(S) (since E(S) is a subsemigroups, by assumption). Then set =

(using s = sts)stset = (using tse = (tse)z)stsets .t = (using sts = s)set set = (set)’,
thus set € E(S). Similarly one proves that tes € F(S). 1]

It is known that every variety V of finite idempotent semigroups can be defined
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by a single identity u = v along with the identity 2 = z. (This is due to Gerhard,
Fennemore and Birjukov. See for example [8]. Although proved for Birkhoff varieties,

the proof carries over to our ease.)
Fact 3.3. Let V be a variety of idempotent semigroups
(1) Then S € (VmG) if and only if E(S) is a subsemigroup of S satisfying
E(S)e V.

(2) K V is given by identities [z = z*

, 4 = v]| then membership of a semi-

group in (V m@G) is decidable.

PRrOOF: (1) By Fact 2.2(5), S € (VmG) ifand only if S;y € V. If § € (VmG)
then Syr € V, hence (by the assumption on V) Sy = E(S). Then E(S) is also a
subsemigroup of S, since Syr is. If E(S) is a subsemigroup and E(S) € V then (by
Fact 3.2) Sir = E(S), hence S;r € V. Thus (Fact 2.2(5)): S € (VmG).

(2) Given S, we can decide whether E(S) is a subsemigroup and whether E(S)
satisfies the identity v = v. This then decides whether S belongs to (V mG), by
(1).

One can generalise Fact 3.3, using a similar proof. Let V be a variety of union-of-
groups semigroups. Then S € (VmG) if and only if Sc € V.

Our main applications are the following two theorems:

THEOREM 3.4. (Ash [1, 2]). A semigroup S divides a finite inverse semigroup
if and only if the idempotents of S commute.

ProOOF: Let Inv denote the variety generated by finite inverse semigroups. It is
easy to see that § € Inv if and only if S divides a finite inverse semigroup. Let SL
denote the variety of finite semi-lattices (that is commutative idempotent). We will
use the result of Margolis and Pin [14] that Inv = (SEmG). By Fact 3.2, we have
S € (SLmG@G) = Inv if and only if E(S) € SL. This is precisely what Theorem 3.4
claims. 0

Ortho denotes variety generated by finite orthodox semigroups, Id that consist-
ing of finite idempotent semigroups, and * denotes the semidirect product of pseudo-

varieties.

THEOREM 3.5. A semigroup S divides a finite orthodox semigroups, if and
only if the idempotents of S form a subsemigroup. Moreover, Ortho = (Id mG) =
(Id *G).

ProOOF: Here we will prove all but one of the statements of the theorem. Obviously,
if a semigroup S divides an orthodox semigroup (that is a regular semigroup whose
idempotents form a subsemigroup), then the idempotents of S form a subsemigroup.

Proof that if E(S) is a subsemigroup then S divides an orthodoz semigroup, using
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the fact that Ortho = (Id m G):

By Fact 3.2: S € (Id m@G) if and only if E(S) € Id. Then if Ortho = (Id mG),
we get S € Ortho if and only if the idempotents of § form a semigroup. Moreover it
is easy to see that a semigroup belongs to Ortho if and only if it divides an orthodox
semigroup. 1]

Next we have to show that Ortho =(Id mG) = (Id *G).

Proof that Ortho C (Id mG): Applying Fact 3.3(1) to the variety Id we get:
S € (Id m@G) if and only if E(S) is a subsemigroup of §. And, if S € Ortho then
E(S) is indeed a subsemigroup of S. 0

Proof that (Id *G) C Ortho: It is sufficient to prove thatif S €Id and G € G
then S * G is an orthodox semigroup. Clearly E(S*G) = {(s,1) | s € S} and
therefore E(S * () is a subsemigroup of S * G. Furthermore S * G is regular since for
any (s,g) € S *G we have (s,9)(g7'5,97!)(s,9) = (s,9). 0

The proof that (Id * G) = (Id m G) is more involved, and will be given in Section

DEFINITION: A semigroup S is solidif and only it the union of all the subgroups
of § forms a subsemigroup of S.

NOTATION: UG is the variety of union-of-groups finite semigroups (so, S € UG if
and only if S is equal to the union of its subgroups).

The finite solid semigroups form a variety. That YG*G has a decidable membership
problem follows from the next theorem.

THEOREM 3.6. Let S be a finite semigroup. Then: S is solid if and only if
SelUG x G if and only if S € UG if and only if Sy; € UG . For a solid semigroup S,
we have Srr = S..

The proof uses results of Thérien [25] and is given in Section 6.

4. PROOF OF THE MAIN THEOREM: CONSTRUCTIONS

In this and the next section we will give the remainder of the proof of Theorem
3.1, namely, we prove the following statement:

For any finite semigroup S, if Sc is regular then Syr consists only of regular
elements of S.

We will show (under the assumption that S, is regular) that if n is a non-regular
element of S then n ¢ Sry. Moreover “n ¢ Sr;” means (by definition of type-II)
that there exists a finite group G, and a relational morphism 7,: § — G, such that
n ¢ (1)7,;7!. For every non-regular element n of S we will actually construct such a
G, and 7,. The group G,, that we will construct will be a direct product of symmetric
groups.
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GENERAL OVERVIEW OF THE PROOF.

Every relational morphism § — G can be constructed as follows: First pick a
non-empty subset Z; in G, for each ¢t € §. Second, take 7 to be the subsemigroup of
S x G generated by the set {(¢,9) |t € S&g € Z:}. Then, obviously, T is a relational
morphism § — G.

Let G(Q) (for a given set Q) denote the symmetric group on Q. For this special
kind of group one can construct certain relational morphisms § — G(Q) as follows:

(1) To every element s € S, associate a partial injective function f,: @ — Q.
(However, we do not require that f,; = f, fi).

(2) Extend each f, to a (total) premutation p, € G(Q), in an arbitrary way.
(So f. is just the restriction of p, to some subset of Q).

(3) Take T to be the subsemigroup of S xG(Q) generated by the set {(s,p,) |
s € S}. Obviously, 7 is then a relational morphism § — G(Q).

Important observations concerning v as just constructed are:

For p € G(Q) and s € S, we have p € (s)7 if and only if there exists a number
k > 1 and elements sy, ..., 8¢ € S such that s =s;-----s, and p=p,, -+ s, - (This
is equivalent to saying that (s,p) can be factored as the product (s1,p,,)-- - (sk,Ps, ) )-

More generally, we will construct relational morphisms from S into direct products
of symmetric groups G(@1) X ... x G(Q,) (where n is an integer > 1 and @, ..., Q,
are finite sets), as follows:

(1) For every element s € S and every set @Q;(1 <i< n), pick a partial
injective function f,;: Q; — Q:.

(2) Extend each f,; to a total permutation p,; € G(Q:).

(3) Take 7 to be the subsemigroup of § x G(Q1)x ... x G(Q,) generated by
{(8,Ps,1s ---» Ps,n) | 8 € S}.

We observe again that for s € S, py € G(Q1),----- , Pn € G(Qn) we have
(P1y .-+, Pn) € (8)7 if and only if there exists a number k£ > 1 and elements s;--- -84, € §
such that s =87 ----- s and such that foreach ¢ (with 1 <i<n): p;=p,, i -+~ Payi-
In particular, s € (1)7~! (where 1 is the identity element of G(Q1) x - - - X G(Q4)) if
and only if there exists a factorisation of s as s; ----- s; (for some k > 1 and some
81, ..., 8 € §) such that for all ¢ (with 1<i<n), p, i----- Ps i = 1i (= identity
of G(Q:)).

Contrapositively: s does not belong to (1) if and only if for all factorisations
of 5 as 87 ++--- sy (with k > 1, and sy, ..., 8¢ € S) there ezists i (with 1 <i<n)
such that p,, ;----- Pap,i F i

We shall next construct a relational morphism 7 according to the method just
described, and such that if s is a non-regular element of s then s ¢ (1)r~! (hence
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s ¢ Srr). In order to do this we have to give sets Q1,..., @» and to each element s
of § we must associate some partial injective functions f,; (for 1 < 7 € n); and this
has to be done in such a way that if s is non-regular then s ¢ (1)7~!. In the rest of
this section we will describe the sets @; and the partial functions f, ;. In Section 5 we

will show the two properties of the construction:

(1) Each f,; is an injective partial function.
(2) If s is non-regular then for every factorisation of 8 as s = 8y - ++- - 8
(with k > 1, and s,,...,8; € S) there exist 1 such that the composition
LR fs, i cannot be extended to the identity function 1;: Q; — Q;.

This then shows (under the assumption that S, is regular) that S;; consists only
of regular elements of S.

Before being able to describe each @Q; we need a preliminary construction which we
call an ezpansion. Simply, an expansion associates with every semigroup S a semigroup
Ex(S) such that Ex(S) - S (that is S is a homomorphic image of Ex(S)). The full
definition of an expansion can be found in [5] but it will not be needed here. For any
semigroup S we define the expansion S to be the semigroup presented by generators
and relations as follows:

Generators: the set S.
Relations: the set {w = [[w |w € $7&[[w € Reg(S)}.

Here we use the following notation:

S7 is the set of all finite non-empty sequences of elements of S.

If w = (a,...,8,) € §* then [Jw =@, -+---a,. So § consists of the con-
gruence classes in §* with respect to the smallest congruence containing the relations
{(w, [Tw) | w € S*&[]w € Reg(S)}.

The semigroup § is a homomorphic image of $ via the map defined on represen-
tatives (in S*) by w — [[w (the product map). More rigorously, in a congruence
class (with respect to the above congruence) pick some representative w; the image of
the congruence class is defined to be [[w. It is easy to check that this image [Jw
depends only on the congruence class, and not on its representative w. We denote this
homomorphism S— S by .

This expansion is close to ideas contained in Ash’s proof [1, 2] - using the philos-
ophy of [5].

FacTt 4.1. (Properties of the expansion §) Let S be any semigroup.

(a) For every = € § we have that z is regular in S if and only if (z)r is regular
in S. In this case the congruence class (z)mm~! contains only one element. So one can

say that the regular elements of S and S are “the same”. It follows that if idempotnets
of § commute (respectively form a band), the same is true in §.
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(b) If S is a finite semigroup then § is also finite.

PRrROOF: Part (a) of this fact follows immediately from the defining relations of S,
and from the fact that homomorphic images (via the map = in this case) of regular
elements are regular.

Part (b) can be proved in several ways. One could use Ramsey’s theorem (as Ash
does in [1, 2]). One could use Brown’s theorem [6], which states that if S is (locally)
finite and §: T — S is a surmorphism such that for every idempotent e of S, (e)§™?
is (locally) finite, then T is (locally) finite. Obviously (by part (a) of this theorem) the

-1 is a one-element set. A third

morphism 7 has the required property; in fact (e)r
method uses the “null-regular-layers”technique of [4]; this is more complicated but gives

much better bounds on the cardinality of S. 1]

Fact 4.2. (Irreducible representatives in S of the elements of 5)

(a) Every regular element of S can be identified with a unique regular element of
S.

(b) Every non-regular element of § can be represented by a word in S* of the
form w = (ng, vy, Ny, ..., T, n;) where each r; is a regular element of S and each
n; is a (possibly empty) sequence of non-regular elements of S with the property that
IIn; is a non-regular element of S. Moreover, for every subsegement z of length > 1
of w we have that [[z is non-regular (that is no rule u — [ u, with []u regular can
be applied to w ). Therefore we call w an “irreducible representative”.

(c) If the regular elements of S form a subsemigroup then every element of § has
a unique representative w satisfying properties (a) and (b) above. In addition, here
each n;, for 0 < i < k is a non-empty word. (We allow no and n; to be empty.)

REMARK: Recall that if S, is regular then the regular elements of § form a sub-
semigroup. (This was proved in the partial proof of Theorem 3.1). Therefore we can
apply Fact 4.2(c) in our situation.

PROOF OF FACT 4.2: Parts (a) and (b) are straightforward. Part (c) is a direct
consequence of the following lemma which was first discovered by Ash [1, 2], in the
case of semigroups whose idempotent commute. The lemma implies (assuming that the
regular elements of S form a subsemigroup) that the rewrite rules “w — [[w if [[w
is regular” have the Church-Rosser diamond property.

LEMMA 4.3. Let S be a semigroup whose regular elements form a subsemigroup.
Then for all z,y,z € S we have that if both zy and yz are regular then zyz is also
regular.

PROOF: Let t € § be such that zytzy = zy. It follows zytz =g zy, and thus
zytz is regular. Furthermore zyz = zytzyz, which is the product of the two regular
elements zytz and yz. So zyz is regular, since the regular elements of § form a
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subsemigroup. 0

From now on we will only talk about semigroups whose regular elements form a
subsemigroup; so we can identify elements of S with their unique representatives as
described in Fact 4.2,

A few more notions and results will be needed before we can define the sets Q;.
For the next definitions and for Facts 4.4 — 4.8 we need not assume that S, is regular.

DEFINITION: (Type-II partition = refining the R-relation - -see [23)). For 5,t € S
define s ~ ¢ if and only if there exist z,y € S! such that sz =t and ty = s.

So = is just =g but using only multipliers from S!. Obviously = is an equivalence
relation on $ refining =g (Green’s R relation). We will denote the equivalence class
of s for = by [s]. The equivalence =~ has the following important properties (given in
Facts 4.4 — 4.8, which we will use later to prove that our partial functions f,; injective),
taken from [23).

Fact 4.4. Fr,be S and rb =nr then there exists a € § with rba = » and

aba=a.

PROOF: Since rb =g r, there exists w € § with rbw = r. Hence forall k > 1,
r(bw)k =r. Since § is finite we can choose n > 1 so that (bw)" is an idempotent. Let
a=w(bw)* !. Then rba = r, and also aba = w(bw)*™ bw(bw)*" ™" = w(bw)** ' =

2n--1
w(bw) =a
The next result shows that & is a right partial congruence when restricted to an

R-class. Note that in Fact 4.5 we need the assumption that sz and tz both stay in the
R-class of s and t.

FacT 4.5. Ifs~tand £ € S and s =g sz =g iz, then sz =~ tz.

PROOF: Let s,t and = be as above. Since s = t, there exists w € §; with ¢ = sw.
Furthermore, since sz =g 3, Fact 4.4 implies that there exists a € S such that sza = s
and axa=a. Therefore tz = swz = szawz. Since w € §. and S, is closed under
weak conjugation, we have z = awz € S.. So tz = szz for some element z € S..
In a symmetric way one finds an element z' € S, with sz = tzz'. This proves that
sz =~ tz. 0

FacT 4.6. If s,t,z € S are such that s =g t =g sz =g tz then we have:
st szt

PROOF: The implication “=" {ollows from Fact 4.5.

For “ «<”. Since sz = tx there exists w € S. such that itz = szw. Choose
a € S such that eze = a and t = tza (by Fact 4.4). Then t = tza = szwa. But
zwa € S, (by closure under weak conjugation). Thus there exists z(= zwa) € S, such
that t = 32z. In a symmetric way one proves that there exists z' € S, such that s = t2'.
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Thus t = s. 0

COROLLARY 4.7. Let R be an R-class of S and let R/ ~ denote the set of
equivalence classes of R with respect to ~. Let z € §. Then g.: R/ ~— R/ = defined
by

[r'-z] if there exists ' such that r' ~r and+'-z € R,

[r} € R/ =— :
undefined otherwise.

is a partial function which, in addition, is injective.

ProOF: If there exist =, r" such that ' =~ » ~ r” and r'z,7"z € R then
[r'z] = [r"z] by Fact 4.6. Thus g, is a partial function.

If [r1], [r2) € R/ = are such ([r1])9; = ([r2])g9- then there exist r}, rj with
vl X7y, vy ® 7y, riz and ryz € R, and [r{z] = [r}z]. But then, by Fact 4.6, r] = 1}.
Hence also r; =~ 3, thus [r;] = [r2]. Therefore g, is injective. a

FacT 4.8. Ife=g f and e = €2, f = f2 then e ~ f. In other words, all the
idempotents in an R-class belong to a comnmon =-class.

PROOF: If e =g f then e = fe and f = ef. Since e, f € S. the result follows. [

Facr 4.9. [23]). If a,b € S and aba = a, then b € Sy implies a € Srr (and
hence since a is regular, a € S, ).

Proor: [23, Proposition 1.1]. Let ¢: § — G be a relational morphism from
S into the finite group G. Let g € ¢(b) and let h € ¢(a). Hence (b,g),(a,h) €

graph ¢. Let (gh)” = 1. Then (a,g)(3,9),(a, h)“’_1 = (a, h(gh)w_l) . But (gh)"’_1 =

(9h)™ = K¢ so (a,h(gh)*™") = (a,h(hg™")) = (a,97"). Hence (b,9) €
graph ¢ implies (a,g'l) € graph ¢. Hence b € Syy implies (g,1) € graph ¢ implies
(a,1) € graph ¢ so a € Sy 1

FacT 4.10. Let a,b € S be inverses in S (that is aba = a and bab = b so a
and b are both regular elements of S.) Then a € S, ifand only if b € S..

PROOF: By Fact 4.9 aba = a and b € S, C Sy; implies a € S., and conversely. [

Fact 4.11. Forr € §,1i € S., r =gr vi implies r =~ ri (that is 3i' € S, such
that rii' = ).

PRrOOF: By Fact 4.4 31’ € S such that rii’ = r and i'it’ = ¢'. Now since i € §, C
Srr and by Fact 4.9 (with i =b, i' =a), i' € S.. 0

REMARKS: (a) The statement and proof of Fact 4.1) remains the same if S is
replaced throughout by Sry.
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(b) The relation & is the same with respect to S. or Syr that is

(VT,', T2 € S)(H‘ll,lz € Sc)(‘l'lil = T2&1‘2‘iz = 1‘1) if and only if
(VT],Tz € Sc)(ais,i4 € S]])(T]ia = 7‘2&1‘2i4 = 1‘1).

PROOF: If ryiy = r, with i3 € Sy7, then by Fact (4.4) there exists an i3 such that
To13 = T1igts = r; and 13ists = 13. Hence by iy € S;; and Fact 4.10, i3 € S.. Now
repeat the argument starting with ry23 = r; and obtain rlia =71y, 33 €s.. 0

The relation ~ on S induces a function on § as follows:

With a reduced representative w = (nj,r;,ny,..., 7%, ng) € S one associates
[w] = (no, [r1], B1,- .., [rk],ne). We denote the image of S under this function by (5).
Recall that [r;] denotes the ~-class of r;. Since we assume that S is regular, and
hence that § has unique reduced representatives (Fact 4.2c), the above function is well
defined. Also (Fact 4.2¢), each n; (for 0 < 7 < k) is a nonempty word (but no and ng
can be empty). ‘

We are now ready to define the sets Q;.

Definition of the state sets Q;.

For every word [w] of the form (ng, [r1], my, ..., [rx], ni) of [§] we consider a set
Qw) defined below. So we will have as many sets as there are elements in [5]. Recall
also that we assume that S. is regular.

Let [w] = (no, [r1], m1, ..., [ri], ni). Then Qu), consists of all generalised pre-
fizes of the word [w]. More precisely, Qy, is obtained as follows:

Firstly, take all the words of the form (ng, [r1], ..., [ri-1], ni_1, [r]) where » =g r;
and 1 <1 < k. (Here (ny, [ri], ..., ni—1) is just a prefix of [w], and r is R-equivalent
to r;; R-equivalence is similar to a prefix relation.)

Secondly, take all the words of the form (nq, ..., [r:], ni3, ..., nij) where 0 <4 <
k, 0 € j < |n;| (= length of n;), and where we denote n; by (n:1, ..., nijn,). So
the words taken here are prefixes of [w] which end within some n; or at the beginning
of some n;.

Finally, if ny, is not the empty word then we also introduce the empty word,
denoted by ¢, into Qw)-

For a given [w] = (no, [r1], ..., nx) with ng # €, we call ¢, the start state of Q[y-
If ng = € in [w], then [w] is really of the form ([ri], m;, ..., nx). We consider the
~-class containing all the idempotents of the R-class of ; (recall Fact 4.8); we denote
that ~-calss by [e1], and call [e;] the start state of Qw) in that case.

Definition of the functions f; [,,.

For every [w] = (no, [r1}, n1, ..., [r&], n&) € [5] and every element s € § we will

define a partial function f, (w): Q[w] — Q[w]- In the next section we will prove various
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properties of f, (w]-

Intuitively, if g € Q) we want (¢)f, [u] to be the nezt generalised prefix of (w]
that is reached from prefix ¢ when the input letter s is processed. (But (g)f, [v) is
only defined if s indeed leads to ¢ to a generalised prefix € Q) — otherwise we leave
(9)fs,[w) undefined.) The precise definition of (g)f, () breakes down into three cases,
according to the shape of ¢. We will prove in Section 5 that the listed cases are mutually
exclusive or consistent.

Casg 1. If g € Q[ is of the form ¢ = (ng, [r1], g, ..., nj_4[r]) with r =g 7; and
1<i<k, then
( (no, [r1]y.eey i1, [r],8) i [r] =[r], and s = n4yq
(the first letter of n;;,)
[Case 1.1: Ezit from a regular R-class];
(@) fapw) = { (no, [r1],-..ymi_1,[r' - 8]) if there exists »' such that
v =randr's=gr(=gT)
(see Corollary 4.7); [Case 1.2];
\ (undefined otherwise) [Case 1.8).

CASE 2. If ¢ € Q[w} is of the form ¢ = (no, [r1), my, ..., 5], mig, ..., By ;) where
n; = (n,-’l, ceey n,-,|,,'.'|), 0<j<|n,and 0 <1<k, but if we are not in Case (J),

then
( (no, [r1],m1,...,[ri), i, ..., n45,8) i 8 =mn;j41 and 7+ 1 < |ny]
[Case 2.1]
(no, [ra],m1, ..., [re]y niy [e544]) if s =nyn,,7 =gl — 1, and
[ei+1] is the =-class of all the
(@) fafw) = § idempotents of the

R-class of r;y,

[Case 2.2:

Entry into a regular R-class];
| (undefined otherwise) [Case 2.9).

CASE 3. Finally, if ¢ = (no, 1], may oony [], i, - n;,ln‘.,_l) we define

[w] if s =n4),, [Case 3.1];

(@)fam = { (undefined otherwise) [Case 3.1].
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5. PROOF OF THE PROPERTIES OF f, [y

We will prove in this section that for all s € S and all [w] € [S]:

(1)  fa,[w) is @ well-defined partial function;

(2)  fu|w) is an injective;

(3) if s is a non-regular element of S then we have: For every factorisation
(81, .., 3x) € St of s there exists [w] € [S] such that the composition
Sor ) o0 fay [w] is not extendable to the identity function 1,): Q) —

This then shows that if s is a non-regular element of S then s ¢ Syr;. (Recall the
reasoning in the “general overview of the proof”, at the beginning of Section 4).

The proof that f, (., is a partial function, and the proof that f, ) is injective,
are dual to each other (with just a few technical differences). The main problems are
the entry problem (for injectiveness) and the ezit problem (for functionality).

Proof that £, (w): Q[w] = Q{w] 18 a partial function - or the “ezit problem”.

We must show that in the definition of (¢)f,,[w] only one of the cases applies.
Clearly (from the shape of ¢) Case 1 and Case 2 never apply simultaneously. Also,
Cases 2 and 3 are exclusive by definition. Cases 1 and 3 are either exclusive by the
shape of g, or Case 3 and Case 1.1 both apply and produce the same result.

Within Case 2, and Case 3, all subcases are mutually exclusive.

When Case 1.2 applies alone, (¢)f, ) is uniquely defined, by Corollary 4.7. The
only place where it is not obvious that the cases are exclusive concerns Cases (1.1) and
(1.2).

Proof that subcases 1.1 and 1.2 of the definition of (q)f, (w] are mutually ezclusing:

If 8 # ngy1,1 or [r] # [r;], then obviously only one of Cases 1.1 and 1.2 applies. So
consider the situation where s = n;4;,; and [r] = [r;]. Obviously Case 1.1 applies. We
must rule out Case 1.2. We call this the exit problem, because there apparently are
two ways to leave the R-class of [r;] either by going to (..., n;_;, [r;], 8) or by going to
(..., mi_1, [*' - 5]) (the latter possibility will be ruled out). We shall say that S has the
unique-ezit property if Cases 1.1 and 1.2 are mutually exclusive. Since Case 1.1 applies,
the word ([ri],s) is a subword of [w]. Since [w] is a reduced word of [5], it follows
from Fact 4.2 that »; - 8 is a non-regular element of S. If Case 1.2 also applies then
there exist »' with r' = »; and r' - s =g r;. This however contradicts the assumption
that S, is regular, by Lemma 5.1 given below. 0

LEMMA 5.1. Letr,s € S be suchthat r is regular, r-s is non-regular, and there

exists v' with ' ~ r and r's =g r. Then S. contains an element that is non-regular
in S.

PROOF: Let f be an idempotent in the L-class of r'. So there exists y with
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yr' = f = f2. Also yr' & yr (since r =~ r' and = is preserved under left multiplication).
Therefore yr € S, (since yr' = f = f2 € S. and yr ~ f). We can apply Fact 4.4
to r's =g r': there exists z € § with r'sz = v’ and zsz = z. (Actually, since r' is
regular, we can choose z so that z =f, r'.) Then, since yr € Sc and S, is closed under
weak conjugation, we get zyrs € S..

We shall show now that zyrs is not regular in S. We have indeed (1) zyr =g yr
and (2) yr =L r. (2) follows since r = ' = yr' = yr and yr <g r. (1) holds because
yr =g yr' implies zyr =g eyr' = zf =z (since z=p ' = f = ' = r =L yr). So
we get zyr =g r. Therefore zyrs = rs, which is non-regular in §.

Proof that £, [w): Qw] — Q[w] is injective — or the eniry problem.

We must show that if 1, g2 € Qu are such that (q1)f,[w] = (92)fs,[w) 2nd
both are defined, then ¢ = g2. Let [w] = (no, [r1],n4, ..., [r&], nx). We denote
n; = (Mig,. .y Mijyee e Nijn;) for 0 < i<k, 0<j < |n|. We will distinguish two
cases, depending on the form of (g1)fs ] -

CASE A. (q1)f. ) is of the form (ng, [r1], my, ..., [r2], nij, - .., ni,j+1) where 0 <
i<k and 1 <j+1 < |n;|. This case is rather simple: by the definition of (q1)fs,w) We
must have s = n; j11, and q; must be equal to (no, [r1], n1, ..., [ri], nig, ...y ni5) —
otherwise (g;)f,,[w] would have been undefined. Similarly, since (g1)fs,(w) = (92)fs,u]
we must have g2 = (ng, [r1], m1, ..., [ri], i1, ..., nij). Hence ¢ = g2

CAsE B. (ql)rz,[w] is of the form (my, [r1], my, ..., n;_1, [r"]) where »" =g r;, and
1<igk.

If [r"] # [ei] (where [e;] is the ~s-class of the idempotents of the R-class of ;) or
if [r"] = [e;] but s #n

q1 = ¢ to be (ng,[ry], ny, ..., n;_1, [r]), where [r], [r"7] and s are related as follows:

i1, [mea | then the definition of (q; )f,,(w] uniquely determines
there exists ' with ¢’ = r and 7" = »'s =g r. By Corollary 4.7, this uniquely
determines [r]. '

However, if [r"] = [e;] and s = n,

i—Lfmi_y | then there seem to be two possible

values for q; and g, (which would allow ¢; # g¢2). This is the entry problem. We
must rule out one of these values, otherwise f, (,,) will not be injective. Two apparently
possible values for ¢, g, are:

(1) (mo, [r1], 1, ..., miy, [e]), and
(2 (o, [rady may ooy Picy o By o)

assuming in both cases that s = n,

i1, [ni | and that there exists ' with r' =~ e; and

r'.sne;.
(5.1)(a) Let us prove that (1) is impossible.  Indeed, assume we had

(01)fujw] = (n0,[ra], ny,..., niy,[e]) = (no, [r1], mpy oeey iz, . i |2 [e,—])
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with s = N, |m

| and (3r'): v =g e;and 7' - s e;. Then s-¢; (= Tt ei)
must be a non-regular element if S. (This is because the word expressing (q1)f, [u]
above must be reduced; no rule of the form v — [[u can be applied to it. If 5-¢; were
regular then the rule (s,e;) — s -e; could be applied). This however, contradicts the
fact that S, is regular, by the dual of Lemma 5.1 because of the following: If »' ~ ¢; = ¢
and r' -s = e and s - e is a non-regular element of S, then there exists i, € S, such
that r'si; = e 50 r'sije = ee = e so s-(ije) =L e so i;e =1 e. Then by the dual of

Fact 4.11 i,e ~ e. Hence e = €?

, 8-€ is not regular 7,e ~ e and s-.1;e = e. Then, by
taking the dual of Lemma (5.1) with s, e, r, 7' here replaced by s, =, 7', 7, e there,
respectively, we find S. is not regular, a contradiction.

Having  ruled out (1), we  obtain Q = g2 =
(no, [r1], My, ovvy My g, -0 vy Mg, |Mi_yg| = 1). 0

Proof that if s is non-regular then s ¢ (1) 1.

Let s be a non-regular element of S and let (s, ..., sk) € ST be any factorisation
of s. (Thatis k> 1, s1,...,8: € S and 87 -----8; = 8). Let w be the reduced
representative of an element of S obtained by applying the defining relations of S to the
word (81, ..., 8x). We will show that for this particular w, obtained from (s1, ..., s)
we have (denoting the start state of Q[u) by g0 ):

(5.2) (g90)fuy o) =" fopw) = [W].

Notice also that gy # [w] because, on the one hand, [w] is certainly not ¢, and on
the other hand [w] is not of the form [e] (with e = 2 € S) because s is not regular
(hence w is not regular by Fact 4.2(b)). Therefore, from equaltiy (5.2) we deduce that
(90)fay fw] " * = fay [w) is defined and is different from go. Thus f,, [w]-:-** fa, [w) cannot
be extended to the identity function 1py): Q) — Q[w]- From this we conclude that
s ¢ (1)7'[;} (recall the “general overview of the proof at the beginning of Section 4).

Proof that (go)fay ) - - forjw) = [W].
By Fact (4.2), the word (s;, ..., 3;) can be broken up in a unique way into sub-
segments ng, P1, N1, ..., Pk, N, each belonging to ST, such that:
(1) the concatenation ng-p;-ny----- Ph - ny equals (51, ..., Sk);
(2) each p; (with 1 <4 < h)is a maximally long subsegment of (s1, ..., s;)
such that [] p; is a regular element of §;
(3) each n; (with 0 < i< h)isasubsegment of (sy, ..., sx) such that every
non-empty subsegment v of n; (including n; itself) satisfies: [[v is a
non-regular element of S.

Observe that in this notation: w =(ng, [[p1, n1, ..., [[Pa, n1). Also,if ng £ ¢
then the start state of Qu) is go = €; if ng = ¢ then ¢ = [e;] = the =-class of
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all the idempotents in the R-class of [ p;. Let us write n; = ('n.,-,l, ceey n,-,|,,'.|) , for
0<i<h,and p,-(p.-,l, ceey p;'h,‘.') for 1 €1 € h. The composition of partial functions
Jogfw) o fup Jw) 1s the successive composition of partial functions of the form fno.,',[W]
for j = 1,..., [no|, followed by f;, . () for j =1,..., |p1|, followed by fy, ; [w) for
j=1,...,|n], et cetera.

We start out with the state go. After the functions fn, ; (v} have been applied to
o , successively for j =1, ..., |ng| the state reached is (ng, [e;]). Again, [e1] denotes
the ~-class of the idempotents in the R-class of [][ p;. Next we apply successively
for e for =1, ..., |p1|. By definition the states reached will be of the form:
(no, [r} - p1,1) where r} = €;, ri-11 =g [[P1,
(no, [r3 - p1,2]) where 5y = p1,1, 75-p1,2 =r [[P1, et cetera,
(no, [} -p1,j]) where TR T P11,y TP, =R [[ P1,for j =1,...,|p1], et cetera,

[

finally (for j = |pi1|) we reach the state (Ilg, [Timl -pl,h,”]) where 7|, , & Timl-l .

P1,jp|—1 and rllml “P1|py| =R [Ip1. But, since e; =g [[p1 = p11---- “P1,|py| W€
also have ey =g e1p11 =R €1P1,1P1,2 =R *** =ER €1P1,1 * P1,j for j=1,..., |P1|-
Therefore we can choose r} = €1, 73 = 1p1,1 = e1p1,1, and in general 75 = 75_,p1,j1 =
e1p11 - - P1,j—1 for 5 = 1,...,|p1|, and finally we get [TI’mI P pl = ([Pl
Thus, after applying the functions f,, . (u) to the state (no, [e;]) we reach the state
(no, [TIP1))-

Next, we apply f,,‘.’j'[w] for 1 € 7 € |ny|. By the definition of the actions, and
by the unique-ezit property, this leads to the state (no, [[]pi], ni, [ez]). In the same
way we can apply the further functions, corresponding to the successive p; and n; (for
j=1,..., h). At the very end we apply rule (3) of the definition of f, ). This then
yields the state [w].

REMARKS ON THE IDEA OF THE CONSTRUCTION.

A lot of the inspiration for the definition of Q[y) and f, ) came from Ash (1,
2]. His proof however used induction on the J-order of § which complicates things.
The main difficulty in defining f, ;) was to make it an injective partial function, while
at the same time keeping the state sets Q) finite and having only finitely many of
them. For example, it would have been easy to make f, injective by using S* instead
of [§], but this would have led to infinitely many state sets, and then 7 would no
longer be finite. When using S we still treat the non-regular elements as if we were
in $*. However the regular elements are handled as in S. This dual approach leads
to difficulties when successive multiplications (8, 8132, 818253. et cetera) lead from
non-regular into regular R-calsses, (or from regular into non-regular R-classes). This
entrance and ezit problem for regular R-classes was solved as follows:

Entrance problem: (into a regular R-class):
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If the current state is ¢ = ( R TR TR n,-l|,.‘.|_1) and s = n;|,,;| then we do not
define (¢)f,,w) to be (..., n;) but we define it to be (..., n;, [e;+1). In other words,
we anticipate in the state what the next regular R-class will be, although this regular
R-class has not yet “really” been reached. This additional knowledge about the future
(in the current state) makes f, [,,) injective (“unique past”). Notice that we can know
what [e;1]} is, since we know [w] (£, [w] is only defined on Q) for a fixed [w]). If this
fails to make the function well-defined S, becomes non-regular via the dual of Lemma
(5.1). See (5.1)(a).

The ezit problem (from a regular R-class):

When we are in state ¢ = (..., [r;]) and [w] = (..., [*], ni1, ...) and s = n;,
then we define (q)f,(w) to be (..., [r1],ni1). (We do not define (g)f, (v to be
(..., [r'.s]). Again, the knowledge of [w] tells us that now we should exit from the
regular R-class. If this fails to make the function injective S. becomes non-regular via
Lemma (5.1). See (5.0).

6. PROOF THAT (Id *G) = (Id mG) AND RESULTS ABOUT SOLID SEMIGROUPS

In this section we prove the last open case of Theorem 3.5, and we prove Theorem
3.6.

We note that if V is any variety, then VG C (VmG@G). Forif S € V, G € G then
the projection f: S+ G — G satisfies (1)f~! < S € V. However, the inclusion in the
opposite direction does not hold for arbitrary varieties V. [For example, Rhodes (un-
pub.) has constructed a sequence of semigroups Sn(n > 0), with S, € ((A * G)mG)
such that S, has complexity n. On the other hand, A *x G* G = A x G is contained
in the variety of semigroups of complexity < 1.]

To prove the inclusion in the opposite direction we must quote results from the
theory of the derived category of a relation as developed by Tilson [24]; see also [20]
for an exposition. We will only quote the important results.

It is well-known that if V and W are varieties of groups, then Vx W = (V m W)
consists of all groups G such that there is H € W and a functional morphism ¢: G —
H with ker(¢) € V. The derived category was developed to extend this situation
from group theory to semigroup theory. It turns out that the “kernel” of a relational
morphism ¢: § — T is a category D(¢) that is only “locally” in §. That is, the
monoid of self-morphisms Mor(v,v) divides S for each v € Obj(D(¢)). For the
case of a morphism between groups, D(¢) turns out to be the category of cosets of
K = ker(¢), and it is well-known that D(¢) is equivalent to K in the sense of category
theory (see [24]). This is why in group theory we can reduce extension questions to the

study of K < G.
We will say that a (finite ) category C is locally in a variety V if Mor(v,v) € V
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for each v € Obj(C). We will say that C is globally in V if there is a monoid M € V
and a function r: Mor(C) — M such that
(1) if a« € Mor(v,w) and B € Mor (w,z) then (aB)r 2 ar - fT;
(2) for all morphisms a of C: (a)r # 0 (77! is surjective);
(3) 77! is a partial function.
The following fundamental theorem appears in [24].

THEOREM 6.1. S € V « W if and only if there is T € W and a relational
morphism ¢: S — T such that D(¢) is globally in V.

Let D(¢) denote the derived category without identifying arrows (see [14]. Note
D(¢) < D(¢). Then if W = G, D(¢) and D(¢) distinguish between V x G and
(VmG@G), since easily

CoROLLARY 6.2. (a) S € (VmG) if and only if there is a relational morphism
¢: S — G where G € G such that D(¢) is locally in V.

(b) If V is “local” (that is for all categories C, C is locally in V if and only if C
is globally in V ), then Vx G = (VmG).

It is easy to show if a category C is globally in V, then it is locally in V. The
converse is usually not true. For example, if J the variety of J-trivial monoids, then
there are categories that are locally in J but not globally in J ([9], see also [25]).
The same holds true for the variety Com,, (for n > 1) consisting of all commutative
monoids satisfying z® = ™! (Thérien [25]). On the other hand, an important lemma
of Simon [22] can be shown to give the following theorem concerning the variety SL of
semilattices.

THEOREM 6.3. Let C bea category. Then C is locally in SL if and only if C
is globally in SL.

COROLLARY 6.4. SLxG =(SLmG).

Thérien and Weiss [26] have shown that a similar conclusion holds for the variety
Id of idempotent monoids:

THEOREM 6.5. Let C be a category. Then C is locally in Id if and only if C
is globally in Id.

We obtain from Corollary (6.2) and Theorem (6.5):
COROLLARY 6.6. Id*G = (Id mG).

Thérien proved more — which will enable us to prove our Theorem 3.6. Let UG,

be the variety of monoids satisfying z"*! =z,n > 1. So UG = |J UG, is the variety
n2l
of union-of-group semigroups.

https://doi.org/10.1017/50004972700017986 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017986

182 J. Birget, S. Margolis and J. Rhodes [22]

THEOREM 6.7. ([28]). Let C be a category. Then for each n > 1, C is locally
in UG, if and only if C is globally in UG, .

COROLLARY 6.8. C islocally in UG if and only if C is globally in UG .

COROLLARY 6.9. Forall n 2> 1: (UG,mG) = (UG, xG) = {S | S. € UG,}
={S|Sir€UG.}. And: (UGmMG) = UG*G)={S|S. €UG} ={S| S € UG}.

Notice that S. € UG implies that S, is regular. Therefore (by the main Theorem
3.1), S. = Syr for solid semigroups. As a consequence (using Fact 2.2(5)) we have
S € UG * G if and only if §. € UG, and thus, membership in the variety UG * G is
decidable.

7. A COUNTER-EXAMPLE, AND A CHARACTERISATION OF “S, IS REGULAR”

FAcCT 7.1. There exists a finite semigroup S satisfying:

(1) the regular elements of S form a subsemigroup, but
(2) S. and Sy contain some non-regular elements of S. So, if the regular
elements of S are a subsemigroup, this does not imply that S, is regular.

The type-II conjectures for semigroups whose regular elements form a subsemi-
group, are still open in general.
To prove the fact, consider the following semigroup S:
As a set § = {0,n} U {a;,a3,a3,as} X {b;,b2,b5} and the multiplication is as
follows:
(0) the element 0 is a zero (thatis (Vz € S)(0-z=0.z = 0));
(1) n?=0;
(2) (Vb€ {b1,b2,b5}) (n-{a1,d) = (as, b), n - (az, b) = (a3, d) and n -
(as, b) =n - (a4, b) = 0);
(83) (Va € {a1,a2,as,a4})((a, b1)-n = (a, b2) - n = 0&(a, bs) - n = (a, b2));
(4) {a1,a2,as,a4} x {b1,b,b3} is a Rees-matrix semigroup with trivial struc-
ture group, and with the following structure matrix C:

C a, a2 a3 a4

b 1 1 0 0
b 0 1 0 O
bs 0 0 1 O

One checks easily that this multiplication is associative. The regular elements of
S form a subsemigroup (consisting of {0} U {a;,a1,a3} x {b1,b2}). Also, the element
(a1, b2) is a product of idempotents ({a1,b2) = (a1,b1)(az2,b2)), hence belongs to S..
Moreover, we have (a2,bs)-n-(az,b3) = (az,b3), so n and (a3, bs) are a weak conjugate
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pair. Therefore, since (a;,b;) € Sc and since S. is closed under weak conjugation we
have n - (a;,b;) - (az,b3) = (a4, bs) € S.. But (a4,b3) is a non-regular element.

To conclude the paper we give the following characterisation of our running as-
sumption “S, is regular in S”.

THEOREM 7.2. Let S be a finite semigroup and let S, be its type-II-construct
subsemigroup. Then the following are equivalent:

(1) 8. is regular in S (that is every element of S. has an inverse in S );
(2) S. is regular (that is every element of S. has an inverse in S, itself);
(3) the regualr elements of S form a subsemigroup, we have for all z and s
in S: if s is regular but s -z is non-regular, then (Vt € [s])(t-z <g t)
(strict R-order) (see Lemma (5.1)) and we have for all z and s in S;
if § is regular but z - s is non-regular, then (Vt € [s]')(z -t < t) (strict
L-order); (Recall that [s] denotes the =-class of s, defined before Fact
4.4. Here [s)) = {t € S| (Ja,b € S.)(t = as&s =bt)}. So [s)' is the
equivalence class of s with respect to the left dual of = ).
(4) Srs is regularin S;
(8) Sir is regular;
(6) Sir=S. and S, is regular.
PRrOOF: (1) <= (2) follows from Fact 4.10.
(2) = (3) by (3.1)(a) and Lemma (5.1) and its dual.
(3) = (4) is the long proof of Theorem (3.1) given in Sections 3, 4 and 5. Note
only the assumptions of (3) are used!
(4) < (5) follows from Fact 4.9.
(5) = (6) follows from Fact 2.3.
(6) = (1) is trivial. 1]
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