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ON THE PRINCIPLE OF DUALITY IN LORENTZ SPACES 

M. L. GOL'DMAN, H. P. HEINIG AND V. D. STEPANOV 

ABSTRACT. A characterization of the spaces dual to weighted Lorentz spaces are 
given by means of reverse Holder inequalities (Theorems 2.1, 2.2). This principle of 
duality is then applied to characterize weight functions for which the identity operator, 
the Hardy-Littlewood maximal operator and the Hilbert transform are bounded on 
weighted Lorentz spaces. 

1. Introduction. Let v(t) > 0 be a locally integrable function on R+ = (0, oo). The 
weighted Lorentz spaces Ap(v) and Tp(v), p > 0, with weight v, consist of measurable 
functions/ on Rw, for which 

respectively 

(with the usual interpretations when/? = oo) are finite. Here 

f{t) = mf{s : m({x e Rn : \f(x)\ > s}) < t}, f > 0, 

is the decreasing rearrangement off with respect to Lebesgue measure. 
These spaces were introduced by G. G. Lorentz [14]. In particular, he established the 

equivalence of \\f\\* v and \\f\\**v for non-increasing v, and has shown that for 1 < p < oo, 
A*(v), the space dual to Ap(v), has norm 

(i.i) \\g\\w) = {J0 feV)/v(or v(t)dt\ , 

where here and in the sequel// = p/(p — 1) is the conjugate index of/?, andg0 Halperin's 
level function ([11]). These level functions have recently been applied in the study of 
Hardy-type inequalities ([ 18], [22], [23]). In fact in [ 18], the extension of (1.1) to arbitrary 
Borel measures permitted the characterization of weights (measures) for which the Hardy 
operator is bounded in weighted Lebesgue spaces in the index range 0 < q <p,p > 1. 
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Mapping properties of operators on Lorentz spaces (with power weights) are particu
larly important in the theory of interpolation (cf. [3], [4], [13], [20], [26]) and it is natural 
therefore to seek characterizations of weight functions for which classical operators de
fined on the cone of monotone functions are bounded in weighted Lebesgue and Lorentz 
spaces. There is an extensive list where characterizations for a variety of operators are 
given. See for example [1], [2], [5], [9], [12], [21], [22], [23] and the literature cited 
there. E. T. Sawyer ([17]) in particular, established an explicit reverse Holder inequality 
for non-increasing functions of the form 

/i "»\ Jo JS 
<l2) SittTM"? 

( root rx -ip' r rx 

l /o [Jo 8\ l/o v 
-p' )UP' 

v(x) ax \ + 
SS°g 

is§°vy/p' 

l < p < oo, g > 0, and used it in conjunction with the classical reverse Holder inequality 

SS°fg ( rc° , , ^W 

IS'itfW' IXV^' 1 <p < oo 

to characterize weights w, v, for which the Hardy-Littlewood maximal operator and the 
Hilbert transform are bounded from Ap(v) to Aq(u), 1 < /?, q < oo. This principle 
of duality then permits the reduction of inequalities for non-increasing functions to 
estimates in dual spaces for arbitrary functions by a change in weights. In particular, 
(1.1) may be replaced by the explicit expression 

(1.3) A » = r / ? / ( [ x - 1 £ v ] ' v ) , K / > < o o , 

provided JQ° V = oo. This is important since the map g —> g°, where g° is the level 
function of (1.1) has only an implicit form. 

If 0 < q < p < oo, then by Holder's inequality 

(1.4) 
V<7 

I J M " ^ { J C > 
UP 

where C = {JJ°[w1/<7v~1//7]r}1/r, \/r = \/q - \/p, is sharp. Of course (1.4) expresses 
the boundedness of the identity operator /: Lp

v —> Lq
w, with ||/|| = C. The analogue of (1.4) 

for 0 <f | was obtained by V. D. Stepanov [24], namely 

{\^fqwYlq [ ft )V<7f ft 
(1.5) sup 4 ^ — f — ^ s u p \ w\ / 

o<fl {Jo°°/pv}'/P Jllo i l/o 

-UP 

and 

(1.6) 

o<fi {Sg°J»v} 
0 <p < q < oo 

sup o<n {tfpvyir {js°vy/p l./o [Jo W\ [Jo V 
-r/p }\/r 

v(x) dx \ 

if 0 < q < p < oo, \ jr = 1 /'q — 1 /p. Clearly, with q- 1, w = g, (1.6) implies (1.2), 
and, with v = 1 it yields a variant of Holder's inequality for non-increasing/. Similarly, 
it follows from (1.5) with 0 < p < 1 = q and w = g, that A*(v) = ^ ( [ x ^ Jo v]_1 //?). 
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This suggests the study of reverse Holder inequalities of the form (1.5) and (1.6), 
where however the suprema are taken over even more restrictive function classes. It is 
the purpose of this paper to establish such reverse Holder inequalities where the suprema 
are taken over the class of quasi-concave ([4]) functions 

(1.7) Qo.i = {fix) > 0,f(x) 1,x~lf(x) i ,* E R+}, 

and where the weights are replaced by positive Borel measures (Theorem 2.1). From 
this we are able (via Theorem 2.2) to study mapping properties of classical operators in 
weighted T-spaces. Specifically, a principle of duality is established (Theorem 2.2) which 
makes it possible to characterize weights for which the classical operators are bounded 
on weighted T-spaces and thus extends the recent work of Sawyer [17] to T-spaces. 

This paper is divided into three sections. In the next section we provide a discretization 
method which leads to the reverse Holder inequality for functions in Q0,i (Theorem 2.1) 
and yields subsequent duality results. Such discretization method and the construction 
of the associated sequences seem to be introduced first by K. I. Oskolkov [16] and was 
modified and applied by G. Kalyabin, V. Kolyada, I. Netrusov, M. L. Gol'dman and 
others in the study of function spaces, while the method and its variants in the theory 
of interpolation were utilized, among others, by J. Brudnij, N. Krugljak, S. Janson and 
V. Ovchinnikov. Here we follow the work of Gol'dman. 

The principle of duality in weighted T-spaces (Theorem 2.2) leads in Section 3 to 
the characterization of weights for which the identity operator, the Hardy-Littlewood 
maximal operator and the Hilbert transform are bounded on weighted T-spaces. 

Throughout, we adhere to the convention that uncertainties of the form 0 • oo, jj, 
S are taken as zero. The notation A & B indicates that A/B is bounded above and 
below by positive constants, A <C B means that there is a constant C, depending on 
the involved parameters only, such that A < CB, and 0 < / J, indicates that / is non-
negative and non-increasing or essentially decreasing, i.e.,f(x) < Cf(y) holds, for C > 1 
and 0 < y < x < oo. Similarly for/ j . The function 6^ denotes the Dirac ^-function 
concentrated at the point \i. N, Z, R+, etc. denote as usual the natural numbers, the 
integers and the positive real numbers, respectively. Other notations and definitions will 
be introduced as needed. 

2. The discretization method and main result. We now describe the method of 
discretization and construction of the associated sequences to obtain the converse Holder 
inequality for functions in QQJ . We follow here M. L. Gol'dman's work [8], [9], [10]. 

DEFINITION 2.1. a) The positive Borel measure dfi on R+ satisfies the nondegeneracy 
conditions if for/? > 0 

(2.1) f ( ^ T F * ) < 0 0 ' [ dp(s) = fsrd(3(s) = cx). 

b) The fundamental function of a positive Borel measure (say d/3) is defined by 

(2.2) p(t) = P0.p(t) = ( j T ( - £ - y 48(*)} ''", p>0,t>0 
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UP 'j^min^,^)^^) 

It is clear that if 8 G ( - l , /? - l ) , /? > 0, then df3(s) = s~p+b ds satisfies (2.1). Moreover, 

if a fundamental function of a Borel measure satisfies (2.1), then via standard limiting 

theorems 

(2.3) lim p(t) = lim ——- = lim tp(t) = lim —• = 0. 
r-oo t^oo tp{t) /—0 f-»0 p{t) 

DEFINITION 2.2. a) A positive sequence {a^kez is said to be strongly increasing, 
respectively, strongly decreasing, if 

Qfc+X @k+\ 

inf > 1, respectively, sup < 1, 
kez ak keZ ®k 

and we write ak TT> respectively, a* | | . 
b) A sequence {\k\kzz of positive numbers is said to discretize the fundamental 

function p, if 

(i) A 0 = 1 , 0 < A * T T , 
(ii) p(A*)UandA*p(A*)TT,*€Z, 

(iii) there is a decomposition Z = ZiUZ2,ZinZ2 = 0, such that for/ G [A*, A*+i] = Ak 

p(Xk) « p(t) if k G Z\ and A*p(A*) & tp(t) if & G Z2, 

and the constants of equivalence are independent of k G Z. 

Following [9] (see also [16]) we construct by recurrence the sequence {pk}kez as 
follows: po - 1 and for a > 1 fixed, let 

(2.4) pk+\ = \t: min ^ - ^ , H) \ \ = a } if £ > 0 [ P(jik) tp{t) j 

w-1 v : m i n(^)'^r)= a} lf"-0' 
where p is a fundamental function satisfying (2.3). 

LEMMA 2.1. Le/ a > 1, £/ze« //ze sequence {p,k}kez defined by (2.4) discretizes the 
fundamental function p. 

PROOF. Define Z\ and Z2 by 

(2.5) Z\={keZ: p(pk) = ap(iJ,k+i)} 

Z2 = {keZ\Zl : pk+\p(Vk+]) = apkp(Vk)}' 

Clearly Z\ D Z2 = 0 and a straightforward argument using (2.4) shows that Z\ U Z2 = Z. 
Since fy?(0 is strictly increasing and p(t) strictly decreasing, it follows from (2.4) that 

pk+\ > Pk, k e Z. Hence Pk+\P(Pk+\) > PkP(Pk) and therefore, if k G Z\, pk+\ /Pk > 
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p(pk)/ p(pk+i) ~ a- Also, since p(pk) > p(Pk+\), £ £ Z, it follows that for k £ Z2, 
Pk+\ /Pk > lPk+\p(Pk+\)]/[Pkp(Pk)] = a. This shows that pk ]]. 

Next, by (2.4), if k eZ 

(2.6) [Pk+\P(Pk+\)]/iPkP(Pk)] > a > 1, p(pk+\)/p(pk) < \/a < 1, 

so that p(/i*) | | and pkp(Pk) TT- Finally, since p(/) | and /p(0 | , then for k e Zj, 
' £ [/4bM*+iL P(0 < P(^) = aP(Pk+\) < ap(t) and for £ <G Z2, tp(t) < pk+\p(Pk+\) = 
apkp(pk) < atp(t), so the result follows. 

For the next result we require the following notation, which is also used throughout: 
If dj3 is a positive Borel measure and 0 < p < 00, then we write 

(2.7) Pi(t)={f df3}l'\ p2(t) = rl{J^s^dp(s))l/\ 

pw(0 = max(p,(0,P2(0). 

If p is the fundamental function (2.2) then clearly 

(2.8) pm(t)/2 < p(t) < 2pm(t). 

We also write for 0 < p < 00 and /? a positive Borel measure 

UP 
LP*P-

( poo \ Up 

/efio.i:||/1U={jJ fd0\ <<x> 

where QQ,I is the class of quasi concave functions given by (1.7). 

LEMMA 2.2. Let p be the fundamental function (2.2) and {pk}keZ the sequence defined 
by (2.4) with a>4. Then for allf G Q0,i and 0<p<oo, 

(2.9) \\f\\p.0^{E[f(Pk)P(Pk)r)l/p-
[kez ] 

PROOF. Let Z\ and Z2 be given by (2.5) and A* = [pk, pk+\ ], then we obtain the upper 
bound for (2.9) as follows: 

H.0 = f > ^ = E ( / ^ = E + E ='i +h, 

respectively. For A: G Z\, p(pk) = ap(pk+\) and since/ | , (2.7) and (2.8) imply that 

h = E / fd$< E / (MW) dp= EyowtfG**) 
*ez, ' '^ *eZi Jfit *ez, 

< 2" S ^ , ^ ) = (2ay E [AMAMW)F-
kez{ keZ] 

https://doi.org/10.4153/CJM-1996-050-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-050-3


964 M. L. GOL'DMAN, H. P. HEINIG AND V. D. STEPANOV 

Similarly, for k G Z2, p>k+\ p(Pk+\) = a^kpiVk), and since rxf(i) [ 

h = E Hfdp < E {fMnkY r spd${s) 
k€Z2

 JM kez2
 J0 

= E [f(^)/^n^+iP2(^)f <2pj: [f(pk)/^n^p(pk+i)f 
k£Z2 keZ2 

= (laf E \f^k)(Pk)f 
kez2 

from which the upper bound follows with bound la. 
To prove the lower bound we consider cases: With the notation (2.7) let 

(a) Za = {keZ: pm(pk) = P\(Hk)} 
and 

(b) Zb = {ke Z, pm(jJLk) = PiiVk)}-
Clearly, ZaUZb = Z. Now if k G Zfl, define A* by p(Xk) = a~x p(pk). Then Xk > \ik 

since p is strictly decreasing. Also if k G Zi Pi Za, then a~] p(pk) = p(jik+\) - p(A*), 
so that A* = /i*+i, while if k G Z2 D Za, (2.6) shows that p(Xk) = a~]p(pk) > p(/i*+i). 
Therefore for all k G Za, [ik < Xk < p,k+\ and 

LfW=\ fW >fiVk) / dp =f(iikM(lik) - tf (A*)] 

> f(l*k)[AQik) ~ rfn(h)] >f(pk)[2-pff(pk) - 2V(A*)] 

= \f^k)p^k)f[2-p - (2/afl 

If k G Z^, define lk by lkp(lk) = a~l p,kp(pk). Since /p(0 is strictly increasing, lk < 
pk. Now if k - 1 G Zi D Z& then by (2.6), lkp(lk) = a~]pkp(p,k) > /i*_ 1 p(/i*-1) so that 
M*-i < lk- If * - 1 G Z2 nZ^ then again by (2.6), 7*p(7*) = a~liikp(p,k) = //*_, p(/i*_,) 
so that 7* = /i*-i • Therefore for all A: — 1 G Z&, /i#_i <lk< pk and 

> [f(Pk)/^n^2-p(f(^) - Yk2"pf(ik)] = [fiti^fKukWb 

where b = l~p — (2/ay. Combining these two results we get 

Zlf^k)(KMk)Y = E + E <A_1 E fAfd/3 + b-1 £ / /"<//? 
*ez Arezfl *ez6 keza

J*k kezh
JAk-1 

from which the lower bound for (2.9) follows. 
Before we can give the main result of this section, the following elementary proposi

tion is required: 

PROPOSITION 2.1. Let {ak}k^z> {&k}kez and {rk}k^z be non-negative sequences, and 
0 < p < 00. 

a) Ifok TT, then {E*ezEm>*«m]M} , / p < { ^ a f c ^ F l ' ^ 
and 
b) ifrk U then {Ekez[J:m<kamy^y/p < { E m e z K ^ f } 1 / / ' . 
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PROOF. Let a = inf* <Jk+\/crk> 1. If 0 < p < 1, Jensen's inequality shows that 

keZlm>k J k£Zlm>k J m£Z k<m 

mez °p - 1 mez 

If 1 < p < oo one may use the discrete version of the weighted Hardy's inequality 
(cf [18]) or the following direct argument: By Holder's inequality 

l/P(< -P'/P £ ^ < £<<M £ 

< 
a1/" 

' //>' 

UP 

(<yP'/p - l ) i ,V l ^ Tp-{£<£*«} ^' /P ' 

and therefore 

J£ £«m °*1 < 
KkeZLm>k 

7 £ ^ r , £ ^ « 

(^/p-i^JS
[ f lm(7mlP 

( l + ( c r J I I _ I / t 7 w y , - , + ( ( 7 M _ 2 / ( 7 l f l ) P - 1 + . . . ) 

£ [am(JmY (aP'/P-\)(aP^-l)^z
l 

which proves a). 
The argument to prove b) is analogous and hence omitted. 

THEOREM 2.1. Let dfl and dl be positive Borel measures and df5 satisfies the non-
degeneracy condition (2.1). If p > 0 and {fik} is the discretizing sequence of the 
fundamental function p^p of (2.2), then for 0 < q <p < oo, 

(210) J-sup )VfPHRviP * Eh^* ) / p^H =£' 

w/zere 1 / r = \jq— I/p. IfO < p < q < oo, //zew 

(2.11) ^«sup[/>y^(0/p^(0] = £-
f>0 

PROOF. We establish the result in the following sequence: First we assume that dl 
also satisfies the non-degeneracy condition (2.1). Then we prove the upper bound for 
(2.10), (2.11), then the lower bounds for (2.11) and then for (2.10). Finally, we remove 
the nondegeneracy assumption from dl. 

Since dl satisfies the nondegeneracy condition (2.1), there is a discretizing se
quence {Xt}tez of the fundamental function p7.9, and hence by Lemma 2.2, \\f\\q^ & 
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{Y,?ez[f(^e)Pi,q(^i)]qy/q, where the constants of equivalence depend only on a and q. 
In fact for the upper estimate of (2.10) we have 

¥\\l, < (2ay E [ A A ^ ( A ^ = (2a)"[J, + J2], 
£GZ 

where 

keZj iik<\c<Hk+\ 

and Z/ are the sets defined in (2.5) with discretizing sequence {pk} of the fundamental 
function p^p. Now if k G Zi, then /i^ < Â  < /i^+i, so/(A^) <f(pk+\) and p74(A^) < 
Pi,q(^k)- Since Lemma 2.1 applies with discretizing sequence {A^} and fundamental 
function p7^ it follows that p^,q(\?) j j and (2.6) holds with {/x̂ } replaced by {A^}. 
Hence 

•/i = E E [/"(A^K^)]9 

< E t/Wi K , ( r f ( l + «"' + a"1* + • • •) 
£ez, 

= — 7 E 1/(^+1 )P/ty(M*+l)]*\P)-4(Hk)/Pfo(Hk+\)]q' 
aH ~ [ *ez, 

lf0<q<p< oo, 1/r = \jq— l/p we apply Holder's inequality with exponents 
/?/g and r /g and Lemma 2.2 to obtain 

T( E I / (MKI)P^ (^+I )F1 < " 
4GZ, 

J\ < 
Cfl — 1 itGZi J l * G Z , 

< ll>* WE 
UGZI 

Pl,q(Pk) 

P{3,p(Pk) 

q/r 

where we used the fact that p^p(p>k+\ ) = a lPp,p(pk) ifk€Z\. 
The estimate for J2 is similar: By (2.6) 

h = E E [A(Af)/Aer[AfP7.,(A,)f 
£<EZ2 nk<Xc<Vk+\ 

< E [^^)/^]n^+iP7,,(^+i)r(i +«-*+«-2 ' + • • 0 
*ez2 

\ Pk+\Pl,q(Pk+\)] a* 

a* - 1 
E V&fiPfobikW 

k£Z2 PkP(3,p(Pk) 

Again by Holder's inequality with exponents,/?/# and r/q, Lemma 2.2 and the fact that 

VkP{3,P(Pk) = a~xPk+\P(3,p(Pk+\) for k<EZ2 yields 

aq ( \ q/p { 

Ji < ——r E \f<Pk)Pf,M)r E 

< H>* 

l A:GZ 2 

E 
A:GZ2 

Pk+\Pl\q(pk+\) 

PkP^piPk) 

q/r 

Pl,q(Pk+\) 

P(3,p(Pk+\)\ 

q/r 
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Therefore, ifO<q<p<oo 

( ) 1/9 

{kez ] 

and the upper bound for (2.10) follows. 

The upper bound for (2.11) is similar. In fact, since 0 < / ? < g < o o w e apply instead 
of Holder's inequality above, Jensen's inequality and obtain 

WhqX^^+Ji* < SUp[p7^(/iyt)/p^(^+l)]( E [ / W O / M / W ] * 1 

keZi ykazx 

+ sup 
k£Z2 

, , E Ifi^ppA^W 
VkPpAVk) J hez2

 J 

£GZ lA:€Z 

< SUp[^y^(0/p^(0]||/1U 

by Lemma 2.2. 
The lower bound of (2.11) follows from the inequality 

(2.12) {!™fdl\Vq<j{^fdp)X'P1 /GQo,., 

where J is given in (2.10). For t > 0 fixed, define^ byyj(s) = s/t if 0 < s < t and 
yj(5) = 1 if s > t. Then/; <E Q0,i and by (2.2) and (2.12) 

fh^if) < {£f?dri)X'q < j{lo°°frd/3}l/P <2Jpto(f). 

It follows that sup/>0[p7^(/)/p/3^(0] < 2J. 
For the lower bound for (2.10) some auxiliary observation is needed. From the 

definitions of {A^}, Zj, Z2 of (2.5) and since p^p(t) j , p^,q(Xe) II and tp^p{t) | , 
\tP);q(\e) TT o n e obtains 

E[^, , (A£)/p^(A,)]= E E [^(A£)/p^(A,)f 
tez kez{ nk<\(<Lik+\ 

+ E E [fhiMpnAWY 
keZi nk<\(<Vk+\ 

<«£&*>*)]-' £ W W 

+a E t M / H i P / ^ O W n E [A^.^AfXr 

2a2r 

< ~ 7 YJ[P$Mk)/pl*q(Pk)\r 

a ~ l kez 
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and, analogously, 

(2.13) E[PP-P(^)/P^M)Y < 4^-r T,Mxt)/fh4(x<)Y' 
kez a — i £ e Z 

Applying (2.13) it is clear that E (the right side of 2.10) satisfies 

Er « E D M M / / M W = E\ +Er
2, 

where 

O rilk+i \rlcl r/q 

/ = 1,2, and 8\f is the Dirac ^-function at the point A .̂ 
Now by Lemma 2.2, with/7 replaced by q and /3 by 7 it follows that 

It suffices therefore to prove that £, <C Jo, i = 1,2. 
Applying Lemma 2.2 again we find that 

(2.i4) Jo« sup) rrdiX q\Y:[f(^)ppAvk)ryl/p. 

Denote by B0A = {b = {bk}keZ • bk > 0, bk ] and \i^xbk j } , then/ G Qo,i implies 
/(/iit) G 2?o,i • Given b G #o.i we define the extremal function/, by 

fb(x) = I b^k XjC i f P'k < X < Vk 
\bk+x ifi/*<x<^+i, 

where //̂  = bk+\^ik/bk, k G Z. Clearly,/, G Qo,i and for a n y / G Qo,i satisfying 
/(/i*) = bk, k G Z, the inequality/(x) </>(x) holds. To see this, let x G [vk, /i*+i), then 
/,(x) = fc*+1 = /(/i*+i) >/(*) , while x G |>*, i/*) implies/,(x) = fe^1^ > bk+]x/fik+] = 
Wk+if(»M) > xf(x)/x =/(*). 

This together with (2.14) shows that 

*e*o.i u , u ~ ' * k 

Writing 

Jo = sup \l fbdio\ YXhPeMkW 

£ / ^ rf7o , •/<>./ = sup At YXbkP^(jik)f 
keZiJto ] b£B0A

 [ k 

i = 1,2, then J0 ^ JOA +A2. Now ifx G [/X*,/4H-I), then fe^iA^i* < / ( x ) < bkfi^
lx 

and denoting dk by 

f rVk+i \ ̂  IQ 
dk=\ x^7o(x) , if*eZ2and</* = 0 if £ G Z\ 
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then 

which shows that 

EtWim dkv]]/q <A2< { E t W d„y>\1/q 

l/«l -UP ( - 1 ) '** { )~l/P 

if 

beB0A
 l A: 

E\2 = SUp {Efafc+lMjfc+1 * ] * ) J E l ^ / 3 . / M ) F j 
ak>0K k ' y k 

then obviously E02 < £1.2- To obtain a reverse estimate let fc# = \ik EWGZ am/(pk+ / O -
Then Z)£ T a nd bk & Y.m<k^m + [*>kHm>k<im\^\ a n ^ since the lower bound in this 
equivalence is 1/2 it follows that 6* > ak/2, k G Z. Moreover / i ^ 1 ^ 1 so that b = 
{bk} G ^o.i. Recall that p^(yLk) TT and HkP^piPk) i l so by Proposition 2.1 

/MVP 

1 k ] K k lm<k J J 

1 k lm>k 

and therefore J0.2 > £0.2 > £1,2- But by the usual reverse Holder's inequality and the 
fact that /ijt+i Pp,P(p>k+\) ~ a^kPfijiPk) if & G Z2 we obtain that 

M.2 sup 
{ E ^ i / ^ W ^ 

aA>0 { E ^ P / ^ M / O F } 1 ^ UGZ 
E 

LM*+1P/3./?(PA) 

;-s 1/r 

i»A 

£2. 

Similarly, using the fact that pp,p(iik) = app,P(P'k+\) if A: G Z}, one obtains that J0,i > £1 • 
It follows that Jo^> E;,i= \,2 and the lower bound for (2.10) follows. 

To complete the proof of the theorem it remains to show that the nondegeneracy 
assumption on the measure dl can be removed. 

Suppose that 
zoo / s \v 

L (JTT) dl{s) = °° 
then the function/(s) = ^y, is in Q0.1 and it is easily seen that J and, consequently, E 
of (2.10) are not finite. Therefore the estimate (2.10) is satisfied in this case. Similarly 
£ = 00 so that (2.11) also holds. 

Now let 
/ ( j dl{s) < 00, / dl(s) < 00 or / sq dl(s) < 00. 
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If 0 <p < q < oo, thenft(s) = s/(s + t\t> 0, is in fi0.i, so that / > £ of (2.11) is 
always satisfied. We need to show only that J <C £ . To prove this, we assume *£ < oo, 
for otherwise there is nothing to prove, and define dl£, e > 0, by dl£ (s) = dl(s)+e d(3(s), 
where d(3(s) satisfies (2.1). It follows then that dl£ satisfies the non-degeneracy condition 
(2.1) with q instead of p. Moreover, pp,q(t) < p^p{t\ t > 0, when/? < q and therefore 
by what we have proved 

J^ SUP )%fPJRV/P ~ SUP UfPdRV/P <<C S U P ^ ^ « / ^ « 1 < ^ /eno.i {Jo PdP),p /eQo.i {Jo JPdP\IP e>o 

and the required part of (2.11) easily follows as e —•» 0. 
I f 0 < g < / ? < o o w e define d7e by 

d7£(s) = d7(j) + ea(s)d(3(s), 

where a > 0 is to be defined. If J and £ are defined as in (2.10) then J£ and E£ are 
defined by (2.10) with dl replaced by dl£ and J <J£,E<E£ always holds. We wish to 
find a so that dl£ satisfies the non-degeneracy conditions. 

By Holder's inequality with exponentsp/q, r/q 

so that a should satisfy 
(i) Jo°° oflq d[3 < oo, for then 

snih)'<*>"\jrt£iY«*»)'*ur'"'«>}'" 
is finite. Since we require that 

oo = jT1 dl£{s) = jf1 dl{s) + e £ a(s)d/3(s) 

and 
rOO rOO rOO 

oo = J sq dl£(s) = J sq dn{s) + e J sqa(s) d/3(s) 

the function a must also satisfy 
(ii) Jo1 ad/3 = oo and (iii) J0°° sqa(s)df3(s) = oo. 
To this end we construct a(s) on the intervals [0,1] and (l,oo) separately. First 

consider [0,1] and use that Jo d/3(s) = oo, but JQ1 SP d(3(s) < oo. 
Let 

Z = inf[ve(0,p]:f*J'dl3(s)<oo} and £ e (£,min(p,£r/?)), 
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then define for s G [0,1], a(s) = s^q/r. Clearly, 

j oflq d/3 = f sl df3(s) < oo 

and 
/ ad/3 = s^/r df3(s) = oo, since (q/r < £. 

Next, assume that J^° d(3 < oo but J^° sp df3(s) = oo. 
Let 

C = sup{ise(01p):fs1/d(3(s)<™} and f G ( ( £ - l ) , c ) , 

then define for s G [1, oo), a(s) = £qlr. Clearly 

j°° c/lq d/3 = f0V dj3{s) < oo 

and 
J°° sqa(s) d/3(s) = J°° sq+lqlr d/3(s) = oo 

since g + C#/ r > £. Hence the a so defined satisfies (i), (ii) and (iii) and dl£ satisfies the 
nondegeneracy conditions. By what we have proved, J£ rc E£ where 

/ - ™ {^fdl + e^fadpyi" ^ u 
Je — sup r— T--, & J + £ ' C < oo. 

Therefore, J+exlqC & J£ & Ee >E and hence J > E. On the other hand lime_^0 E£ = E 
and therefore J + exlqC <C E which implies J <^ E. This completes the proof of the 
theorem. 

By taking q = 1 and d/3(s) - s~pv(s) ds, 0 < p < oo, where v > 0 is a weight function 
satisfying 

(2.15) / — L f - ^ 5 < o o , s~pv(s)ds = v(s)ds = oo, v ' 7o (,s+ i y 7o w ./i v 

in Theorem 2.1, we see that df3 satisfies the nondegeneracy conditions. Moreover the 
corresponding fundamental function 

MP 
(2.16) p ^ ( 0 = (Jo (s + tf) v 

has discretizing sequence {\ik\kez- Under these notations we obtain a principle of duality 
formulated by the following reverse Holder inequality: 

THEOREM 2.2. (a) Let 1 < p < oo and 0 < g [ onR*. Suppose v satisfies (2.15), 

then 

(2.17) /ss sup J ^ ^ - « ( f [ j*gYV(x)dx\W 
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where 

(2.18) V{x) = Y,V~P'IPW»k(x)-
k 

Here V is defined by (2.16) and 8^k is the Dirac 8-function. 
(b) IfO<p<landg> 0, then 

(2.19) lKsup(['g)v-]/P(t). 

PROOF, (a) We may assume that limx_+oo g(x) = 0, for if linv^^ g(x) = C > 0, then 

with/"=X[o,/]5* > 0 

Ct C 

t{TP Jj v + j?0 x~Pv(x) dx} i IP PQ,p(t) 

and hence / > Csupr>0 ——: = oo, where p ^ is given by (2.16). 

Similarly, since by Lemma 2.1, pp,p(^k) I I the right side of (2.17) is 

i./o k
 ] y k 

UP' = C {E^ 'W} =°° 

Hence (2.17) holds in this case. 
Now it is known1 (cf. [4, p. 117]) that F e Q0,i, if and only if, F(x) « J$f with/ | . 

Hence the left side of (2.17) becomes 

/ « sup « ~ ^ 

By Theorem 2.1 with <7 = 1, dl = —dg and d(3(x) = x~pv(x) </x, this is equivalent to 

Note that in this case 

(h:\fak) ™ M*"1 r * -sdg(s)+ f°° -dg(s) 
JO Jut 

= tol[-sg(s)\p+JQ g(s)ds\+g(tik) = ̂ ] J0 g. 

Hence (2.17) follows. 
Part (b) of the theorem follows from the proof of [25, Theorem 3.3]. 

1 We are grateful to Professor L.-E. Persson for drawing our attention to this fact and for the discussion we 
had on this topic. 
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COROLLARY 2.1. Suppose 0 <p < oo, g>0, v > 0 measurable on R+ such that 

/ ( ) v(s)ds < oo, / v(s)ds = / spv(s)ds = oo. 

If I < p < oo and V = £* JQ° min^ , jc^vfa) cte ^ ( x ) wzY/z {/i*} ^ e discretiz-

ing sequence for pp,p(i) with d/3(s) = v(s) ds, then 

(2.20) sup 
SS°fg 

If0<p< l, then 

SS°fg 

/ / min(5,x)g(5)J5' V(x)dx 
UP' 

sup ' SUp 
JJ°min(/,j)g(j) 

fen0A {I^pvy/P ,>5 {J^minClP^Mj)*} 1 ^" 

PROOF. Let q = 1, rf7(s) = g(s)ds, dfi(s) = v(s)ds in Theorem 2.1, then the result 
follows since 

P^p{t) * t ] {min jf°V, />(s)^) 
i /p 

and 
Pg,i(0^* j / m i n ^ ^ g ^ ) ^ . 

Observe that if T is an integral operator defined on Qo,i then the characterization of 
weight functions w, v for which ||7y||9,M < ClI/IUv, 1 < p, q < 00, holds is equivalent 
by (2.20) to the problem of characterizing the weight functions V and u for which 

{f{j^mm(s,x)(rg)(s)ds}P V{x)dx]X'P < c f j T > V " * ' ) ^ 

holds. Here T* denotes the adjoint of T and g > 0, arbitrary. This problem is in some 
instances easier to solve, specifically if one permits additional conditions on pgA (cf [9, 
Remark 4]). 

3. Applications. We now make use of the results of Section 2 to study mapping 
properties of the identity operator, the Hardy-Littlewood maximal operator and the 
Hilbert transform on weighted T-Lorentz spaces. Specifically we extend to T-spaces 
some of the results proved in [17] for weighted A-spaces. 

We assume throughout this section that the weight function v(x) > 0 satisfies the 
nondegeneracy condition (2.15) and that V and V are defined by 

v(s) 
- as, v — 

k 

(3.1) V(t) =fCv^ds' y = ? F ( ' r ^ ( , ) 

respectively (cf. (2.16), (2.18)). 
Observe that in the assertions below the norm of the dual space T*(v) with 0 < p < 00 

is expressed by 

llsllw ;(v) sup 
1lr>(v,<i 

ff/WgW dx\ 
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(see for example [3]). 
The following formulation for the weighted dual T-space holds: 

THEOREM 3.1. Ifv satisfies (2.15) and V, V are given by (3.1) where {fi^} is the 
discretizing sequence of rx Vxlp{i), then 

r > ) = i>(/"V(o), \<P<oo 

and 

rp(v) = rOQ(tv-]/p(t)), o<P<\. 
PROOF. Apply [3, Theorem 4.1, Chapter 7], (2.17) and (2.19) of Theorem 2.2. 
The weight characterizations for which the identity operator is bounded on weighted 

A-spaces has been given in [2], [17], [24], [25] for various ranges of indices. The 
extensions of these results to weighted T-spaces in [8], [9], [10], [25] follows now 
directly from Theorem 2.1 in the next result. 

As in the case of V in (3.1) or (2.16) we write dl(s) = s~qw(s) ds, w > 0, and define 

Also the operator norm of the identity operator on T is denoted by ||/||p-»^. 

THEOREM 3.2. (a) IfO <p < q < oo, then i: Tp(v) —> Tq(w) is bounded, if and only 

if 
Wxlq(f) 

\\i\\P^q « 2 ^ = supt>0 yX/ < oo. 

(b) IfO <q <p<oo, \/r= \ / q - \ / p, then 

\/r 

f = YXp^^k)IPa.p{^k)X < oo, 

where {^k}kez is the discretizing sequence for p^p. 

PROOF. Since/ G QO, I has the form/(x) = J£ g, where g [ (cf [4, p. 117]), the results 
follow from (2.11) and (2.10) of Theorem 2.1. 

Now we consider mapping properties of the Hardy-Littlewood maximal operator 

(3.3) Mf(x)= sup -Lj\f(y)\dy l_ 

X£Q£R°\Q\JQ[ 

on weighted A-spaces. Here Q are cubes in Rn with sides parallel to the coordinate axes. 
As usual g* denotes the rearrangement of g and 

Hence if 
Pfix) = x-' J*f(t) dt, P2f(x) = P(Pf)(x% 
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then Pf*(x) =f**(x). Since/* is decreasing it is clear that Mf*(x) = (Pf*)(x) and since 
a result of C. Herz shows that (Pf*)(x) < c(Mf?(x) (cf [3, Theorem 3.8, p. 122]) it 
follows that 
(3.4) (Mf)\x)*{Mf)(x) and (Mff\x) «(P2f)(^ 

In order to establish boundedness of M on weighted T-spaces, it suffices therefore to 
establish corresponding results for the Hardy operator on decreasing functions, indeed it 
is equivalent to obtain embeddings for i: Tp{v) —* Tq{v). 

THEOREM 3.3. Let 0 < p, q < oo, q > 1, and v{x) > 0, w(x) > 0 be locally 
integr able functions with v satisfying the nondegeneracy conditions 

r vis) ds /*! _ r°° 
— < oo, Is pv(s)ds = / v(s)ds = oo. 

- (s + \y Jo w J\ v J 

Then 
(a) The inequality 

(3-5) ||M/H;*H, < c\\f\\;:vl ferp(v) 
is satisfied for 1 <p < q < oo, if and only if A = max/=o. 1.2.3 /̂ < °°> w/zere 

r̂  \l/4 ( roo 

A2 = sup{ J^s"> lnP(s/f)w(s)ds} {[™ sp''l/(s)ds^/P 

Ai=sxxpf.r°s-''w(s)ds) <'ir/\rf'(t/s)'l/(s)ds^ 

VP> 

Moreover A &s C. 
(b) If \ < q < p < oo, \/r = \jq — \/p, then (3.5) is satisfied, if and only if 

B = max,=o.i.2,3 B, < oo, where 

S0 = f«)'"(T <•*)*}'"• 

\J j "M-s )*J 1/ ^ hf(t/s)V(s)ds 

B3 = {l^\£°s-
q^s)dsY,q\^ 

r/p' _ ,\/r 

t qw(t)dt\ , 

B2 = 

Moreover B & C. 
(c) IfO < p < 1 < q < oo, //ze« (3.5) is satisfied, if and only if D = max,-=o.i.2 A < 

oo, where 

Do = sup I fw) qv~xlp{t\ 
t>0 
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t>0 

1 / * 

C>0 

Dx = sup! [°°s-qw(s)ds)] qtV~xlp{t)dt, 
oo [Jt ] 

D2 = supj rs-Hrf(s/t)w(s)ds)l/qtV-l/p(tl 

and again D & C. 
Here V and V are of course defined by (3.1). 

PROOF. It follows from (3.4) that (3.5) is equivalent to proving 

{ ( V 2 / ) ^ ) l / " < c{[°(Pffv)l,P 0 <f I . 

But by the usual reverse Holder's inequality, this is equivalent to 

0.6) su r(^/) f <c(ryv-*'i' /?', g>o. 
V ' n^i^iPfWvY/P - I/O S I 5 -

Now 

r(P2f)g=r^-
where the adjoint P of P is Pg(t) = J™ g(s)f and P2g(t) = tf° \n(s/t)g(s)f. But 
clearly, P2g j and therefore by Theorem 2.2(a) and (b), the left side of (3.6) is in case 
1 <p < oo equivalent to {J^°[/o P2gY' (l^{x)dx}xlp', and in case 0 <p < 1 equivalent 
to sup/>0{Jo P2g}V~]/p(t). Now, a simple calculation shows that 

j f P2g = x[Pg(x) + %(x) + P2g(*)]. 

Therefore, it suffices to characterize the weight functions for which, in case 1 < p < oo, 
each of the following integrals 

o {mgr'nx)<ixy/p', 
») {jnrg(ofr>V(x)<Mi///, 
iii) {JS°[£° ln(f/x)g(0?fWCx)^}1/"', 

and in case 0 < p < 1 < g < oo the following suprema 

iv) sup^o-UgJF- ' / ^ ) , 
v) sup , > 0 {rg(*) f }tV-'IP{t), 

vi) sup , > 0 {r ln(s/0g(*)f }tV-'IP(t) 

are dominated by 

l/o ^ ' ~ ? 1 • 
Here g > 0 is arbitrary and 1 < q < oo. But the characterizations of weights for these 
Hardy type operators are well known (cf [15], [23]). For if 1 < p < q < oo, then the 
estimate implied by i) holds, if and only if, Ao < oo, and the estimate for ii) holds, if 
and only if A\ < oo. The inequality for iii) is satisfied (see [23]) if A2 + AT, < OO. This 
proves (a). 
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If 1 < q < p < oo, \/r = \jq— 1 //? the inequalities for i) and ii) are satisfied, if and 
only if Bo < oo, respectively B\ < oo. The estimate for iii) follows again from [23] and 
is satisfied if and only if B2 + 5 3 < oo. 

The proof of (c) requires the usual reverse Holder's inequality. In the case iv) the 
estimate 

expresses the boundedness of the operator g(s) —» g(s) V~xlp{i), from Lq
 x g,(0, oo) to 

/^(O, i), t>Q. But this is equivalent to the estimate 

J/* 
< C 

o<o<a 
V~l,PW{fohqw)l,q - C sup h^ 

which is obviously satisfied with C = Do. Similarly for (v) and (vi). 
Our final result concerns the mapping properties of the Hilbert transform H defined 

by 

mix)=p.v.rf— 
./-oo x —y 

on weighted T-spaces. 
THEOREM 3.4. Suppose p,q,w and v are as in Theorem 3.3, then the inequality 

II Hf %:w < C\\f\\;:v,f e I>(v), is satisfied 
(a) In case 1 <p < q < oo, if and only if, AH = max/=o,i.2,3(^/?^b^i) < °°> where 

Aif i = 0,1,2,3 are the constants of Theorem 3.3 and 

Fo = supj/ow) jjf hf(s/t)1/(s)ds} , 

Fi = sup| f \nq{t/s)w{s)ds^ q{[° V 
t>0 

Moreover C & An. 
(b) For 1 < q < p < oo, \jr = \/q — \ / p, the inequality holds, if and only if, 

BH = max/=o,i.2,3(#/,^2^3) < oo, where Bj, / = 0,1,2,3 are given in Theorem 3.3 and 

( roo / rt \ r/p / roo , . \ rip' . ^\lr 
Fi=\L \Lw) u ^(vo^)*) Mt)dt\ 

Fz = [^(f\tf{t/s)w{s)ds)r'q(f™ V{s)ds)r'q V{t)dt]X'\ 

Moreover C ^ BH. 
(c) For 0<p<\<q<oo, the inequality holds, if and only if DH = 

max/=o.i.2,3(A) < °°. where Dt, i = 0,1,2 are given in Theorem 3.3 and 

D3 = sup! f \nq(s/t)w(s)ds) V ^ f ) . 
,^n 1«'0 J 

l / < 7 

( / W(s/t)w(s)ds] " 

Moreover C & £)#. 
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PROOF. By [3; Theorem 4.8, p. 138] and [17] the rearrangement inequality (Hf)*(7) < 
(P*f)(t) + (PT)(t) < (Hf )(0 is satisfied. But since Pf{t) + Pf(t) = P{Pf){t) the bound-
edness of//: ^ (v ) —» Tq(w) is equivalent to the inequality 

{f[P2(Pf)Vw}Uq <c{[°[Pffv 

for 0 <f [. By the reverse Holder inequality and the fact that the adjoint of P2P is PP2, 
the inequality is equivalent to 

(3.7) su?SmP2t <c\r^\^ 

where g > 0 is arbitrary. But since P(P2g) I we can apply Theorem 2.2(a) and (b), so 
that (3.7) is equivalent to 

{/P' _f r°° „/ . . / l 1 / ^ 
(3.8) j / o \[0P(P2g)\ V(x)dx) <CJ/o g* 

if 1 < p < oo, and 

(3.9) s u p j ^ V ( P 2 g ) ) ^ 1 / / ? W < c { / 0
O O / w , - ^ ) 1 / ' , 

if 0 < p < 1, where V and F are defined by (3.1). Since 

f*PP2g = P2g(x) + 2(Pg(x) + Pg(x)) + P2g(x) 

we proceed as in the proof of Theorem 3.3: In case 1 < p < oo, (3.8) shows that we 
must characterize the weights for which each of the integrals 

ii) {S^(Pgf'^V/p' 
iii) {JT Do Hx/s)g(s) dsf'x-P' V{x) dx}' /"' 

and 
iv) {JflXT ln(V^(*)fY'V{x)dxyi?' 

is dominated by the right side of (3.8). In case 0 < p < 1 < q (3.9) applies and we must 
characterize the weights for which 

v) suPx>0{SZ(Pg)}V-]/p(x), 
vi) snpx>Q{SoPg}V-]/p(x) 

vii) sup^oUt j JS Ht/s)g(s)ds]dt}V-'lP(x) 
and 
viii) supx>0{JSUrHs/t)g(s)f]dt}V^/P(x) 

are dominated by the right side of (3.9). But since these weight characterizations are 
known and follow as in the proof of Theorem 3.3, we omit the details. 
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