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Abstract

We study the long-time behaviour of a Markov process evolving in N and conditioned
not to hit 0. Assuming that the process comes back quickly from ∞, we prove that the
process admits a unique quasistationary distribution (in particular, the distribution of the
conditioned process admits a limit when time goes to ∞). Moreover, we prove that the
distribution of the process converges exponentially fast in the total variation norm to its
quasistationary distribution and we provide a bound for the rate of convergence. As a
first application of our result, we bring a new insight on the speed of convergence to the
quasistationary distribution for birth-and-death processes: we prove that starting from
any initial distribution the conditional probability converges in law to a unique distribution
ρ supported in N

∗ if and only if the process has a unique quasistationary distribution.
Moreover, ρ is this unique quasistationary distribution and the convergence is shown to
be exponentially fast in the total variation norm. Also, considering the lack of results on
quasistationary distributions for nonirreducible processes on countable spaces, we show,
as a second application of our result, the existence and uniqueness of a quasistationary
distribution for a class of possibly nonirreducible processes.
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property; birth-and-death process
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1. Introduction

Let X be a stable continuous-time Markov process evolving in N = {0, 1, 2, . . .} such that
0 is an absorbing point, so Xt = 0 for all t ≥ T0, and absorption occurs almost surely, that is,
for all x ∈ N, Px(T0 < +∞) = 1, where T0 = inf{s ≥ 0, Xs = 0}. In this paper we provide
a sufficient condition for the existence and uniqueness of a quasistationary distribution for X

and for the conditional distribution of X to converge exponentially fast to it.
A quasistationary distribution (QSD) for X is a probability measure ρ on N

∗ = {1, 2, 3, . . .}
such that, for all t ≥ 0,

ρ(·) = Pρ(Xt ∈ · | t < T0).
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Thus, a QSD is stationary for the process conditioned not to be absorbed. The notion of a QSD
has always been closely related to the study of the long-time behaviour of a process conditioned
not to be absorbed. Indeed, it is well known (see, for instance, [6] and [9]) that a probability
measure ρ is a QSD if and only if it is a quasilimiting distribution (QLD), which means that
there exists a probability measure μ on N

∗ such that

ρ(·) = lim
t→∞ Pμ(Xt ∈ · | t < T0). (1)

Existence and uniqueness of QSDs and QLDs have been extensively studied in the past decades.
They were originally investigated by Yaglom [11], who stated their existence for subcritical
Galton–Watson processes. In their seminal work [1], Darroch and Seneta proved that irreducible
finite state space processes admit a unique QSD. In our case of a process X evolving in a
countable state space, the question is more intricate since the existence or uniqueness of a QSD
is not always true. In 1995, Ferrari et al. [4] proved a necessary and sufficient condition for
the existence of a QSD for X under the assumption that it is irreducible and that the process
does not come back from ∞ in finite time. More precisely, the authors proved that if N

∗ is
an irreducible class for the process X and if limx→+∞ Px(T0 < t) = 0 for any t > 0, then
the existence of a QSD for X is equivalent to Ex(eλT0) < +∞ for some constants x ∈ N

∗ and
λ > 0. The much-studied birth-and-death processes are of particular interest, since explicit
sufficient and necessary conditions have been proved by van Doorn [7] characterising the three
possible cases: there is no QSD, a unique QSD, or an infinite continuum of QSDs. (For more
information on QSDs/QLDs, we refer the reader to the recent surveys [6] and [8].) In this
paper we give a sufficient criterion for the existence and uniqueness of a QSD for countable
state space processes. In the particular case of birth-and-death processes, we shall see that the
criterion is in fact equivalent to the existence and uniqueness of a QSD.

While the existence of a QSD is interesting in itself, it is only the first step towards the
understanding of a conditioned process’ long-time behaviour. Indeed, it is of first practical
importance to determine the initial distributions μ for which convergence (1) holds and, as
stressed in [6], to determine the speed of convergence to the QSD. In the present paper, our
aim is twofold: we give a criterion ensuring the existence and uniqueness of a QSD, and we
prove that the conditional distribution of the process converges exponentially fast in the total
variation norm to a unique QSD. Moreover, we provide an explicit upper bound for the rate of
convergence, in terms of the constants c1, c2, and c3 appearing in Hypotheses H1, H2, and H3
below. More precisely, we prove that there exists a unique QSD ρ and a constant γ ∈ (0, 1)

such that

‖Pμ(Xt ∈ · | t < T0) − ρ(·)‖TV ≤ 2(1 − γ )[t] for all μ ∈ M1(N
∗) and all t ≥ 0,

where ‖ · ‖TV denotes the total variation norm for signed measures, [t] is the integer part of t,

and M1(N
∗) refers to the set of probability measures on N

∗. As we shall see, our proof uses a
purely probabilistic approach, allowing us to answer the long standing question of the speed of
convergence of a birth-and-death process to its unique QSD. Spectral tools give in this situation
an exponential convergence when there is a second gap and when the initial distribution is
finitely supported (see [7]).

The existence and uniqueness criterion is based on the three following hypotheses, where
the positive constants c1, c2, c3, and c4 will appear in the expression of γ . Our first hypothesis
states that there exists a subset of N

∗ where the probability of extinctions at any time t are
balanced.
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Hypothesis H1. There exist K ⊂ N and a constant c1 > 0 such that, for all t ≥ 0,

infx∈K Px(t < T0)

supx∈K Px(t < T0)
≥ c1.

Remark. One can check that when the process is irreducible, that is, when Px(Xt = y) > 0
for all x, y ∈ N

∗, this property is fulfilled for any finite subset K ⊂ N
∗. Note also that the

smaller the subset K , the weaker the requirement on the constant c1.

Let K satisfy Hypothesis H1. Our second hypothesis states that the process comes back
quickly from any point to K ∪ {0} and, starting from some particular point in K , it has a
relatively high probability to be in K afterwards. We denote by TK = inf{t ≥ 0, Xt ∈ K} the
hitting time of K .

Hypothesis H2. There exist some constants λ0 > 0, c2 > 0, and c3 > 0, and a point x0 ∈ K

such that, for all t ≥ 0,

sup
x∈N∗

Ex(e
λ0TK∧T0) ≤ c2 and Px0(Xt ∈ K) ≥ c3e−λ0t .

Remark. Usually, there exists an interval of values of λ0 acceptable here, as it will clearly
appear in the birth-and-death case (see the proof of Theorem 2 below). Note also that the larger
the subset K , the weaker the requirements on the constants λ0, c2, and c3. When K is finite
and Hypothesis H2 holds for λ0 > 0, then necessarily λ0 is greater than or equal to Kingman’s
decay parameter.

Our last hypothesis states that the conditioned process comes back in time 1 to a point x0 ∈ K

with a minimal probability.

Hypothesis H3. There exists a constant c4 > 0 and a point x0 ∈ K ⊂ E such that

inf
x∈N∗ Px(X1 = x0 | T0 > 1) ≥ c4.

Remark. If the rate of absorption is uniformly bounded over N
∗ then infx∈N∗ Px(T0 > 1) > 0,

and, thus, Hypothesis H3 is equivalent to the existence of x0 and c4 such that infx∈N∗Px(X1 =
x0) ≥ c4. This is closely related to the existence of a small set, following the terminology of
Down et al. [2] for processes without absorption, where T0 = +∞ happens Px-almost surely.

We are now able to state our main theorem, which is proved in Section 2. As an application,
we also provide a corollary on birth-and-death processes, and show a generalization of the
recent results of Ferrari and Maric̀ [3].

Theorem 1. If Hypotheses H1, H2, and H3 are fulfilled, then there exists a unique QSD ρ for
X. Moreover, for any probability measure μ on N

∗, we have

‖Pμ(Xt ∈ · | t < T0) − ρ‖TV ≤ 2

(
1 − c1c3c4

2c2

)[t]
for all t ≥ 0. (2)

Remarks. (i) Inequality (2) implies that ρ is a QLD for X and any initial distribution, which
means that, for any probability measure μ on N

∗,

lim
t→∞ Pμ(Xt ∈ · | t < T0) = ρ(·).
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(ii) Our approach is based on a strong mixing property inspired by Villemonais and Del
Moral [10]. In particular, we prove that

‖Pμ(Xt ∈ · | t < T0) − Pν(Xt ∈ · | t < T0)‖TV

≤ 2

(
1 − c1c3c4

2c2

)[t]
for all μ, ν ∈ M1(N

∗) and all t ≥ 0.

(iii) Note that c1, c2, c3, and c4 can be chosen in such a way that they satisfy c1c3c4/2c2 < 1.
Nevertheless, as a consequence of the proof of Theorem 1 below, these constants always satisfy
c1c3c4/2c2 ≤ 1 (see the argument after (5)).

We present two applications of our result. In Section 3 we develop the case of birth-and-death
processes, and prove that such a process admits a unique QSD ρ if and only if Hypotheses H1,
H2, and H3 are fulfilled, which implies that its conditional distribution converges exponentially
fast to ρ, uniformly in its initial distribution. Note that this result provides new insight into
the quasilimiting behaviour of birth-and-death processes. Moreover, its proof reveals that our
criterion is optimal for a birth-and-death process: such a process satisfies Hypotheses H1, H2,
and H3 if and only if it admits a unique QSD.

In our second application, developed in Section 4, we show that the sufficient condition
for existence and uniqueness of a QSD proved in [3] can be considerably relaxed. While
the practical implications of this application are nowadays less manifest than the previous
application, it is of much theoretical interest. Indeed, it demonstrates that our result applies
to reducible Markov processes on a countable state space, which is an exciting area under
development where most of the existing results on QSDs do not apply.

2. Proof of Theorem 1

The proof of Theorem 1 is divided into three parts. In the first step we show that, for all
t ≥ 0,

Px0(t < T0)

supx∈N∗ Px(t < T0)
≥ c1c3

2c2
. (3)

In the second step, using the techniques developed in [10], we prove inequality (2) for all t ≥ 0.
In the third step, we conclude the proof by showing that (2) implies the existence and uniqueness
of a QSD.

Step 1: Prove that (3) holds. For all x ∈ E, we have

Px(t < T0) = Ex(1{t<TK∧T0}) + Ex(1{TK≤t<T0}).

On the one hand, we deduce from Hypothesis H2 that, for all t ≥ 0,

Ex(1{t<TK∧T0}) ≤ e−λ0tEx(e
λ0TK∧T0)

≤ Px0(Xt ∈ K)

c3
c2

≤ Px0(Xt ∈ N
∗)

c3
c2

= Px0(t < T0)

c3
c2.
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On the other hand, the Markov property and Hypothesis H2 yields

Ex(1{TK≤t<T0}) = Ex(1{TK≤t≤T0} PXTK
(t − TK ≤ T0))

= Ex(1{TK≤t≤T0} eλ0TK∧T0 e−λ0TK∧T0PXTK
(t − TK < T0))

≤ Ex(e
λ0TK∧T0) sup

y∈K

sup
s∈[0,t]

e−λ0sPy(t − s < T0)

≤ c2 sup
y∈K

sup
s∈[0,t]

e−λ0sPy(t − s < T0).

Now using Hypotheses H1 and H2, and the Markov property, we have, for all s ∈ [0, t] and
any y ∈ K ,

e−λ0sPy(t − s < T0) ≤ Px0(Xs ∈ K)

c3

infz∈K Pz(t − s < T0)

c1
≤ Px0(t < T0)

c1c3
.

We deduce that
Ex(1{TK≤t<T0}) ≤ c2

c1c3
Px0(t < T0).

Finally, we have

Px(t < T0) ≤
(

c2

c3
+ c2

c1c3

)
Px0(t < T0)

which implies (3), since c1 is necessarily smaller than 1.
Step 2: Prove that (2) holds. Let us define, for all 0 ≤ s ≤ t ≤ T , the linear operator RT

s,t

by
RT

s,tf (x) = Ex(f (Xt−s) | T − s < T0) = E(f (Xt ) | Xs = x, T < T0),

using the Markov property. We begin by proving that, for any T > 0, the family of operators
(RT

s,t )0≤s≤t≤T is a Markov semigroup. We have, for all 0 ≤ u ≤ s ≤ t ≤ T ,

RT
u,s(R

T
s,tf )(x) = Ex(EXs−u(f (Xt−s) | T − s < T0) | T − u < T0).

For any measurable function g, the Markov property implies that

Ex(g(Xs−u) 1{T −u<T0}) = Ex(g(Xs−u)PXs−u(T − u − (s − u) < T0))

= Ex(g(Xs−u)PXs−u(T − s < T0)).

Applying this equality to g : y �→ Ex(f (Xt−s) | T − s < T0), we deduce that

RT
u,s(R

T
s,tf )(x) = Ex(EXs−u(f (Xt−s) 1{T −s<T0}))

Px(T − u < T0)

= Ex(f (Xt−s+(s−u)) 1{T −s+(s−u)<T0})
Px(T − u < T0)

= RT
u,tf (x),

where we have used the Markov property a second time. Thus, the family (RT
s,t )0≤s≤t≤T is a

semigroup.
Let us now prove that, for any s ≤ T − 1, any x ∈ N

∗, and f ≥ 0,

RT
s,s+1f (x) ≥ c4c1c3

2c2
f (x0). (4)
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In other words, we prove that c4c1c3/2c2 is a Dobrushin coefficient, which will allow us to
show that inequality (2) holds. We have

Px(T − s < T0)R
T
s,s+1f (x) = Ex(f (X1) 1{T −s<T0})

≥ f (x0)Px(X1 = x0, T − s < T0)

≥ f (x0)Ex(1{X1=x0} Px0(T − s − 1 < T0)),

by the Markov property. We infer from (3) that Px0(T −s−1<T0)≥(c1c3/2c2) supy∈N∗ Py(T −
s − 1 < T0). But Hypothesis H3 yields

Px(X1 = x0) ≥ c4Px(1 < T0),

which implies that

Px(T − s < T0)R
T
s,s+1f (x) ≥ f (x0)c4Px(1 < T0)

c1c3

2c2
sup
y∈N∗

Py(T − s − 1 < T0)

≥ c4c1c3

2c2
f (x0)Px(T − s < T0);

thus, (4) holds.
We are now able to prove inequality (2). For any pair of orthogonal probability measures

μ1 and μ2 on N
∗ and any f ≥ 0, we have, by (4),

μiR
T
s,s+1f ≥ c4c1c3

2c2
f (x0) for i = 1, 2. (5)

Thus, μiR
T
s,s+1 −c4c1c3δx0/2c2 is a positive measure whose weight is smaller than the constant

1 − c4c1c3/2c2. We deduce that

‖μ1R
T
s,s+1 − μ2R

T
s,s+1‖TV

≤
∥∥∥∥
(

μ1R
T
s,s+1 − c4c1c3

2c2
δx0

)∥∥∥∥
TV

+
∥∥∥∥
(

μ2R
T
s,s+1 − c4c1c3

2c2
δx0

)∥∥∥∥
TV

≤ 2

(
1 − c4c1c3

2c2

)

=
(

1 − c4c1c3

2c2

)
‖μ1 − μ2‖TV.

If μ1 and μ2 are two different but not orthogonal probability measures, we can apply the
previous result to the orthogonal probability measures (μ1 − μ2)+/(μ1 − μ2)+(N∗) and (μ1−
μ2)−/(μ1 − μ2)−(N∗). Then∥∥∥∥ (μ1 − μ2)+

(μ1 − μ2)+(N∗)
RT

s,s+1 − (μ1 − μ2)−
(μ1 − μ2)−(N∗)

RT
s,s+1

∥∥∥∥
TV

≤
(

1 − c4c1c3

2c2

)∥∥∥∥ (μ1 − μ2)+
(μ1 − μ2)+(N∗)

− (μ1 − μ2)−
(μ1 − μ2)−(N∗)

∥∥∥∥
TV

.

But (μ1 − μ2)+(N∗) = (μ1 − μ2)−(N∗) since μ1(N
∗) = μ2(N

∗) = 1. Then, multiplying this
inequality by (μ1 − μ2)+(N∗), we deduce that

‖(μ1 − μ2)+RT
s,s+1 − (μ1 − μ2)−RT

s,s+1‖TV

≤
(

1 − c4c1c3

2c2

)
‖(μ1 − μ2)+ − (μ1 − μ2)−‖TV.
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Since (μ1 − μ2)+ − (μ1 − μ2)− = μ1 − μ2, we obtain

‖μ1R
T
s,s+1 − μ2R

T
s,s+1‖TV ≤

(
1 − c4c1c3

2c2

)
‖μ1 − μ2‖TV.

In particular, using the semigroup property of (RT
s,t )s,t , we deduce that, for any x, y ∈ N

∗,

‖δxR
T
0,T − δyR

T
0,T ‖TV = ‖δxR

T
0,T −1R

T
T −1,T − δyR

T
0,T −1R

T
T −1,T ‖TV

≤
(

1 − c4c1c3

2c2

)
‖δxR

T
0,T −1 − δyR

T
0,T −1‖TV

≤ 2

(
1 − c4c1c3

2c2

)[T ]
,

by induction, where [T ] denotes the integer part of T . Inequality (2) is thus proved for any pair
of initial probability measures (δx, δy), with (x, y) ∈ N

∗ × N
∗.

Let us now prove that the inequality extends to any couple of initial probability measures.
Let μ be a probability measure on N

∗ and x ∈ N
∗. We have

‖Pμ(XT ∈ · | T < T0) − Px(XT ∈ · | T < T0)‖TV

= 1

Pμ(T < T0)
‖Pμ(XT ∈ ·) − Pμ(T < T0)Px(XT ∈ · | T < T0)‖TV

≤ 1

Pμ(T < T0)

∑
y∈N∗

μ(y)‖Py(XT ∈ ·) − Py(T < T0)Px(XT ∈ · | T < T0)‖TV

≤ 1

Pμ(T < T0)

∑
y∈N∗

μ(y)Py(T < T0)‖Py(XT ∈ · | T < T0)

− Px(XT ∈ · | T < T0)‖TV

≤ 1

Pμ(T < T0)

∑
y∈N∗

μ(y)Py(T < T0)2

(
1 − c4c1c3

2c2

)[T ]

≤ 2

(
1 − c4c1c3

2c2

)[T ]
.

The same procedure, replacing δx by any probability measure, leads to inequality (2).
Step 3: Prove that (2) implies the existence and uniqueness of a QSD for X. Let us first prove

the uniqueness of the QSD. If ρ1 and ρ2 are two QSDs, then we have Pρi
(Xt ∈ · | t < T0) = ρi

for i = 1, 2 and any t ≥ 0. Thus, we deduce from inequality (2) that

‖ρ1 − ρ2‖TV ≤ 2

(
1 − c4c1c3

2c2

)[t]
for all t ≥ 0,

which yields ρ1 = ρ2.
Let us now prove the existence of a QSD. By [6, Proposition 1], this is equivalent to proving

the existence of a QLD for X (see the introduction). Hence, it is sufficient to prove the existence
of a point x ∈ N

∗ such that Px(Xt ∈ · | t < T0) converges when t goes to ∞.
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Let x ∈ N
∗ be any point in N

∗. We have, for all s, t ≥ 0,

‖Px(Xt ∈ · | t < T0) − Px(Xt+s ∈ · | t + s < T0)‖TV

= ‖Px(Xt ∈ · | t < T0) − PδxRt+s
s,t+s

(Xt ∈ · | t < T0)‖TV

≤ 2

(
1 − c4c1c3

2c2

)[t]

→ 0 as s, t → +∞.

Thus, any sequence (Px(Xt ∈ · | t < T0))t≥0 is a Cauchy sequence for the total variation
norm. But the space of probability measures on N

∗ equipped with the total variation norm is
complete, so Px(Xt ∈ · | t < T0) converges when t goes to ∞.

Finally, we have proved that there exists a unique QSD ρ for X. The last assertion of
Theorem 1 is proved as follows: for any probability measure μ on N

∗, we have

‖Pμ(Xt ∈ ·|t < T0) − ρ‖TV = ‖Pμ(Xt ∈ ·|t < T0) − Pρ(Xt ∈ ·|t < T0)‖TV

≤ 2

(
1 − c4c1c3

2c2

)[t]

→ 0 as t → +∞.

This concludes the proof of Theorem 1.

3. The birth-and-death process case

In this section we consider birth-and-death processes, which are widely used to describe
the stochastic evolution of a population whose individuals are reproducing and dying at a rate
depending on the population size. A process X on N is said to be a birth-and-death process
with absorption if there exist two families of positive constants (bx)x≥1 and (dx)x≥1 such that
the transition rate matrix (Q(x, y))x,y∈N of X is given by

Q(x, y) =

⎧⎪⎨
⎪⎩

bx if x ≥ 1 and y = x + 1,

dx if x ≥ 1 and y = x − 1,

0 otherwise.

The families (bx)x≥1 and (dx)x≥1 are respectively referred to as the family of birth rates and
the family of death rates. Also, it is easy to check that 0 is an absorbing point for X.

Applying Theorem 1, we show that the conditional distribution of a birth-and-death process
converges exponentially fast to a uniquely determined distribution (which is then a QSD) for
any initial distribution if and only if it admits a unique QSD. Also, as shall be seen in the proof,
Hypotheses H1, H2, and H3 are equivalent to the uniqueness of a QSD in the birth-and-death
case.

We note that existence and uniqueness criteria for birth-and-death processes have been
well known since the works of van Doorn [7] (also see Hart and Pollett [5]). Indeed, setting
Tz = inf{t ≥ 0, Xt = z}, the author proved that a birth-and-death process has a unique QSD
if and only if

S := sup
x≥1

Ex(T1) < +∞,
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where S can be easily computed, since, for any z ≥ 1,

sup
x≥z

Ex(Tz) =
∑

k≥z+1

1

dkαk

∑
l≥k

αl,

with αk = (
∏k−1

i=1 bi)/(
∏k

i=1 di). However, the spectral theory tools used to prove this result
are not well suited to study the speed at which the conditional distribution converges to the
QSD. In particular, existing results do not provide speed of convergence to the QLD nor the
set of initial distributions such that limit (1) holds. As illustrated by the numerical numerical
computations in [6], the speed of convergence and its dependence on the initial distribution are
of first practical importance to know whether or not the existence of a QSD is relevant for the
dynamic of the process. As a consequence, the following result provides new insight into the
quasilimiting behaviour of birth-and-death processes, completing the picture offered in [7].

Theorem 2. For a birth-and-death process X, the following statements are equivalent.

(i) There exists a unique QSD.

(ii) There exists a distribution ρ ∈ M1(N
∗) such that, for any μ ∈ M1(N

∗),

Pμ(Xt ∈ · | t < T0) → ρ(·) as t → ∞. (6)

(iii) There exist a distribution ρ ∈ M1(N
∗) and γ ∈ (0, 1) such that, for any μ ∈ M1(N

∗),

‖Pμ(Xt ∈ · | t < T0) − ρ‖TV ≤ 2(1 − γ )[t] for all t ≥ 0. (7)

Moreover, in (ii) and (iii) the distribution ρ is the unique QSD.

We emphasize that our proof also provides a purely probabilistic argument to the already
known fact that S < +∞ implies existence and uniqueness of a QSD, while earlier proofs rely
on much more complex arguments based on the spectral decomposition of the rate matrix Q.

Proof of Thereom 2. Let X be a birth-and-death process. If (6) holds then ρ is a QLD for
X starting from any initial distribution and is thus the unique QSD for X.

Let us now prove that the existence and uniqueness of a QSD for X implies that Hypotheses
H1, H2, and H3 hold. This will imply (7) by Theorem 1 and, thus, conclude the proof of
Theorem 2.

Since X is irreducible, Hypothesis H1 is satisfied for any finite subset K ⊂ N
∗.

Setting x0 = 1 and λ0 = b1 + d1, we have, for any subset K ⊂ N
∗ containing x0 and any

t ≥ 0,

Px0(Xt ∈ K) ≥ Px0(Xs = x0 for all s ∈ [0, t]) = e−λ0t .

Since the birth-and-death process X has a unique QSD, we have S < +∞ (see, for instance,
[7]). In particular, we deduce that, for any ε > 0, there exists zε ≥ 1 such that

sup
x≥zε

Ex(Tzε ) =
∑

k≥zε+1

1

∂kαk

∑
l≥k

αl ≤ ε.

The Markov inequality thus implies that

sup
x≥zε

Px(Tzε ≥ 1) ≤ ε,
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which together with a renewal argument yields

sup
x≥zε

Px(Tzε ≥ n) ≤ εn for all n ≥ 1.

As a consequence, we deduce that there exists z0 ≥ 1 such that

sup
x≥z0

Ex(e
λ0Tz0 ) < +∞.

In particular, setting K = {1, 2, . . . , z0}, we deduce that

sup
x∈N∗

Ex(e
λ0TK∧T0) < +∞.

Hence, Hypothesis H2 is satisfied.
Let us now prove that Hypothesis H3 is fulfilled. We have, for any fixed z ∈ N

∗,

inf
x∈N∗ Px(X1 = x0 | T0 > 1) ≥ inf

x∈N∗ Px(X1 = x0)

≥ inf
x∈N∗ Px(Tx0 ≤ 1)Px0(Xt = 1 for all t ∈ [0, 1])

≥ e−λ0 inf
x∈N∗ Px(Tx0 ≤ 1)

≥ e−λ0 inf
x∈N∗ Px

(
Tz ≤ 1

2

)
Pz

(
Tx0 ≤ 1

2

)
,

where we have used the strong then the weak Markov properties. Now, by the Markov inequality,
we have, for any ε > 0,

sup
x≥zε

Px

(
Tzε ≥ 1

2

) ≤ 2 sup
x≥zε

Ex(Tzε ) ≤ 2ε.

Choosing, for instance, ε = 1
4 , we deduce for z = z1/4 that

inf
x∈N∗ Px(X1 = x0 | T0 > 1) ≥ e−λ0

( 1
2 ∧ inf

x<z
Px

(
Tz ≤ 1

2

))
Pz

(
Tx0 ≤ 1

2

)
.

Since X is irreducible, we immediately deduce that both infx<z Px(Tz ≤ 1
2 ) and Pz(Tx0 ≤ 1

2 )

are positive. In particular, we have

inf
x∈N∗ Px(X1 = x0 | T0 > 1) > 0,

so Hypothesis H3 is fulfilled.
Finally, Hypotheses H1, H2, and H3 are satisfied and, thus, applying Theorem 1, there exists

a constant γ > 0 and a probability measure ρ on N
∗ such that, for any initial distribution μ on

N
∗,

‖Pμ(Xt ∈ · | t < T0) − ρ‖TV ≤ 2(1 − γ )[t] for all t ≥ 0.

This concludes the proof of Theorem 2.

Remark. Theorem 2 contains as a special case the recent result of [12, Theorem 4.1].

https://doi.org/10.1239/jap/1409932672 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932672


766 S. MARTÍNEZ ET AL.

4. A criterion on the transition rate matrix of the process

In this section we consider a stable nonexplosive process X, conservative in N
∗, and we

give a sufficient criterion on its transition rate matrix Q for the existence and uniqueness of
a QSD for X. This result is of first theoretical importance since it applies to nonirreducible
Markov processes, for which the lack of QSD-related results is patent (see, for instance, [8]).
Moreover, the assumptions of the following theorem can be checked directly on the transition
matrix expression.

Theorem 3. Let (Q(x, y))x,y∈N be the transition rate matrix of X, and assume that there exists
a finite subset K ⊂ N

∗ such that

inf
y∈N∗\K

(
Q(y, 0) +

∑
x∈K

Q(y, x)

)
> sup

y∈N∗
Q(y, 0) (8)

and that Pt(x, y) > 0 for all x, y ∈ K . Then there exists a positive constant γ ∈ (0, 1) and
ρ ∈ M1(N

∗) such that, for any initial distribution μ on N
∗ and all t ≥ 0,

‖Pμ(Xt ∈ · | t < T0) − ρ‖TV ≤ 2(1 − γ )[t].

In particular, ρ is the unique QSD associated to X.

Remark. Our result is a generalization of Theorem 1.1 of [3], in which X is assumed to be
irreducible,

q := sup
x

∑
y∈N\{x}

Q(x, y) < +∞,

and
α :=

∑
x∈N∗

inf
y∈N∗\x Q(y, x) > C =: sup

y∈N∗
Q(y, 0).

Indeed, these assumptions imply that there exists a finite subset K ⊂ N
∗ such that

inf
y∈N∗

∑
x∈K\{y}

Q(y, x) ≥
∑
x∈K

inf
y∈N∗\{x} Q(y, x) > C,

and, thus, imply inequality (8). Moreover, we implicitly allow q = +∞ and remove the
irreducibility assumption.

Proof of Theorem 3. Let us prove that Hypotheses H1, H2, and H3 hold under the assump-
tions of Theorem 3.

By assumption, we have
inf

y∈N∗\K
∑
x∈K

Q(y, x) > 0.

It follows that infy∈N∗\K Py(TK ≤ 1
2 ) > 0 and then

inf
y∈N∗ Py

(
TK ≤ 1

2

)
> 0.

Fix x0 ∈ K . Since K is finite, we have, by assumption,

min
x∈K

Px(X1/2 = x0) > 0.
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Using the strong Markov property, we deduce from the last two inequalities that

inf
y∈N∗ Py

(
Tx0 ∈ [ 1

2 , 1
])

> 0.

But the process is assumed to be stable, so that it remains in x0 during at least a time 1
2 with

positive probability. We finally deduce that

inf
y∈N∗ Py(X1 = x0) > 0, (9)

which implies Hypothesis H3.
Since K is finite, for any t ≥ 0, there exists xmax

t ∈ K such that

Pxmax
t

(t < T0) = max
x∈K

Px(t < T0).

For t ≥ 1, the Markov property yields

Px(t < T0) ≥ Px(X1 = xmax
t )Pxmax

t−1
(t − 1 < T0)

≥ Px(X1 = xmax
t )Pxmax

t
(t < T0)

≥ min
x′,x′′∈K

Px′(X1 = x′′) Pxmax
t

(t < T0).

But K is finite; thus, we have, by assumption, minx′,x′′∈K Px′(X1 = x′′) > 0. Finally, we
deduce that

inf
t≥1

minx∈K Px(t < T0)

maxx∈K Px(t < T0)
≥ min

x′,x′′∈K
Px′(X1 = x′′) > 0.

Now, for t ∈ [0, 1], we have

inf
t∈[0,1]

minx∈K Px(t < T0)

supx∈K Px(t < T0)
≥ min

x∈K
Px(Xs = x for all s ∈ [0, 1]) > 0.

Thus, we deduce that Hypothesis H1 is fulfilled.
Since the absorption rate of the process is uniformly bounded by C, we have

Px0(Xt−1 ∈ N
∗) ≥ e−C(t−1).

By the Markov property, we deduce that

Px0(Xt = x0) ≥ inf
y∈N∗ Py(X1 = x0)e

−C(t−1).

In particular, setting λ0 = C and using (9), we deduce that the second point of Hypothesis H2
is fulfilled.

Let us now set

αK := inf
y∈N∗\K

(
Q(y, 0) +

∑
x∈K

Q(y, x)

)
.

The process jumps into K ∪ {0} from any point x /∈ K ∪ {0} with a rate bigger than αK .
This implies that TK ∧ T0 is uniformly bounded above by an exponential time of rate αK . In
particular, we have

sup
x∈N∗

Ex(e
CTK∧T0) ≤ αK

αK − C
< ∞,

since αK > C by assumption. As a consequence, the first part of Hypothesis H2 is also fulfilled
with λ0 = C.

This and Theorem 1 allows us to complete the proof of Theorem 3.
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[3] Ferrari, P. A. and Marić, N. (2007). Quasi stationary distributions and Fleming–Viot processes in countable
spaces. Electron. J. Prob. 12, 684–702.

[4] Ferrari, P. A., Kesten, H., Martínez, S. and Picco, P. (1995). Existence of quasi-stationary distributions. A
renewal dynamical approach. Ann. Prob. 23, 501–521.

[5] Hart, A. G. and Pollett, P. K. (1996). Direct analytical methods for determining quasistationary distributions
for continuous-time Markov chains. In Athens Conference on Applied Probability and Time Series Analysis
(Lecture Notes Statist. 114), Vol. I, Springer, New York, pp. 116–126.

[6] Méléard, S. and Villemonais, D. (2012). Quasi-stationary distributions and population processes. Prob.
Surveys 9, 340–410.

[7] Van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth–death
processes. Adv. Appl. Prob. 23, 683–700.

[8] Van Doorn, E. A. and Pollett, P. K. (2013). Quasi-stationary distributions for discrete state models. Europ.
J. Operat. Res. 230, 1–14.

[9] Vere-Jones, D. (1969). Some limit theorems for evanescent processes. Austral. J. Statist. 11, 67–78.
[10] Villemonais, D. and Del Moral, P. (2011). Strong mixing properties for time inhomogeneous diffusion

processes with killing. Distributions quasi-stationnaires et méthodes particulaires pour l’approximation de
processus conditionnés, Doctoral Thesis (D. Villemonais), pp. 149–166.

[11] Yaglom, A. M. (1947). Certain limit theorems of the theory of branching random processes. Doklady Akad.
Nauk SSSR (N.S.) 56, 795–798 (in Russian).

[12] Zhang, H. and Zhu, Y. (2013). Domain of attraction of the quasistationary distribution for birth-and-death
processes. J. Appl. Prob. 50, 114–126.

https://doi.org/10.1239/jap/1409932672 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932672

	1 Introduction
	2 Proof of Theorem 1
	3 The birth-and-death process case
	4 A criterion on the transition rate matrix of the process
	Acknowledgements
	References

