
Compositio Mathematica119: 41–52, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

41

Remarks on Semistability ofG-Bundles in
Positive Characteristic

XIAOTAO SUN?

Institute of Mathematics, Academia Sinica, Beijing 100080, China
e-mail: xsun@math08.math.ac.cn

(Received: 14 August 1997; accepted in final form: 15 June 1998)

Abstract. We analyzes a notion of strong semistability of principalG-bundles by including reduction
to nonreduced parabolic subgroup schemes. It turns out that strong semistability is equivalent to
the Frobenius semistability of Ramanan and Rananathan. We also give a bound for nonstrongly
semistability of a semistable GL(n)-bundle improving a previous result of Shepherd-Barron.
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Introduction

PrincipalG-bundles on a compact Riemann surface of genusg > 2 were studied
and the moduli space of semistableG-bundles was constructed by A. Ramanathan
([R1], [R2]). In the studying ofG-bundles, the following result is important and es-
sential. Letρ:G→ GL(V ) be an irreducible representation, then for any semistable
G-bundleE the associated vector bundleEρ(V ) is semistable too. This theorem
is no longer true in positive characteristics, so the construction of moduli space of
G-bundles in positive characteristic remains open.

A principalG-bundleE → C is semistable if for every reductionσ :C → E/P

to reduced parabolic subgroup schemesP ofG, we have degσ ∗(TE/P ) > 0 where
TE/P is the tangent bundle along fibers ofE/P → C. In characteristic zero, all
group schemes are reduced, thus the wordreducedcan be removed in the defin-
ition. In positive characteristic, nonreduced group schemes do occur. Thus it is
natural to think that one may expect a new concept of semistability for aG-bundle
E (see Definition 1.2) if the wordreducedin above definition is removed. This
new semistability, called strong semistability, behaves well under the extension of
structure groups (Corollary 1.1). On the other hand, there is another notation of
semistability, calledF -semistability, ifF ∗n E is semistable for anynth Frobenius
Fn:C → C. It turns out these two notations of semistability are equivalent to each
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other (Proposition 1.2). In Section 2 we prove that any semistableG-bundle on
an elliptic curve is strongly semistable (see Theorem 2.1). It is well-known that a
semistableG-bundle on a curve of genusg > 2 may not be strongly semistable.
To compare semistability with strong semistability, we introduce some numerical
invariants in Section 3. A natural problem is to bound these invariants. More pre-
cisely, to bound the instability of̃E = F ∗E for a semistableG-bundleE. We will
treat the problem for vector bundles of arbitrary rank (see Theorem 3.1). This is an
improvement of a result of N. I. Shepherd-Barron ([SB]) and, in the case of rank 2,
coincides with that of H. Lange and U. Stuhler ([LS]).

0. Preliminaries

Let k be a field of characteristicp > 0 andn > 0, ϕ:X → Spec(k) a scheme
over k, thepnth power mapOX → OX given byf → f p

n

is a homomorphism
and gives rise to a morphismFn:X → X called the (absolute) Frobenius. Let
fk: Spec(k) → Spec(k) be the morphism induced byk → k(a → ap

n

), and
X(1) = f ∗k X such that

X
FX - X(1) A - X

Spec(k)
?
==== Spec(k)

?
f ∗k ϕ

====fk Spec(k).
?
ϕ

If k is a perfect field,fk andA are isomorphisms. We callFX:X → X(1) the
geometric Frobenius.

Let π :E → X be aG-bundle, pulling back by the Frobenius we get aG-
bundleF ∗n (E) → XF onXF (where we take thek- structure onF ∗n (E) to be the

one defined by the compositeF ∗n (E)→ XF
fk ·ϕ−−→ Spec(k)). If k is a perfect field,

we can change thek-structure ofF ∗n (E),XF andG by composing their structure
morphisms withf −1

k : Spec(k)→ Spec(k) to get a bundleF ∗n (E)→ X with struc-
ture groupf ∗k (G). ReplacingX byG in (D), we see thatA gives ak-isomorphism
of f ∗k (G) with G, the latter having thek-structure changed byf −1

k . Let a group
scheme G→ Spec(Fq)(q = pn) over Fq such thatG = G ×Fq Spec(k), then
f ∗k (G) = G. So thef ∗k (G)-bundleF ∗n (E)→ X gives aG-bundle.

A smooth 1-foliationF on a smooth varietyX is a subbundle of the tangent
bundleTX of X, closed under the Lie bracket andpth powers of derivations. Given
a smooth 1-foliationF onX, we have a smooth varietyX/F and ak-morphism
ρ:X → X/F such tahtOX/F is the algebra of functions annihilated byF .ρ is
purely inseparable of degreeprk(F ) factoring akth geometric FrobeniusFX:X→
X(1) asFX = σ ◦ ρ for someσ :X/F → X(1), whereX(1) = X ×k k is the base
change ofX by thepkth power map ofk. Given a factorizationX

ρ−→ Y
σ−→ X(1),

we have a smooth 1-foliationF := Ker(dρ) onX such thatY = X/F . This way
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gives a one-to-one correspondence between the factorizationsX
ρ−→ Y

σ−→ X(1)

of geometric Frobenius morphisms and the smooth 1-foliationsF = Ker(dρ) on
X (see [Ek] for the proof).

1. SemistableG-Torsors

Let G be a group scheme over an algebraically closed fieldk, which is flat and
locally of finite-type, but not necessarily smooth. LetX be a scheme, andXf l
denote the big flat site(LFT/X)f l. For any open setU of Xf l,G defines a sheaf
G(U) onUf l. Let S be a sheaf of sets onXf l, on whichG acts.

DEFINITION 1.1. S is called aG-torsor if there is a covering(Ui → X) for the
flat topology onX such thatS|Ui is isomorphic with itsG-action toG(Ui).

A G-torsorS is representable by aX-scheme ifG is affine, orG is smooth and
separated overX andX has dimension at most one. It is known that ifG is smooth,
respectively étale, respectively proper, then so also is anyG-torsor.

Let U = (Ui → X)i∈I be a covering ofXf l. A 1-cocyle forU with values
in G is a family (gij :Uij → G)I×I such that(gij |Uijk )(gjk|Uijk ) = (gik|Uijk ). Two
cocyclesg andg′ are cohomologous if there is family(hi:Ui → G)i∈I such that
g′ij = (hi|Uij )gij (hj |Uij )−1. This is an equivalence relation, the set of the equivalent

classes (i.e. the cohomology classes) is denoted byȞ 1(U/X,G). It is known that
there is a one to one corresponding between isomorphism classes ofG-torsors that
become trivial on a given coveringU and elements ofȞ 1(U/X,G) (See [Mi]).
Thus if ρ:G → H is a morphism of groph schemes andE is aG-torsor, we can
associate a uniqueH -torsorEρ(H) sinceρ induces a map

Ȟ 1(U/X,G)→ Ȟ 1(U/X,H).

LetE be aG-torsor overX andP̃⊂G a subgroup scheme, we defineE/P̃ to be
the sheaf onXf l such that for anyU → X,E/P̃ (U) := E(U)/P̃ . If G is affine,
E/P̃ is representable by aX-scheme. It is not difficult to verify thatE → E/P̃ is
a P̃ -torsor overE/P̃ if G→ G/P̃ is a P̃ -torsor overG/P̃ . Let P̃ be a subgroup
scheme ofG, p̃ andg the Lie algebras ofP andG, then the adjoint representation
of G induces a representationρ: P̃ → GL(V ) of P̃ on V = g/p̃. Thus for any
P̃ -torsorE → X, we can associate a vector bundleEρ(V ) onX. In particular, the
conjugation ofG induces an action of̃P on the tangent bundleTG/P̃ of G/P̃ at
ē, thus we have an associated vector bundleTE/P̃ of E → E/P̃ onE/P̃ , which
is nothing but the tangent bundel along fibres ofE/P̃ → X. A subgroup scheme
P̃⊂G is called a parabolic subgroup scheme ofG if G/P̃ is a projective scheme
overk. Now I would like to make the following definition.

https://doi.org/10.1023/A:1001512029096 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001512029096


44 XIAOTAO SUN

DEFINITION 1.2. AG-torsorE on a nonsingular projective curveX is called
semistable if for every parabolic subgroup schemeP̃⊂G and every sectionσ :X→
E/P̃ , we have deg(σ ∗TE/P̃ ) > 0.

We are interested in the case whenG is a reduced reductive algebra group. In
this case, aG-torsorE is also called aG-bundle. It is clear thatE is a semistable
G-bundle ifE is a semistableG-torsor. Thus, we will callE a strongly semistable
G-bundle ifE is semistable as aG-torsor. From now on, we always assume that
G is a reductive algebraic group, for a reduced subgroup scheme ofG, we simply
call it a subgroup ofG. A subgroup schemẽP of G is parabolic if and only if
P̃red(:= P) is a parabolic subgroup ofG (i.e. containing a Borel subgroup [W1]).
For any group schemẽP , the group of characters of̃P is defined to be Hom(P̃ ,Gm),
the group of group scheme theoretic homomorphisms, which was determined by
[HL] as the following.

PROPOSITION 1.1 ([HL]).Let P̃ be the parabolic subgroup scheme correspond-
ing to theW -functionf . Then the group of characters of̃P is the group,X(P̃ ) =∐
α∈1 Zpf(α)ωα, whereωα are the fundamental dominant weights corresponding

to the simple rootsα ∈ 1,p∞ is understood to be0.

Let T⊂P⊂P̃ be a torus ofG,X(P̃ )⊂X(P )⊂X(T ). A characterχ of P̃ is dom-
inant iff it is dominant as a character ofP . LetX = G/P̃ andχ = 6α∈1mαpf (α)
ωα ∈ X(P̃ ), then there is an induced line bundleLP̃ (χ) onX. In this way, one
has an identification Pic(X) = X(P̃ ) andLP̃ (χ) is ample if and only ifmα > 0
for eachα ∈ 1 (see Corollary 7 of [HL]). The line bundleL−1

P̃
(χ) onG/P̃ gives

naturally a line bundleE(χ) onE(G/P̃ ) = E/P̃ . The following proposition gives
some equivalent description of a strongly semistableG-bundle.

PROPOSITION 1.2.LetG be a reductive algebraic group, andE aG-bundle over
a nonsingular projective curveC. Then the following are equivalent

(1) E is strongly semi-stable.
(2) F ∗n (E) are semi-stable for any FrobeniusFn:C → C.
(3) For any parabolic subgroup schemẽP and sectionσ :C → E/P̃ , we have

degσ ∗E(χ) 6 0 for any nontrivial dominant characterχ on P̃ whereE(χ)
is the natural line bundle onE/P̃ given byL−1

P̃
(χ) on each fibreG/P̃ .

Proof. Suppose thatE is strongly semistable andU = (Ui → X)i∈I the cov-
ering (actually in Zariski’s topology) ofC such thatE is determined by 1-cocycle
(gij :Uij → G)I×I . One can see that the 1-cocycle ofF ∗n E is (gp

n

ij : Uij → G)I×I ,
and F ∗n E is nothing but the associatedG-bundleE′ := EFG(G) of E by the
geometric FrobeniusFG:G → G. If E′ is not semistable, we consider the ca-
nonical reduction(P, σ ) (see [Be], [KN]), where the parabolic subgroupP⊂G
and sectionσ :C → E′/P are unique. The uniqueness of(P, σ ) implies that
P = f ∗k P , and thus defined overFpn . Let P̃ = F−1

G (P ), thenFG induces an
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isomorphismG/P̃ ∼= G/P (note thatG/P is defined overFpn). Hence, we have
deg(σ ∗TE/P̃ ) = deg(σ ∗TE′/P ) < 0 contradicting (1). This shows that (1) implies
(2) (one remarks thatF ∗n (E) is semistable for anyn if and only if it is semistable
for sufficiently bign).

Suppose thatF ∗n E are semi-stable for any FrobeniusF ∗n :C → C, we need to
prove (3). The ample line bundleLP̃ (χ) on X = G/P̃ is generated by global
sections and determines a morphism ofX to a projective space such thatLP̃ (χ) is
the pullbackO(1) of the hyperplane line bundle of the projective space (see [La]).
By definition,E(χ) is the dual ofE(O(1)) onE/P̃ . Thus we only need to show
that deg(σ ) := deg(σ ∗EO(1))) > 0. Let x0 be the generic point ofC, then, if
σ (x0) is a semistable point ofG in the sense of geometric invariant theory, we
have deg(σ ) > 0 (see Proposition 3.10 of [RR]). Ifσ (x0) is nonsemistable, after
a Frobenius base changeF ∗n :C → C, we can assume thatE is semistable and
σ (x0) has an instability 1-PS defined over the function field ofC, then we have
that deg(σ ) > 0 (see Proposition 3.13 of [RR]). This shows that (2) implies (3).

To prove that (3) implies (1), we need a result of [HL], which says that there
is a non-trivial dominant characterχ on P̃ such that det(TG/P̃ ) = LP̃ (χ) (see
Proposition 7 of [HL]). Thus we have that

det(TE/P̃ ) = E(det(TG/P̃ ) = E(χ)−1,

namely deg(σ ∗TE/P̃ ) = −degσ ∗E(χ) > 0, which shows that (3) implies (1).

Remark1.1. It was pointed out by the referee that the Frobenius semistability
of Ramanan and Ramanathan corresponds to reduction to the special class of non-
reduced parabolic subgroup schemesGnP (whereGn denotes thenth Frobenius
kernel ofG). Thus it is clear that (1) implies (2) in Proposition 1.2.

COROLLARY 1.1. Let f :G → H be a homomorphism of reductive algeb-
raic groups, which maps the centre ofG into that ofH . Then ifE is a strongly
semistableG-bundle then the extendedH -bundleE(H) is strongly semistable.

Proof. To prove thatE′ = e(H) is strongly semistable, let̃P be a parabolic
subgroup scheme ofH corresponding to theW -functionf, χ a dominant character
on P̃ andσ :C → E′/P̃ a section, we need to show that degσ ∗E′(χ) 6 0 by the
Proposition 1.2. From the proof of Proposition 1.2, we know thatχ induces an
ample line bundleL onX = H/P̃ such thatE′(χ) = E′(L)−1 onE′(X) = E′/P̃ .
Now the groupG acts throughf on the projective schemeX linearly with respect
to L, thus the group schemeE(G) acts onE′(L)(= E(L)) andE′(X)(= E(X))

compatibility over the curveC. If σ (x0) is a semistable point under the action of
E(G0), then the Proposition 3.10 of [RR] implies that degσ ∗E′(χ) 6 0. If σ (x0) is
a nonsemistable point, then, after a Frobenius base change ofC, we can assume that
σ (x0) has an instability 1-PS defined overK(C), thus we have degσ ∗E′(χ) 6 0
(see Proposition 3.13 of [RR]).
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2. G-Bundles on an Elliptic Curve

Let π :E → C be aG-bundle over a smooth projective curveC of genusg > 0,
namely,G operates onE on the right andπ isG-variant and locally trivial in the
étale topology. We know that there do exist Frobenius semistable (thus strongly
semistable) bundles (see [RR] p.289). On the other hand, it is not difficult to con-
struct nonstrongly semistable but semistable bundles on a smooth projective curve
of genusg > 1 (see Proposition 4.4 of [RR]). In this section, we will prove the
following result.

THEOREM 2.1.Every semi-stableG-bundle on an elliptic curve is strongly semi-
stable.

Before the proof, let us recall some notations and facts which we need. IfF is
a quasi-projective scheme on whichG operates (on the left), the associated bundle
E(F) is the quotient ofE × F under the action ofG given byg(e, f ) = (e ·
g, g−1 · f ), e ∈ E, f ∈ F, g ∈ G ([Se]). LetG act on itself by inner conjugation,
then the associated bundleE(G)→ C is naturally a group scheme overC and acts
naturally on theC-schemeE(F).

Let Par(E(G)/C) be the scheme consisting of the parabolic subgroups ofE(G),
which is a smooth projectiveC-scheme. It is easy to see that Par(E(G)/C) is natur-
ally isomorphic toE(Par(G/k)), whereG acts on Par(G/k) by inner conjugation.
If P is a parabolic subgroup ofG, then the mapG/P → Par(G/k) given bygP →
gPg−1 is aG-equivariant isomorphism ofG/P onto the connected component
ParP (G/k) of Par(G/k) consisting of parabolic subgroups conjugate toP . There-
fore we have a natural isomorphismE(G/P ) ∼= E(ParP (G/k))⊂Par(E(G)/C)
and the sections ofE(G/P ) → C are in bijective correspondence with parabolic
subgroup schemes ofE(G) of typeP (i.e., each geometric fibre is conjugate toP ).

Proof of Theorem2.1. Letπ :E → C be a semistableG-bundle on an elliptic
curveC, andF :C → C be the Frobenius map of degreep. It is enough, by
Proposition 1.2, to show that̃E := F ∗E is semistable.

If Ẽ is not semistable, then there is a unique canonical smooth parabolic sub-
group schemeP⊂Ẽ(G) such that deg(P ) > 0 (see Theorem 7.3 of [Be]). LetG
andP be the Lie algebra bundles of̃E(G) andP respectively, then deg(G/P) < 0
andH 0(G/P) = 0 sinceg(C) = 1 (see the Conjecture 7.6 of [Be] and the
remarks there). By the remarks at the beginning of this section, it is equivalent
to say that there is a unique parabolic subgroupP of G and a unique section
σ :C → Ẽ(G/P ) := X̃, such thatNC0/X̃

= G/P, whereC0 = σ (C), thus

H 0(NC0/X̃
) = 0 deg(NC0/X̃

) < 0.

On the other hand, letFk be thepth Frobenius of Spec(k) andC(1) = C ×k k,
thenE(1) := F ∗k (E) is a semistableG(1) := F ∗k (G)-bundle. If we identifyF ∗k (G)
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with G and writeX(1) = E(1)(G/P ), then we have the following commutative
diagram

X̃
F̃C - X(1)

C
?

f̃

FC - C(1),

?
f

sinceX̃ = Ẽ(G/P ) is the same asX(1) ×C(1) C.
The natural morphism̃FC : X̃ → X(1) gives a factorization ofFX̃, and thus

determines a unique smooth 1-foliationF = Ker(TX̃
dF̃C−−→ F̃ ∗CTX(1)) on X̃. It is

easy to see thatF = f̃ ∗TC; in fact,

F = TX̃/X(1) = f̃TC/C(1) = TC = OC.

TheF |C0(= OC0) is a subbundle ofTX̃|C0, by the following exact sequence

0→ TC0 → TX̃|C0

δ−→ NC0/X̃
→ 0

and the factH 0(NC0/X̃
) = 0, we haveδ(F |C0) = 0 and thusF |C0 ↪→ TC0 is

a smooth 1-foliation onC0 sinceF |C0 is closed under the Lie bracket andpth
powers of derivations. HencẽFC induces an inseparable morphismC0→ F̃C(C0)

of degreep, we get a sectionC1 := F̃C(C0) of f :X(1)→ C(1) such that

KX(1)/C(1) · C1 = 1

p
F̃C∗(F̃

∗
CKX(1)/C(1) · C0) = 1

p
KX̃/C · C0,

whereOX(1)(KX(1)/C(1)) = det(T ∨
X(1)/C(1)

) andOX̃(KX̃/C) = det(T ∨
X̃/C

). Therefore

deg(σ ∗1TE(1)/P ) = −KX(1)/C(1) · C1 = − 1

p
KX̃/C · C0 = 1

p
deg(NC0/X̃

) < 0,

whereσ1:C(1)→ X(1) determined byC1, which contradicts the semistability ofE,
thus proved the theorem.

Remark2.1. If F is a nonsemistableG-bundle over a smooth projective curve
C of genusg and(P, FP ) the canonical reduction ofF , thenFP (g/p) is a vector
bundle onC, whereg andp are the Lie algebras ofG andP . Conjecture 7.6 of
[Be] is thatH 0(C, FP (g/p)) = 0.

In the case of characteristic zero, this conjecture was proved by S. Kummar and
M. S. Narasimhan (see [KN], Lemma 3.6). In the case of positive characteristic,
some partial results were known (see [Be]), for example, it is true wheng 6 1.
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If F = Ẽ is the pullback of a semistableG-bundleE by a Frobenius of degree
p, then we actually proved that there is a nontrivial morphismTC → ẼP (g/p) on
any smooth projective curveC. Thus

H 0(C, ẼP (g/p)⊗ ωC) 6= 0,

which means that the instability of̃E cannot be too ‘large’ if one believes the
conjecture.

It is known that a nonsemistableG-bundleE on a smooth projective curve has a
canonical reduction to a unique parabolic subgroupP of G with unipotent radical
U and a Levi componentL⊂P such thatP = L ·U . The following result should be
known to experts, at least in characteristic zero. Since there is no publishing proof,
we give a proof here in arbitrary characteristic.

THEOREM 2.2. Every nonsemistableG-bundleE on an elliptic curveC admits
a semistable reduction to the Levi componentL.

Proof. Let (P,EP ) be the canonical reduction ofE andP = L · U , whereEP
is theP -bundle obtained fromE by the canonical reduction. We will show thatEP
admits a reduction toL, which is obviously a semistable reduction. It is equivalent
to show thatEP (P/L)→ C has a section. SinceP acts onU by inner conjugation
(U is a normal subgroup ofP), we can associate a group schemeEP (U)→ C. It is
not difficult to see thatEP (P/L)→ C is a principal homogeneous space under the
group schemeEP (U) → C, hence we are reduced to prove that the non Abelian
cohomology groupH 1(C,EP (U)) is trivial (see [Mi], Section 4 of Chapter 3).

To show thatH 1(C,EP (U)) = 1, we consider the filtration

U = U0 ⊃ U1 ⊃ · · · ⊃ Un = {e}
of U defined in Proposition 2.1 of [SGA3], which satisfies

(1) Ui are P -invariant normal subgroups ofP and the commutator[Ui,Uj ]⊆
Ui+j+1.

(2) Ui/Ui+1 = Wi are vector groups and the inner conjugation ofP acts onWi

linearly.

The exact sequence 0→ EP (Ui+1) → EP (Ui) → EP (Wi) → 0, induce exact
sequences of pointed sets

H 1(C,EP (Ui+1))→ H 1(C,EP (Ui))→ H 1(C,EP (Wi)).

Therefore the theorem will be proved if we can show for allWi that
H 1(C,EP (Wi)) = 0. By the definition of canonical reduction,Wi := EP (Wi)

are vector bundles onC of deg(Wi) > 0. ThusH 1(C,EP (Wi)) coincides with the
cohomologyH 1(Wi) of coherent sheaves by the definitions of the non Abelian co-
homology and thécech cohomology of sheaves. It is clear thatH 1(Wi) ∼= H 0(W∨i )
will be trivial if Wi are semistable vector bundles.
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From the property of the above filtration,U acts onWi trivially since(U0, Ui)⊆
Ui+1, thusP → GL(Wi) factors throughP/U → GL(Wi) and the centre ofP/U
goes to that of GL(Wi). Let EP/U be the associatedP/U -bundle ofEp through
P → P/U , thenEP/U is a semistableP/U -bundle on an elliptic curveC by the
definition of canonical reduction ofE (see [Be], Definition 5.6), which is strongly
semistable by our Theorem 2.1. Therefore the associated vector bundlesWi =
EP (Wi) = EP/U(Wi) are also strongly semistable by the Corollary 1.1. We are
done.

3. Instability of G-Bundles

It is well-known that a semistableG-bundle on a curve of genusg > 2 may
not be strongly semistable. To measure the nonstrongly semistability of a semi-
stableG-bundle, we can introduce some numerical invariants in a geometric way.
A natural problem is, of course, to bound these invariants. The philosophy here is
that the Frobenius pull back of a semistableG-bundle should not be too unstable,
the instability of it should be bounded. This is done in this section forG = GL(V ).

Letπ :E→ C be aG-bundle on a smooth projective curve of genusg > 2. For
any parabolic subgroupsP ofG andπP :XP = E/P = E(G/P )→ C, we define
the divisorKXP /C on XP to be the relative canonical divisor ofXP/C. For any
irreducible horizontal curveD of πP :XP → C, the mapπP |D:D → C a finite
morphism. Letpi(D) be the pure inseparable degree ofπP |D, we callD the curve
of type i(D). Write

µi(P ) = sup{KXP /C ·D|D⊂XP of type i(D) 6 i},

µi(E) = sup{µi(P )|P ∈ Par(G/k)}.

Then it is clear that we have

µ0(E) 6 µ1(E) 6 µ2(E) 6 · · · 6 µi(E) 6 · · · .

The semistability ofE means that for anyP ∈ Par(G/P ) and any sectionC0 of
πP :XP → C, we have thatKXP /C · C0 6 0. In particular,µ0(E) 6 0 implies that
E is semistable. Actually, we have

PROPOSITION 3.1.E is a semistableG-bundle if and only ifµ0(E) 6 0.

LetD be a curve of type 0 onXP andC̃ → D the normalization ofD in the

function field ofD. Let f : C̃ → C be the finite morphism̃C → D
πP |D−−−→ C,
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which is separable by the definition ofD, andπ̃ : Ẽ = E ×C C̃ → C̃ the pull back
of E, then we have commutative diagram

Ẽ/P = X̃P f̃ - XP

C̃

?
f - C.

?

Thus there is a sectioñC0 of X̃P → C̃ such thatf̃∗C̃0 = D, which implies that

KXP /C ·D = f̃∗(C̃0 · f̃ ∗KXP /C) = f̃∗(KX̃P /C̃ · C̃0).

Thus the proposition is equivalent to the following lemma.

LEMMA 3.1. If π :E → C is a semi-stableG-bundle, then for any separable
finite morphismf : C̃ → C, the pull backf ∗E is also semistable.

Proof. We can assume thatf : C̃ → C is a Galois cover with Galois groupG.
If Ẽ = f ∗E is not semistable, then there is a uniqueP ∈ Par(G/k) and a unique
sectionC̃0 of X̃P = Ẽ(G/P )→ C̃ such thatKX̃P /C̃ · C̃0 > 0. TheG acts naturally
onX̃P , andC̃0 is invariant under theG action, which gives a sectionC0 ofXP → C

such thatKXP /C · C0 > 0 contradicts the semistability ofE.

COROLLARY 3.1. LetFn:C → C denote thenth Frobenius andE aG-bundle,
them the following are equivalent

(1) F ∗n E is semistable
(2) µn(E) 6 0.

In particular,E is strongly semistable if and only iflimn→∞ µn(E) 6 0.
Proof. F ∗n E is semistable if and only ifF ∗k E are semistable bundles for all

k 6 n. Thus we are reduced to show thatKXp/C ·D 6 0 for any irreducible curve
D onXp such thatπP |D:D → C is a pure inseparable cover of degreepn, which
must be thenth Frobenius. Therefore the corollary follows the same argument as
above.

In the rest of this section, we restrict ourselves to the special case thatG =
GLr (k), theE denotes the associated vector bundle of a GLr (k)-bundle onC by
the standard representationkr of GLr (k). For any vector bundleE onC, we write
µ(E) = deg(E)/rk(E). The Harder–Narasimhan filtration ofE is

0= E0⊂E1⊂ · · · ⊂En = E,

such thatGi := Ei/Ei−1 are semistable vector bundles andµ(G1) > · · · > µ(Gn).
Writeµ(G1) = µmax(E) andµ(Gn) = µmin(E), then we have the following fact.
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LEMMA 3.2. It A andB are vector bundles onC andµmin(A) > µmax(B), then
Hom(A,B) = 0.

THEOREM 3.1. Let E be a semistable vector bundle ofrank r on a smooth pro-
jective curveC of genusg > 2 andF :C → C the Frobenius. WriteF ∗E = Ẽ ,
thenµmax(Ẽ)− µmin(Ẽ) 6 (r − 1)(2g − 2).

Proof. Let C(1) = C ×k k be the base change ofC by thepth power map
of k andE (1) the pullback ofE , thenE (1) is semistable and̃E = F ∗CE (1) for the
geometric FrobeniusFC :C → C(1). Let 0= Ẽ0⊂Ẽ1⊂ · · · ⊂Ẽn = Ẽ be the Harder–
Narasimhan filtration of̃E and consider the exact sequence 0→ Ẽi → Ẽ →
Ẽ/Ẽi → 0. Put P1 = P(Ẽ/Ẽi), P̃ = P(Ẽ) andP = P(E (1)), then we have a
commutative diagram

P1
ι - P̃ F̃C - P

C
?

f̃

FC - C(1).

?
f

The mapF̃C determines a line subbundleF of TP̃ such thatP = P̃/F andF =
f̃ ∗TC. By the exact sequence 0→ TP1 → ι∗TP̃ → NP1/P̃ → 0, one gets a
nontrivial mapι∗F → NP1/P̃. Otherwise,ι∗F gives a line subbundle ofTP1, which
is a smooth 1-foliation onP1, andP1 mapsp-to-1 to its image inP1 giving a
subscroll ofP that destabilizesE (1) (see [SB]). Thus we havẽf ∗1 TC ↪→ OP1(1) ⊗
f̃ ∗1 (Ẽ

∨
i ), wheref̃1 = f̃ · ι is the natural projectionP(Ẽ/Ẽi) → C, namelyTC ↪→

Ẽ/Ẽi ⊗ Ẽ∨i , which implies that Hom(TC ⊗ Ẽi , Ẽ/Ẽi) 6= 0. Thus Lemma 3.2 gives
us the following inequalityµmin(TC ⊗ Ẽi )− µmax(Ẽ/Ẽi) 6 0.

On the other hand, it is easy to see that

µmin(TC ⊗ Ẽi ) = µ(Ẽi/Ẽi−1)+ 2− 2g, µmax(Ẽ/Ẽi) = µ(Ẽi+1/Ẽi),

if one notes that 0= Ẽ0⊂Ẽ1⊂ · · · Ẽi−1⊂Ẽi ,

0= Ẽi/Ẽi⊂Ẽi+1/Ẽi⊂ · · · ⊂Ẽn/Ẽi = Ẽ/Ẽi

are the Harder–Narasimhan filtrations ofẼi andẼ/Ẽi. Writeµ(Ẽi/Ẽi−1) = µi and
we have

µmax(Ẽ)− µmin(Ẽ) = µ1 − µn =
n∑
i=1

(µi − µi+1) 6 (n− 1)(2g − 2),

which proves the theorem sincen 6 rk(E).

Remark3.1. Our bound is an improvement of a result of N.I. Shepherd–Barron
and the proof is a modification of [SB]. Wheng = 1, this gives another proof of
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our Theorem 2.1 in the case of vector bundles. In the case of rank two, the bound
coincides with that of H. Lange and U. Stuhler (see [LS], Satz 2.4).
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