UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS II

SEIZÔ ITÔ

§ 0. Introudction. In his preceding paper [2], the author determined the types of irreducible unitary representations and cyclic unitary representations of the group of all euclidean motions in 2 -space E^{2}. The purpose of the present paper is to determine the types of irreducible unitary representations and cyclic ones of the group of all euclidean motions in n-space E^{n} for $n \geqslant 3$. ${ }^{1), 2)}$ In this paper, we shall make use of the results of the preceding paper [2], but notations are independent of those in [2].
§1. Preliminaries and main theorems. Let \mathbf{G} be the group of all euclidean motions in n-space E^{n}. Then \mathbf{G} has a compact subgroup $\mathbf{K} \cong S O(n)$ and a normal subgroup \mathbf{V} isomorphic to the vector group R^{n}, and

$$
\left\{\begin{array}{l}
\mathbf{G}=\mathbf{V} \cdot \mathbf{K}, \quad \mathbf{V} \cap \mathbf{K}=\{e\} \quad(e=\text { the identity of } \mathbf{G}) \tag{1.1}\\
\mathbf{G} / \mathbf{V} \cong \mathbf{K} .
\end{array}\right.
$$

Let X be the character group of \mathbf{V}, and χ_{0} be the identity of X; then $X \cong R^{n}$. Hereafter g, g^{\prime}, \ldots denote elements of \mathbf{G}, especially a, b, c, \ldots of \mathbf{K}, x, y, \ldots of V ; and $\chi, \chi^{\prime}, \ldots$ - elements of X. $(\%, x)$ denotes the value of character $\%$ at $x \in \mathrm{~V}$. We denote by M_{a} the orthogonal matrix which realize the element $a \in K$ and by M_{a}^{*} its conjugate matrix, and define that $M_{a} x$ means to operate M_{a} to x as a vector in R^{n} while $a x$ and $x a$ mean the multiplications as elements of the group G. We shall denote briefly $\% a$ instead of $M_{a}^{*} \%$ Then, if

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \chi=\left(\chi_{1}, \ldots, \chi_{n}\right) \text { and } M_{a}=\left(\begin{array}{c}
a_{11} \ldots a_{1 n} \\
\ldots \ldots . \\
a_{n 1} \ldots a_{n n}
\end{array}\right),
$$

Received August 12, 1952.

1) The author wrote in [2] that it seemed to be difficult to solve such problem for $n \geqslant 3$. But he could solve this problem after he finished the proof-reading of the paper [2].
${ }^{2}$) Prof. G. W. Mackey kindly informed to the author that the result of [2] was inculuded in the result of his paper [3] which the author had overlooked. Recently more general cases have been treated in [4] and [5]. However, the results of the papers [3], [4] and [5] seem to be not so explicit as the result of our present paper.
we have

$$
\left(\%, M_{a} x\right)=(\% a, x)=\exp \left(\sqrt{-1} \sum_{i j} a_{i j} \chi_{i} x_{j}\right) .
$$

$\tilde{X}=X-\left\{\%_{0}\right\}$ is the product space of the unit sphere $S=S^{n-1}$ in R^{n} and $T=\{0<t<\infty\}$ as topological spaces; we denote $\chi \in \tilde{X}$ by $\%=\langle s, t\rangle(s \in S$, $t \in T)$. Then $\% a=\langle s a, t\rangle$ by the above definitions.
S may be considered as the factor space $\mathbf{K} / \mathbf{K}^{\prime}$ of right \mathbf{K}^{\prime}-cosets where $\mathbf{K}^{\prime} \cong S O(n-1)$. Hereafter $a^{\prime}, b^{\prime}, c^{\prime}, \ldots$ denote elements of \mathbf{K}^{\prime}. We shall denote by s_{b} the image of $b \in \mathbf{K}$ under the natural mapping of \mathbf{K} cnto S. For every $s \in S$, we fix an inverse image c_{s} of s under the natural mapping, where we do not demand the B -measurability etc. of the mapping $s \rightarrow c_{s}$. Every $b \in \mathbf{K}$ is uniquely expressible in the form $b=b^{\prime} c_{s}, b^{\prime} \in \mathbf{K}^{\prime}$, as far as the system $\left\{c_{s}\right\}$ is fixed. We shall consider the Haar measures $d b$ on \mathbf{K} and $d b^{\prime}$ on \mathbf{K}^{\prime} and the measure $d s$ on S invariant under \mathbf{K} such that

$$
\begin{equation*}
d s \cdot d b^{\prime}=d b .^{3)} \tag{1.2}
\end{equation*}
$$

Let $\left\{\widetilde{U}^{\lambda}\left(a^{\prime}\right)=\left\|\tilde{u}_{p q q}^{\lambda}\left(a^{\prime}\right)\right\|(p, q=1, \ldots, \tilde{n}(\lambda)) ; \lambda=1,2, \ldots\right\}$ be a system of irreducible unitary representations of the compact group \mathbf{K}^{\prime} constructed by selecting a unitary representation from each class of mutually equivalent irreducible representations of \mathbf{K}^{\prime}, and $\left\{U^{\alpha}(a)=\left\|u_{i j}^{\alpha}(a)\right\|(i, j=1, \ldots, n(\alpha))\right.$; $\alpha=1,2, \ldots\}$ be a system of irreducible unitary representations of the compact group \mathbf{K} constructed by the same method as above. Then $U^{\alpha}\left(a^{\prime}\right), a^{\prime} \in \mathbf{K}^{\prime}$, may be considered as a unitary representation of \mathbf{K}^{\prime} and hence, by the complete reducibility, we may assume that $U^{a}\left(a^{\prime}\right)$ is of the form:

$$
U^{\alpha}\left(\boldsymbol{a}^{\prime}\right)=\left(\begin{array}{llll}
\tilde{U}^{\lambda(\alpha, 1)}\left(a^{\prime}\right) & & & 0 \tag{1.3}\\
& \cdot & & \\
0 & & \cdot \tilde{U}^{\lambda\left(\alpha, m_{\alpha}\right)}\left(\boldsymbol{a}^{\prime}\right)
\end{array}\right)
$$

We fix such systems $\left\{U^{\alpha}(\boldsymbol{a})\right\}$ and $\left\{\tilde{U}^{\lambda}\left(\boldsymbol{a}^{\prime}\right)\right\}$. We denote the number $\tilde{n}(\lambda(\alpha, 1))$ $+\ldots+\tilde{n}(\lambda(\alpha, m-1))$ by $N_{m}(\alpha)$ or simply by $N_{m}\left(m=1, \ldots, m_{a}\right)$. Hereafter i, j, k run over $\{1, \ldots, n(\alpha)\}$ while $p, q, r-\{1, \ldots, \tilde{n}(\lambda(\alpha, m))\}$ for α and m being considered. Then, if $\mu=\lambda(\alpha, m)$, we have

$$
\begin{equation*}
u_{N_{m}+p, j}^{\alpha}\left(b^{\prime} a\right)=\sum_{q} \tilde{u}_{p q}^{\mu}\left(b^{\prime}\right) u_{N_{m}+q, j}^{\alpha}(a) \tag{1.4}
\end{equation*}
$$

(by (1.3)).
We put for any λ and p

$$
\mathbb{S}_{p}^{\lambda}=\left\{u_{\Sigma_{m}+p, j}^{\alpha}(b) / \begin{array}{l}
j=1, \ldots, n(\alpha), \text { and }\langle\alpha, m\rangle \text { runs over } \\
\text { all couples such that } \lambda(\alpha, m)=\lambda
\end{array}\right\}
$$

and

$$
\boldsymbol{\delta}_{\perp}^{\lambda}=\mathbb{Q}\left[\mathbb{\Xi}_{p}^{\lambda}\right]
$$

[^0]where $\mathfrak{\sim}[\Xi]$ denotes the closed linear subspace of $L^{2}(\mathbf{K})$ spanned by \Subset. Then \bigodot_{p}^{λ} is a complete orthogonal basis in $\mathscr{S}_{p}^{\lambda}$, and
\[

$$
\begin{equation*}
L^{2}(\mathbf{K})=\bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\sim}(\lambda) \tag{1.5}
\end{equation*}
$$

\]

Making use of these notions, we state here the main theorems.
Theorem 1.1. Fix an arbitrary element $t \in T$ and natural numbers λ and $p(1 \leqq p \leqq \tilde{n}(\lambda))$, and define unitary operators $U_{t}(g), g \in \mathbf{G}$, in the Hilbert space $\xi_{p}^{\lambda} b y$

$$
\begin{equation*}
U_{t}(g) f(b)=U_{t}(x a) f(b)=\left(\left\langle s_{b}, t\right\rangle, x\right) f(b a) \quad\left(f \in \mathfrak{F}_{\rho}{ }_{p} \subset L^{2}(\mathbf{K})\right) \tag{1.6}
\end{equation*}
$$

for $g=x a{ }^{4}{ }^{4} \quad$ Then $\left\{\delta_{p}^{\lambda}, U_{t}(g)\right\}$ is an irreducible unitary representation of \mathbf{G}; and, for any sequence of complex numbers: $\left\{\hat{\varsigma}_{j}^{a} m / j=1, \ldots, n(\alpha) ; \lambda(\alpha, m)=\lambda\right\}$ such that $\sum_{\lambda(a, m)=\lambda} \sum_{j}\left|\xi_{j}^{\alpha n}\right|^{2}=1$, the function

$$
\begin{align*}
& \mathscr{D}(g) \equiv \mathscr{D}(x a) \\
& =\int_{s}(\langle s, t\rangle, x)\left\{\sum_{\lambda(\alpha, m)=\lambda(\beta, l)=\lambda} \sum_{j k} \xi_{j}^{\alpha m} \overline{\xi_{k}^{3 l}} \times\right. \tag{1.7}\\
& \left.\times \sum_{r i} u_{v_{m}+r, i}^{\pi}\left(c_{s}\right) u_{i j}^{\pi}(a) \overline{u_{v_{l+r}, k}^{3}\left(c_{s}\right)}\right\} d s^{5)}
\end{align*}
$$

is a normal elementary ${ }^{6)}$ p. d. function on \mathbf{G} corresponding to the above irreducible unitary representation.
1.2. For any fixed t and λ, the unitary representations $\left\{\xi_{\rho}^{\lambda}, U_{t}(g)\right\}$ (defired in 1.1), $p=1, \ldots, \bar{n}(\lambda)$, are mutually unitary equivalent; while $\left\{\xi_{j}^{\lambda}, U_{t}(g)\right\}$ and $\left\{\mathfrak{\xi}_{q}^{u}, U_{t}(g)\right\}$ are not mutually unitary equivalent for any p and q if $\lambda \neq \mu$.
1.3. If $t_{1} \neq t_{2}$, then $\left\{\mathcal{F}_{p}^{\lambda}, U_{t_{1}}^{(}(\mathrm{g})\right\}$ and $\left\{\mathcal{F}_{q}^{u}, U_{t_{2}}(g)\right\}$ are not mutually unitary equivalent for any λ, :s and p, q.
 $n(\alpha))$, and define the unitary operator $U(g)$ in $\tilde{\xi}_{2}^{\alpha}$ by

$$
\begin{equation*}
U(g) f(b)=U\left(x a \backslash f(b)=U(a) f(b)=f(b a) \quad\left(f \in \tilde{\mathfrak{F}}_{k}^{\alpha} \subset L^{2}(\mathbf{K})\right)\right. \tag{1.8}
\end{equation*}
$$

for $g=x a$. Then $\left\{\tilde{F}_{k}^{z}, U(g)\right\}$ is an irreducible unitary representation of \mathbf{G}; and

$$
\begin{equation*}
\mathscr{D}(g)=\mathscr{D}(x a)=\sum_{\imath j} \hat{\xi}_{i} \bar{\xi}_{j} u_{i j}^{\alpha}(a), \quad \sum\left|\hat{\xi}_{i}\right|^{2}=1, \tag{1.9}
\end{equation*}
$$

is a corresponding normal elementary p. d. function on G.

[^1]1.5. $\left\{\tilde{\mathcal{F}}_{k}^{x}, U(g)\right\}, k=1, \ldots, n(\alpha)$, are mutually unitary equivalent for any α; while, if $\alpha \neq \beta,\left\{\tilde{\xi}_{k}^{\alpha}, U(g)\right\}$ and $\left\{\tilde{\mathfrak{g}}^{\}}, U(g)\right\}$ are not mutually unitary equivalent for any k and j.
1.6. Every irreducible unitary representation of \mathbf{G} is unitary equivalent to one of the above stated types. Consequently any normal elementary p. d. function on \mathbf{G} is expressible in the form (1.7) or (1.9).

Theorem 2. Let σ be the Haar measure on the compact group \mathbf{K} and ρ be a measure on T such that $\rho(T)<\infty$, and define the unitary operator $U(\mathrm{~g})$, $g \in \mathbf{G}$, in the Hilbert space $\left.L^{2} \equiv L^{2}(\mathbf{K} \times T, \sigma \widehat{\otimes}) \rho\right)^{8)}$ by

$$
U(g) f(b, t)=U(x a) f(b, t)=\left(\left\langle s_{b}, t\right\rangle, x\right) f(b a, t) \quad\left(f \in L^{2}\right)
$$

for $g=x a$.
2.1. Let $\Delta_{\nu}^{\lambda}, \nu=1, \ldots, N(\lambda)(\leqq \infty) ; \lambda=1,2, \ldots$, be subsets of T such that $\rho\left(\Delta_{\nu}^{\lambda}\right)>0$, and $\supseteq i_{\nu}^{\lambda}$ be the totality of functions $\varphi(b, t)$ on $\mathbf{K} \times \Delta_{\nu}^{\lambda}$ of the form:

$$
\varphi(b, t)=\sum_{\lambda(a, m)=\lambda} \sum_{j} u_{Y_{m}+1, j}^{\alpha}(b) \varphi_{j}^{\alpha n}(t) \quad\left(\text { convergence in } L^{2}\right)
$$

where

$$
\sum_{\lambda(\alpha, m)=\lambda} \sum_{j} \int_{\Delta_{\nu}^{\lambda}}\left|\varphi_{j}^{\alpha m}(t)\right|^{2} d \rho(t)<\infty
$$

Then $\mathbb{M}_{\lambda}^{\lambda}$ is a closed linear subspace of L^{2} invariant under $U(g), g \in \mathbf{G}$.
2.2. Let $\left\{f_{\nu i j}^{a m}(t) / j=1, \ldots, n(\alpha) ; \lambda(\alpha, m)=\lambda ; \nu=1, \ldots, N(\lambda) ; \lambda=1\right.$, $2, \ldots\}$ be a sequence of functions satisfying:
$\left.1^{\circ}\right) \quad \sum_{\lambda} \sum_{\nu} \sum_{\lambda(\alpha, m)} \sum_{j} \int_{\partial_{\nu}^{\lambda}}\left|f_{v j}^{\alpha m}(t)\right|^{2} d \rho(t)<\infty$,
$\left.2^{\circ}\right) \sum_{\lambda(a, m)=\lambda} \sum_{\nu}\left|f_{i j}^{a m}(t)\right|^{2}>0$ for $\rho-a$. a. $t \in \Delta_{\nu}^{\lambda} \quad$ (a. a. $=$ almost all $)$,
3°) for any fixed λ, there is no function $\psi_{\nu \nu}(t)$ for $\nu \neq \nu^{\prime}$ as follows: $f_{v j}^{\alpha n n}(t)=\psi_{w, ~}(t) f_{i, j}^{\alpha \eta}(t)$ for all j and all $\langle\alpha, m\rangle(\lambda(\alpha, m)=\lambda)$ for $\rho-a$. a. $t \in \Delta_{\nu}^{\lambda} \cap \Delta_{\nu}^{\lambda}$;
and put

Put $\mathfrak{M}_{\nu}^{\alpha}=\widetilde{झ}_{1}^{\alpha}$ (defined in Theorem 1.4) for $\nu=1, \ldots, N^{\prime}(\alpha)(\leqq \infty)$ and define unitary operators $U(g), g \in \mathbf{G}$, by (1.8) and let $\left\{\xi_{v j}^{\alpha} / j=1, \ldots, n(\alpha) ; \nu=1, \ldots\right.$ $\left.N^{\prime}(\alpha), \alpha=1,2, \ldots\right\}$ be a sequence as follows:
$\left.4^{\circ}\right) \quad \sum_{\alpha} \sum_{\nu} \sum_{j}\left|\xi_{\nu j}^{\alpha}\right|^{2}<\infty$,

[^2]$\left.5^{\circ}\right) \quad \sum_{j}\left|\xi_{\nu j}^{\alpha}\right|^{2}>0$ for any α and ν ，
6° ）for any fixed α ，there is no constant $\eta_{\nu \prime}$ for $\nu \neq \nu^{\prime}$ such that $\xi_{\nu j}^{\alpha}$ $=\eta_{\nu \nu} \xi_{\nu, j}^{\imath}$ for any j ；
and put
$$
h_{\nu}^{\alpha}(b)=\sum_{j} \xi_{\nu j}^{\alpha} u_{1 j}^{\alpha}(b) .
$$

Let $\{\lambda\}^{\prime}$ and $\{\alpha\}^{\prime}$ be subsequences of the sequence $\{1,2, \ldots\}$ and define the uni－ tary representation $\{\mathcal{J}, U(g)\}$ of \mathbf{G} as the direct sum；

$$
\begin{equation*}
\left\{\mathfrak{N}^{2}, U(g)\right\}=\left[\underset{(\lambda)^{\prime}}{\oplus} \underset{\nu}{\oplus}\left\{M_{\nu}^{\lambda}, U(g)\right\}\right] \oplus\left[\underset{\{\alpha\}^{\prime}}{\oplus} \underset{\nu}{\oplus}\left\{\Re_{\nu}^{\alpha}, U(g)\right\}\right] \tag{1.10}
\end{equation*}
$$

and put

$$
\begin{equation*}
f^{0}=\sum_{\left\langle 人 y^{\prime}\right.} \sum_{v} f_{v}^{\lambda}+\sum_{\langle x)^{\prime}} \sum_{v} h_{\nu}^{\alpha} . \tag{1.11}
\end{equation*}
$$

Then $\left\{\mathfrak{F}, U(g), f^{0}\right\}$ is a cyclic unitary representation of \mathbf{G} ；the corresponding p．d．function $\Psi(g)$ is expressible as follows：

$$
\begin{align*}
& \Psi(g) \equiv \Psi(x a) \\
& =\sum_{\left\{\lambda \lambda^{\prime}\right.} \sum_{\nu} \int_{\Delta_{\nu}^{\lambda}} d \rho(t) \int_{s}\left\{_{\lambda(\alpha, m)} \sum_{i(3, t)=\lambda} \sum_{j k} f_{v j}^{\alpha m}(t) f_{i k}^{3} \bar{z}(t) \times\right. \\
& \times(\langle s, t\rangle, x) \sum_{r i} u_{M_{N_{l}}+r, i}^{\pi}\left(c_{s}\right) u_{i j}^{\pi}(a) \overline{u_{N_{l}+r, k}\left(c_{s}\right)} d s \tag{1.12}\\
& +\sum_{i x\}^{\prime}} \sum_{v} \sum_{i j} \xi_{v j}^{\alpha} \xi_{v i}^{\bar{s}} u_{i j}^{\alpha}(a) .
\end{align*}
$$

2．3．If we replace $u_{\sim_{m}+1, j}^{\alpha}(b)$ in the definition of $\mathbb{M}_{\lambda}^{\lambda}$ in 2.1 by $u_{i_{m}+p, j}^{\alpha}(b)$ and $\tilde{夕}_{1}^{\alpha}$ in 2.2 by $\tilde{夕}_{k}^{r}$ where p may depend on ν and $\lambda=\lambda(\alpha, m)$ ，and k－on α and ν ，then we obtain a cyclic unitary representation of \mathbf{G} which is unisary equivalent to the original one．

2．4．Every cyclic unitary representation of \mathbf{G} is unitary equivalent to that of above staied type，and any p．d．function on \mathbf{G} is expressible in the form （1．12）．

Theorem 3．（Generalization of Bochner＇s theorem）Any p．d．function $\psi(g)$ on \mathbf{G} is expressible by means of normal elementary p．d．functions in the following form：

$$
\Psi(g)=\sum_{\lambda=1}^{\infty} \sum_{\nu=1}^{\infty} \hat{F}_{i}^{\lambda} \int_{\Delta_{\nu}^{\lambda}} \Phi_{\nu}^{\lambda}(g ; t) d \rho(t)+\sum_{\alpha=1}^{\infty} \sum_{\nu=1}^{\infty} \eta_{\nu}^{\alpha} D_{\nu}^{\alpha}(g)
$$

where $\Phi_{v}^{\lambda}(g, t)$ and $\Phi_{v}^{x}(g)$ are normal elementary p ．d．funstions（cf．（1．7），（1．9） and（1．12）），$\Delta_{\nu}^{\lambda} \subset T$ and $\xi_{\nu}^{\lambda}, \eta_{\nu}^{\alpha} \geq 0, \sum_{\lambda=} \xi_{i \rho}^{\lambda}\left(\Delta_{\nu}^{\lambda}\right)<\infty, \sum_{\alpha \nu} \eta_{\nu}^{\alpha}<\infty$ ．

We shall prove these theorems in $\S 4$ by making use of results of $\S \S 2$ and 3 ．

Remark. The argument in this paper may be applied to any Lie group \mathbf{G} of the following type: \mathbf{G} has a closed normal subgroup \mathbf{V} isomorphic to a vector group and the factor group \mathbf{G} / \mathbf{V} is compact.
§ 2. Unitary representations of \mathbf{G} in $L^{2}(\mathbf{K})$. We fix an element $t_{1} \in T$ and denote $\left(\left\langle s, t_{0}\right\rangle, x\right)$ by (s, x) briefly, and define unitary operators $U(g), g$ $\in \mathbf{G}$, in the Hilbert space $L^{2}(\mathbf{K})$ as follows:

$$
U(g) f(b)=U(x a) f(b)=\left(s_{b}, x\right) f(b a) \quad\left(f \in L^{2}(\mathbf{K})\right) \quad \text { for } \quad g=x a .
$$

We shall use notations defined in $\S 1$, but, in this paragraph, (.,.) and \|.\| denote respectively the inner product and the norm in $L^{2}(\mathbf{K})$.

The following lemma may be verified by making use of (1.4) and the orthogonality-relation of the system $\left\{\tilde{u}_{p q}^{\lambda}\left(b^{\prime}\right)\right\}$ in $L^{2}\left(\mathbf{K}^{\prime}\right)$.

Lemma 1. For any $a \in \mathbf{K}$ and any $s \in S$, it holds that

$$
\begin{aligned}
& \left.\int_{\mathbf{K}^{\prime}} u_{N_{m}+p, j}^{\alpha}\left(b^{\prime} c_{s} a\right) \overline{u_{N_{l}+q, k}^{3}\left(b^{\prime} c_{s}\right.}\right) d b^{\prime} \\
= & \begin{cases}\sum_{r_{i}} u_{N_{m}+r, j}^{\alpha}\left(c_{s}\right) u_{i j}^{\alpha}(a) u_{k^{\prime}, v_{m}+r}^{R}\left(c_{s}^{-1}\right) / \tilde{n}(\lambda(\alpha, m)) \\
0 & \text { if } \lambda(\alpha, m)=\lambda(\beta, l) \text { and } p=q,\end{cases}
\end{aligned}
$$

and consequently, for any a, the function of the form in the right-hand side of above equality is a B-measurable function of s independent of the special choice of the system $\left\{c_{s}\right\}$ (see §1).

Next, if we put $\bar{S}_{\rho}^{\lambda}=\Omega\left[\left\{U(g) f / f \in \mathfrak{F}_{\rho}^{\lambda}, g \in \mathbf{G}\right\}\right]$, then we have
Lemma 2. If $\lambda \neq \mu$ or $p \neq q$, then $\overline{5}_{p}^{\lambda}$ and \bar{F}_{q}^{μ} are mutually orthogonal in $L^{2}(\mathbf{K})$.

Proof. It is sufficient to prove that $(U(g) \varphi, \psi)=0$ for any $\varphi \in \mathcal{S}_{p}^{\lambda}, \psi \in \mathscr{g}_{q}^{\mu}$ and any $g \in \mathbf{G} . \quad \varphi, \psi$ and g are expressible in the form:

$$
\varphi=\sum_{\lambda(\alpha, m)=\lambda} \sum_{j} \hat{\xi}_{j}^{\alpha m} u_{N_{m}+p, j}^{\alpha}, \quad \psi=\sum_{\lambda(\beta, l)=\mu} \sum_{k} \eta_{k}^{q l} u_{N_{l}+q, k}^{3}, \quad g=x a .
$$

Hence we have

$$
\begin{aligned}
(U(g) \varphi, \psi) & =\int_{\mathbf{K}}\left(s_{b}, x\right) \varphi(b a) \overline{\psi(b)} d b \\
& =\int_{s}(s, x) d s \int_{\mathbf{K}^{\prime}} \varphi\left(b^{\prime} c_{s} a\right) \overline{\psi\left(b^{\prime} c_{s}\right)} d b^{\prime}=0
\end{aligned}
$$

by (1.2) and Lemma 1, q.e.d.
 under $U(g), g \in \mathbf{G}$.

This fact is proved from (1.5) and Lemma 2.
Lemma 3. For any given λ and p, we fix a couple $\langle\alpha, m\rangle$ such that $\lambda(\alpha$, $m)=\lambda$ and put $k=N_{m}(\alpha)+p$. If $\varphi \in \oiint_{p}^{\lambda}$ and if the p. d. function $(U(g) \varphi, \varphi)^{9)}$ on \mathbf{G} is a minorant ${ }^{i 0)}$ of the p. d. function $\left(U(g) u_{k k}^{\sim}, u u_{k k}^{\sim}\right)$, then $\varphi=\xi u_{k k}^{\sim}, \xi$ being a complex number.

Proof. By the assumption and by Corollary of Lemma 2, there exists an element $\psi \in \mathfrak{S}_{\partial}^{\hat{p}}$ such that

$$
\begin{equation*}
(U(g) \varphi, \varphi)+(U(g) \psi, \psi)=\left(U(g) u_{k k}^{\tau}, u_{k k}^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

especially, putting $g=a \in \mathbf{K}$, we have

$$
\int_{\mathbf{K}} \varphi(b a) \overline{\varphi(b)} d b+\int_{\mathbf{K}} \psi(b a) \overline{\psi(b)} d b=u_{k k}^{\tau}(a) / n(\alpha) .
$$

Each term of the left-hand side is p. d. function of $\boldsymbol{a}(\in \mathbf{K})$, while $u_{k k}^{\alpha}(\boldsymbol{a})$ is an elementary p. d. function on K. Hence we have ${ }^{11)}$

$$
\left.\begin{array}{l}
\int_{\mathbf{K}} \varphi(b a) \overline{\varphi(b)} d b=\eta u_{k k}^{x}(a) / n(\alpha) \tag{2.2}\\
\int_{\mathbf{K}} \psi(b a) \overline{\psi(b)} d b=(1-\eta) u_{k k}^{x}(a) / n(\alpha)
\end{array}\right\} \quad 0<\eta<1
$$

On the other hand, φ is expressible in the form:

$$
\varphi=\sum_{\lambda,(\beta, l i=\lambda} \sum_{j} \hat{A}_{j}^{3} u_{x_{l}}^{3}+p_{p, j} .
$$

Hence it follows from the orthogonality-relation of $\left\{u_{i j}^{R}(b)\right\}$ that

From this equality and (2.2), we get

$$
\sum_{l}^{\lambda(\beta, l)=\lambda} \mid\left\{\left.\hat{\sigma}_{j}^{3 l 2}\right|^{12}=\eta \delta_{\alpha \beta} \delta_{k j} \quad(\delta: \text { Kronecker’s delta })\right.
$$

where $\sum_{l}^{\lambda(3, l)=\lambda}$ means the summation for all l such that $\lambda(\beta, l)=\lambda$ for fixed β. Hence © may be expressible as follows:

$$
\begin{equation*}
\varphi(b)=\sum_{l}^{\lambda(\alpha, l)=\lambda} \xi_{l} u_{\sum_{l}+p, k}^{\alpha}(b), \quad \sum_{l}^{\lambda(a, l)=\lambda}|\hat{i}|^{2}=\eta . \tag{2.3}
\end{equation*}
$$

Similarly we get
${ }^{9)}$ See [1], $\$ 7$.
10) See $[1], \S 11$; - of couse, we do not mean the trivial one: the function identically equal to zero.
${ }^{11)}$ See Theorem 7 in [1].

$$
\psi(b)=\left.\sum_{l}^{\lambda(a, l)=\lambda} \eta\left|u_{N_{l}+p, k}^{\alpha}(b) . \quad \sum_{l}^{\lambda(a, l)=\lambda}\right| \eta\right|^{2}=1-\eta .
$$

Consequently

$$
\begin{equation*}
\sum_{l}^{\lambda(\alpha, l)=\lambda}\left\{|\hat{s} l|^{2}+|\eta \eta|^{2}\right\}=1 . \tag{2.4}
\end{equation*}
$$

If we put $g=x \in \mathbf{V}$ in (2.1), we have (by (1.2))

$$
\begin{gathered}
\int_{s}(s, x) d s \int_{\mathbf{K}^{\prime}}\left|\varphi\left(b^{\prime} c_{s}\right)\right|^{2} d b^{\prime}+\int_{s}(s, x) d s \int_{\mathbf{K}^{\prime}}\left|\psi\left(b^{\prime} c_{s}\right)\right|^{2} d b^{\prime} \\
=\int_{s}(s, x) d s \int_{\mathbf{K}^{\prime}}\left|u_{k k}^{\tau}\left(b^{\prime} c_{s}\right)\right|^{2} d b^{\prime}
\end{gathered}
$$

Since $\varphi(b)$ and $\psi(b)$ are continuous by (2.3) and (2.3'), and since $x(\in \mathbf{V})$ is arbitrary in the above equality, we obtain for any $s \in S$

$$
\int_{\mathbf{K}^{\prime}}\left|\varphi\left(b^{\prime} c_{s}\right)\right|^{2} d b^{\prime}+\int_{\mathbf{K}^{\prime}}\left|\psi\left(b^{\prime} c_{s}\right)\right|^{2} d b^{\prime}=\int_{\mathbf{K}^{\prime}}\left|u_{k k}^{\alpha}\left(b^{\prime} c\right)\right|^{2} d b^{\prime}
$$

Putting $s=s_{e}$ (whence we may put $c_{s}=e$) in this equality, we have

$$
\begin{align*}
\int_{\mathbf{K}^{\prime}}\left|\varphi\left(b^{\prime}\right)\right|^{2} d b^{\prime}+\int_{\mathbf{K}^{\prime}}\left|\psi\left(b^{\prime}\right)\right|^{2} d b^{\prime} & =\int_{\mathbf{K}^{\prime}}\left|u_{k k}^{\alpha}\left(b^{\prime}\right)\right|^{2} d b^{\prime} \tag{2.5}\\
& =\tilde{u}_{p p}^{\lambda}(e) / \tilde{n}(\lambda) \neq 0 .
\end{align*}
$$

By (1.3) and by the assumption: $k=N_{m}(\alpha)+p$,

$$
u_{N_{l}+p, k}^{a}\left(b^{\prime}\right) \equiv 0 \quad \text { on } \quad \mathbf{K}^{\prime} \quad \text { for } \quad l \neq m .
$$

Hence, from (2.3), (2, 3^{\prime}) and (2.5), we get

$$
\left|\hat{S}_{m}\right|^{2}+\left|\eta_{m}\right|^{2}=1 .
$$

From this and (2.4), we obtain $\xi_{l}=\eta_{l}=0$ for $l \neq m$, and hence $\varphi=\hat{s}_{m} u_{M_{m n}+\phi, k}^{\alpha}$ by (2.3), q.e.d.

Lemma 4. Let α, m and k be as in Lemma 3 for any given λ and p. Then $\left\{\delta_{p}^{\lambda}, U(g), u_{k k}^{\alpha}\right\}$ is a cyclic unitary representation of \mathbf{G}.

Proof. For any β, l and any $i, j(1 \leqq i, j \leqq n(\beta))$ it holds that

$$
u_{N l+p, i}^{3} \in \mathbb{S}\left[\left\{U(a) u_{N l+p, j}^{3} / a \in \mathbf{K}(\subset \mathbf{G})\right\}\right]
$$

by the irreducibility of $U^{3}(a)$ as a representation of \boldsymbol{K}. By virtue of this fact and Corollary of Lemma 2, it suffices to prove that $\lambda(\beta, l)=\lambda$ implies

$$
\begin{equation*}
u_{N l+p, 1}^{\beta} \in \mathbb{Q}\left[\left\{U(g) u_{k j}^{\chi} / j=1, \ldots, n(\alpha) ; g \in \mathbf{G}\right\}\right] . \tag{2.6}
\end{equation*}
$$

Now, if $\lambda(\beta, l)=\lambda=\lambda(\alpha, m)$, then, by Lemma 1, the functions $\varphi_{j}(s)(j=1$, $\ldots, n(\alpha))$ defined by

$$
\begin{aligned}
\varphi_{j}(s) & \equiv \tilde{n}(\lambda) \int_{\mathbf{K}^{\prime}} u_{N_{l}+p, 1}^{\beta}\left(b^{\prime} c_{s}\right) \cdot u_{N_{m}+p, j}^{\alpha}\left(b^{\prime} c_{s}\right) d b^{\prime} \\
& =\sum_{q} u_{N_{l}+q, 1}^{\beta}\left(c_{s}\right) u_{j, N_{m}+q}^{\alpha}\left(c_{s}^{-1}\right)
\end{aligned}
$$

are bounded B-measurable functions on S and it holds for any $r(1 \leqq r \leqq \tilde{n}(\lambda))$ and any $s \in S$ that

$$
\begin{aligned}
\sum_{j} u_{N_{m}+r, j}^{\alpha}\left(c_{s}\right) \varphi_{j}(s) & =\sum_{q} \sum_{l} u_{N m+r, j}^{\alpha}\left(c_{s}\right) u_{j, N_{m}+q}^{\alpha}\left(c_{s}^{-1}\right) u_{N_{l}+q, 1}^{\beta}\left(c_{s}\right) \\
& =\sum_{q} u_{N_{m}+r, N_{m}+q}^{\alpha}(e) u_{N_{l}+q, 1}^{\beta}\left(c_{s}\right)=u_{N_{l}+r, 1}^{\beta}\left(c_{s}\right) .
\end{aligned}
$$

Hence, by means of the relation : $u_{N_{l+}+p, N_{l}+q}^{\beta}\left(b^{\prime}\right)=\widetilde{u}_{p q}^{\lambda}\left(b^{\prime}\right)=u_{N_{m}+p, N_{m}+q}^{\alpha}\left(b^{\prime}\right)$, we get (for $b=b^{\prime} c_{s}$)

$$
\begin{aligned}
u_{N_{l}+p, 1}^{\beta}(b) & =\sum_{r} u_{N_{l+p}, N_{l}+r}^{\beta}\left(b^{\prime}\right) u_{N l+r, 1}^{\beta}\left(c_{s}\right) \\
& =\sum_{r i} u_{N m+p, N_{m+r}}^{\alpha}\left(b^{\prime}\right) u_{N_{m}+r, j}^{\alpha}\left(c_{s}\right) \varphi_{j}(s)=\sum_{j} u_{N_{m+p}, j}^{\alpha}(b) \varphi_{j}(s) .
\end{aligned}
$$

On the other hand, there exist complex numbers $\xi_{j v}$ and elements $x_{j \nu}$ of $\mathbf{V}(\nu$ $=1, \ldots, N(j)$) for any $\varepsilon>0$ and every j such that

$$
\int_{s}\left|\varphi_{j}(s)-\sum_{\nu} \xi_{j v} \cdot\left(s, x_{j v}\right)\right|^{2} d s<\varepsilon^{2} / n(\alpha)^{2}
$$

since $\varphi_{j}(s), j=1, \ldots, n(\alpha)$, are bounded and B-measurable on S. Therefore, by simple calculation, we get

$$
\left\|u_{N l+p, 1}^{\beta}-\sum_{j \nu} \xi_{j \nu} U\left(x_{j \nu}\right) \cdot u_{v_{m}+p, j}^{\alpha}\right\|<\varepsilon .
$$

This result shows (2.6), q.e.d.
Proposition 1. $\left\{\mathfrak{F}_{p}^{\lambda}, U(g)\right\}$ is an irreducible unitary representation of \mathbf{G} for any λ and $p(1 \leqq p \leqq \tilde{n}(\lambda))$.

This proposition is clear by Corollary of Lemma 2, Lemmas 3 and 4, and Theorem 7 in [1].

Corollary. i) If a unitary operator U in S_{p}^{λ} is permutable with any $U(g)$, $g \in \mathrm{G}$, then $U=\xi I,|\xi|=1$; consequently ii) If $\varphi, \psi \in \mathcal{S}_{\beta}^{\lambda}$ and $(U(g) \varphi, \varphi)=(U(g) \psi$, ψ) for any $g \in \mathbf{G}$, then $\psi=\xi \varphi,|\xi|=1$.

These are immediate results of Proposition 1.
Proposition 2. For any fixed λ, the unitary representations $\left\{\mathscr{S}_{\dot{p}}^{\lambda}, U(g)\right\}, p$ $=1, \ldots, \tilde{n}(\lambda)$, are mutuallv unitary equivalent.

Proof. We fix a couple $\langle\alpha, m\rangle$ such that $\lambda(\alpha, m)=\lambda$. Then $\left\{\mathcal{S}_{j} \lambda, U(g)\right.$, $\left.u_{N m+\infty}^{*}, 1\right\}, p=1, \ldots, \tilde{n}(\lambda)$, are cyclic unitary representations of \mathbf{G} (by Lemma
4). Hence it is sufficient to prove that p. d. functions ($\left.U(g) u_{M_{n}+p, 1}^{\alpha}, u_{y_{m}+p, 1}^{\alpha}\right), p$ $=1, \ldots, \widetilde{n}(\lambda)$, are mutually iden ical. For any $g=x a \in \mathbf{G}$, we have by (1.2) and Lemma 1

$$
\begin{aligned}
\left(U(g) u_{N_{m}+p, 1}^{\alpha}, u_{N_{n}+p, 1}^{\alpha}\right) & =\int_{s}(s, x) d s \int_{\mathbf{K}^{\prime}} u_{\Psi_{m}+p, 1}^{\pi}\left(b^{\prime} c_{s} a\right) \overline{u_{M_{m}+p, 1}^{\alpha}\left(b^{\prime} c_{s}\right)} d b^{\prime} \\
& =\int_{s}(s, x)\left\{\sum_{q i} u_{M_{m+q, i}}^{\pi}\left(c_{s}\right) u_{i 1}^{\alpha}(a) u_{1, \lambda_{m}+q}^{\alpha}\left(c_{s}^{-1}\right) / \widetilde{n}(\lambda)\right\} d s
\end{aligned}
$$

this is independent of p, q.e.d.
Proposition 3. If $\lambda \neq \mu$, then the unitary representations $\left\{\xi_{p}^{\lambda}, U(g)\right\}$ and $\left\{\mathcal{S}_{q}^{\mu}, U(g)\right\}$ are not mutually unitary equivalent for any p and q.

Proof. By Proposition 2, it suffices to prove this for $p=q=1$. We denote the operator $U(g)$ considered in $\mathscr{S}_{1}^{\hat{1}}$ and \mathscr{S}_{1}^{L} by $U_{1}(g)$ and $U_{2}(g)$ respectively. If $\left\{\mathscr{S}_{1}^{\lambda}, U_{1}(g)\right\}$ is unitary equivalent to $\left\{\mathscr{S}_{\xi}^{\mu}, U_{2}(g)\right\}$, then there exists a unitary transformation U of $\mathscr{S}_{1}^{\lambda}$ onto \mathscr{S}_{1}^{μ} such that $U_{2}(g)=U \cdot U_{1}(g) \cdot U^{-1}$. We fix a couple $\langle\alpha, m\rangle$ such that $\lambda(\alpha, m)=\lambda$, and put $k=N_{m}(\alpha)+1$. Then $u_{k k}^{\alpha} \in \xi_{1}^{\lambda}$ and $f=U \cdot u_{k k}^{\alpha} \in \mathfrak{S}_{1}^{\mu}$. The element f is expressible in the form: $f=\sum_{\lambda(\beta, l)=\mu} \sum_{\rho} \hat{f}_{j}^{\beta /} u_{V_{l+1, j}^{\beta}}^{\beta}$, and hence for any $a^{\prime} \in \mathbf{K}^{\prime}$

On the other hand

$$
\begin{aligned}
\left(U_{2}\left(a^{\prime}\right) f, f\right) & =\left(U \cdot U_{1}\left(a^{\prime}\right) \cdot U^{-1} f, f\right) \\
& =\left(U_{1}\left(a^{\prime}\right) u_{k k}^{\sigma}, u_{k k}^{\alpha}\right)=\widetilde{u}_{11}^{\lambda}\left(a^{\prime}\right) / n(\alpha)
\end{aligned}
$$

This is a contradiction, because $\lambda \neq \mu$ implies that $\tilde{u}_{p q}^{\mu}\left(a^{\prime}\right)$ and $\tilde{u}_{11}^{\lambda}\left(a^{\prime}\right)$ are mutually orthogonal in $L^{2}\left(\mathbf{K}^{\prime}\right)$ for any p and q, q.e.d.
§ 3. Unitary representations of \mathbf{G} in $L^{2}(\mathbf{K} \times T, \sigma \otimes \rho)$. Let Δ be a subset of T and $\mathfrak{>} i_{p}^{\lambda}(\Delta)$ be the totality of functions $\varphi(b, t) \in L^{2} \equiv L^{2}(\mathbf{K} \times \Delta, \sigma \otimes \rho)$ of the form

$$
\varphi(b, t)=\sum_{\lambda(\alpha, m)=\lambda} \sum_{j} u_{\stackrel{y}{*}}^{\tau}+p, j(b) \varphi_{p j}^{\alpha m}(t), \quad \sum \sum \int_{\Delta}\left|\varphi_{p j}^{\alpha m}(t)\right|^{2} d \rho(t)<\infty .
$$

We may prove easily the following
Lemma 5. Any function $¢ \subset(b, t) \in L^{2}(\mathbf{K} \times T, \sigma \otimes \rho)$ is uniquely expressible in the form:

$$
\begin{equation*}
\left.\varphi(b, t)=\sum_{\mu} \sum_{p \lambda(\alpha, m)=\mu} \sum_{\rho} \sum_{\nu} u_{\lambda m+p, j}^{\alpha}(b) \varphi_{p j}^{\alpha, m}(t) \quad \text { (convergence in } L^{2}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{p j}^{\alpha m}(t)=\int_{\mathbf{K}} \varphi(b, t) \tilde{u}_{\mathbf{v}_{m}+p, j}^{\alpha}(b) d b \tag{3.2}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\left.\sum_{\mu} \sum_{p \lambda} \sum_{\lambda(\alpha, m)=\mu} \sum_{\rho} \int_{T} \varphi_{p j}^{\alpha m}(t)\right|^{2} d \rho(t)=\int_{\mathbf{K} \times T}|\varphi(b, t)|^{2} d b d \rho(t) . \tag{3.3}
\end{equation*}
$$

Profosition 4. $M_{p}^{2}(\Delta)$ is a closed linear subspace of $L^{2}(\mathbf{K} \times T, \sigma \otimes \rho)$ invariaint under $U(g), g \in \mathrm{G}$, defined in Theorem 2.1.

It is clear from the definition of $U(g)$ and by Lemma 2 that $\mathbb{M}_{p}^{\lambda}(\Delta)$ is a linear subspace of $L^{2}(\mathbf{K} \times T, \sigma 区 \rho)$ invariant under $U(g), g \in \mathbf{G}$. The closedness of $\mathfrak{M}_{p}^{\lambda}(\Delta)$ may be proved by virtue of Lemma 4.

Thus $\left\{\mathbb{M}_{p}^{\dot{p}}(\mathrm{~d}), \mathcal{L}^{\prime}(g)\right\}, \mathcal{p}=1, \ldots, \tilde{n}(\lambda) ; \lambda=1,2, \ldots$, may be considered as unitary representations of \mathbf{G}.

Lemma 6. If $f_{1} \in \mathfrak{M}_{p}^{\lambda}\left(\Delta_{1}\right), f_{2} \in \mathbb{M}_{p}^{\mu}\left(\Delta_{2}\right)$ and if p. d. functions $\left(U(g) f_{1}, f_{1}\right)$ and $\left(U(g) f_{2}, f_{3}\right)$ kave a common minorant, ${ }^{12 ;}$ then there exist a Borel set $\Delta_{0} \subset A_{1}$ $\cap \Delta_{2}$ such that $\rho\left(\Delta_{0}\right)>0$ and a B-measurable function $\omega(t)$ defined on Δ_{0} such that $0<|\omega(t)|<\infty$ and $f_{1}(b, t)=\omega(t) f_{2}(b, t)$ for $\sigma-a$. a. $b \in \mathbf{K}$ for $\rho-a$. a. t $\in J_{0} ;$ consequently $\lambda=\mu$.

Proof. Let $\Psi(g)$ be a common minorant of $\left(U(g) f_{1}, f_{1}\right)$ and $\left(U(g) f_{2}, f_{2}\right.$. Then, by Theorem 5 in [1], $\Psi(g)$ is expressible as follows:

$$
\begin{equation*}
\Psi(g)=\left(U(g) \psi_{1}, \psi_{1}\right)=\left(U(g) \psi_{2}, \psi_{2}\right), \quad \psi_{1} \in \mathbb{M}_{p}^{\lambda}\left(\Delta_{1}\right), \quad \psi_{2} \in \mathfrak{M}_{p}^{u}\left(\Delta_{2}\right) \tag{3.4}
\end{equation*}
$$

furthermore there exist $\varphi_{1} \in \mathbb{M}_{p}^{\lambda}\left(\Delta_{1}\right)$ and $\varphi_{2} \in \mathbb{M}_{p}^{\mu}\left(\Delta_{2}\right)$ such that

$$
\int_{\mathbf{K} \times T}\left(\left\langle s_{b}, t\right\rangle, y\right)\left(\left\langle s_{o}, t\right\rangle, x\right) f_{\nu}(b a, t) \overline{f_{\nu}(b, t)} d b d \rho(t)
$$

$$
\begin{align*}
=\int_{\mathbf{K} \times T} & \left(\left\langle s_{b}, t\right\rangle, y\right)\left\{\left(\left\langle s_{b}, t\right\rangle, x\right) \psi_{\nu}(b a, t) \overline{\psi_{\nu}(b, t)}+\right. \tag{3.j}\\
& \left.+\left(\left\langle s_{b}, t\right\rangle, x\right) \varphi_{v}(b a, t) \overline{c_{\nu}}(b, t)\right\} d b d \rho(t), \quad \nu=1,2,
\end{align*}
$$

for any $y, x \in \mathbf{V}$ and $a \in K$ (we put $f(b, t) \equiv 0$ on $\mathbf{K} \times(T-\Delta$., for any function $\left.\in \mathbb{M}_{b}^{\lambda}\left(\Delta_{\nu}\right)\right)$. For any Borel set $\Delta \subset T$, the characteristic function of the set $\left.K \times\right\lrcorner$ may be approximated in $I_{2}^{2}(\mathbf{K} \times T, \sigma \otimes \rho)$ by means of linear combinations of "characters" ($\langle s, t\rangle, y$). Hence (3.5) implies that

$$
\begin{align*}
\int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle\right. & x) f_{\nu}(b a, t) f_{\nu}(b, t) d b \\
& =\int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle, x\right) \psi_{\nu}(b a, t) \overline{\psi_{\nu}(b, t)} d b+ \tag{3,6}
\end{align*}
$$

12) See the foot-note 10).

$$
+\int_{\mathbf{K}}(\langle s b, t\rangle, x) \varphi_{\nu}(b a, t) \varphi_{\nu}(b, t) d b, \quad \nu=1,2
$$

for any $x \in \mathbf{V}_{0}$ and $a \in \mathbf{K}_{0}$ for $\rho-$ a. a. $t \in T$ where \mathbf{V}_{0} and \mathbf{K}_{0} are dense subsets of \mathbf{V} and \mathbf{K} respectively such that $\overline{\overrightarrow{\mathbf{V}}}_{0}=\overline{\overline{\mathbf{K}}}_{0}=\S_{0}$; and hence, by Lebesgue's convergence theorem, (3.6) is true for any $x \in \mathbf{V}$ and $a \in K$ for $\rho-$ a. a. $t \in T$. Similar argument shows that (3.4) implies

$$
\begin{align*}
\int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle\right. & x) \psi_{\mathbf{1}}(b a, t) \psi_{1}(b, t) d b \\
& =\int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle . x\right) \psi_{2}(b a, t) \overline{\psi_{2}(b, t)} d b \tag{3.7}
\end{align*}
$$

for $\rho-$ a. a. $t \in T$. Each term in (3.6) and (3.7) expresses a p. d. function of $g=x a$; especially the left-hand side of (3.6) expresses an elementary p.d. function corresponding to the irreducible unitary representation $\left\{\mathscr{S}_{p}^{\lambda}, U_{t}(g)\right\}$ or $\left\{\mathscr{S}_{p}^{\mu}, U_{t}(g)\right\}$ stated in $\S 2$ if $\nu=1$ or $\nu=2$ respectively. Hence, by Theorem 7 in [1], there exists a function $\omega_{0}(t) \geqslant 0$ such that

$$
\begin{aligned}
& \int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle, x\right) f_{1}(b a, t) \overline{f_{1}(b, t)} d b \\
&=\omega_{0}(t) \int_{\mathbf{K}}\left(\left\langle s_{b}, t\right\rangle, x\right) f_{2}(b a, t) f_{\mathbf{2}}(b, t) d b
\end{aligned}
$$

for any $x \in V$ and $a \in K$ for a. a. $t \in T$, and hence, by Proposition 3 and Corollary of Proposition 1, we obtain that $\lambda=\mu$ and that

$$
f_{1}(b, t)=\omega(t) f_{2}(b, t) \quad \text { for } \quad \sigma-\text { a. a. } b
$$

for ρ-a. a. t for a certain $\omega(t)\left(|\omega(t)|^{2}=\omega_{0}(t)\right)$, which is B-measurable in t by Fubini's theorem. If we put

$$
\Delta_{0}=\left\{t / \int_{\mathbf{K}}\left|\psi_{1}(b, t)\right|^{2} d b=\int_{\mathbf{K}}\left|\psi_{2}(b, t)\right|^{2} d b \neq 0\right\} \quad(\text { see }(3.7))
$$

then we may easily show that the set Δ_{0} and the function $\omega(t)$, considered on Δ_{0}, have the properties stated in Lemma 6, q.e.d.

Proposition 5. The unitary representations $\left\{\mathfrak{M}_{p}^{\lambda}(\Delta), U(g)\right\}$ and $\left\{\mathfrak{M}_{q}^{\lambda}(\Delta)\right.$, $U(g)\}$ are mutually unitary equivalent for any p and $q(1 \leqq p, q \leqq \tilde{n}(\lambda))$.

This fact is easily verified from the definition of $\mathcal{N}_{p}^{\lambda}(\Delta)$ and by Proposition 2.

Proposition 6. If $\lambda \neq \mu$, then, for any p, q, any Δ_{1}, Δ_{2}, and any $f_{1} \in \mathfrak{M} \lambda_{p}^{\lambda}\left(\Delta_{1}\right)$ and $f_{2} \in \mathbb{M}_{q}^{\mu}\left(\Delta_{2}\right)$, the p. d. functions $\left(U(g) f_{1}, f_{1}\right)$ and $\left(U(g) f_{2}, f_{2}\right)$ are mutually disjoint. ${ }^{13)}$

[^3]This proposition is evident by Lemma 6, Proposition 5 and the definition of $\mathfrak{M}_{p}^{\lambda}(\Delta)$.

Proposition 7. Assume that $f_{1} \in \mathfrak{M n}_{p}^{\lambda}\left(\Delta_{1}\right)$ and $f_{2} \in \mathfrak{M}_{p}^{\lambda}\left(\Delta_{2}\right)$. In order that the p. d. functions $\left(U(g) f_{1}, f_{1}\right)$ and $\left(U(g) f_{2}, f_{2}\right)$ are not mutually disjoint, it is necessary and sufficient that there exist a Borel set $\Delta \subset \Delta_{1} \cap \Delta_{2}$ such that $\rho(\Delta)$ >0 and a B-measurable function $\omega(t)$ defined on Δ such that $0<|\omega(t)|<\infty$ and that $f_{1}(b, t)=\omega(t) f_{2}(b, t)$ for $\sigma-a . a . b \in \mathbb{K}$ for $\rho-a . a . t \in \Delta$.

Proof. The necessity is clear by Lemma 6.
To prove the sufficiency, we put $\omega_{1}(t)=\min \{1,|\omega(t)|\}$ on Δ and define

$$
f(b, t)= \begin{cases}\omega_{1}(t) f_{1}(b, t) & \text { on } \quad \mathbf{K} \times \Delta, \\ 0 & \text { on } \quad \mathbf{K} \times(T-\Delta) .\end{cases}
$$

Then we may prove that $f \in \mathfrak{M}_{p}^{\lambda}(\Delta) \subset \mathfrak{M}_{D}^{\lambda}\left(\Delta_{1}\right) \cap \mathfrak{M}_{\dot{D}}^{\lambda}\left(\Delta_{2}\right)$ and that p. d. function $(U(g) f, f)$ is a common minorant of $\left(U(g) f_{1}, f_{1}\right)$ and ($\left.U(g) f_{2}, f_{2}\right)$, q.e.d.

Proposition 8. In order for $\left\{\mathfrak{M}_{p}^{\lambda}(\Delta), U(g), f\right\}\left(f \equiv f(b, t) \in \mathbb{M}_{p}^{\lambda}(\Delta)\right)$ to be a cyclic unitary representation of \mathbf{G}, it is necessary and sufficient that $f(b, t)$ $\neq 0$ as an element of $\oiint_{\hat{p}}\left(\subset L^{2}(\mathbf{K})\right)$ for $\rho-a . a . t \in \Delta$.

Proof. The necessity is clear by the definition of $U(g)$.
We shall prove the sufficiency. Put

$$
\mathfrak{R}^{\prime}=\mathfrak{R}[\{U(g) f / g \in \mathbf{G}\}]
$$

and let φ be any element of $\mathfrak{M}_{\mathcal{D}}^{\lambda}(\Delta) \Theta \mathfrak{M i}^{\prime}$. Then

$$
\int_{\mathbf{K} \times \Delta}\left(\left\langle s_{b}, t\right\rangle, x\right) f(b a, t) \overline{\varphi(b, t)} d b d \rho(t)=0 \quad \text { for any } x \text { and } a .
$$

By the similar argument as in the proof of Lemma 6, it follows from the above equality that

$$
\int_{\mathrm{K}}\left(\left\langle s_{b}, t\right\rangle, x\right) f(b a, t) \varphi(b, t) d b=0 \quad \text { for any } x \text { and } a
$$

for $\rho \cdots$ a. a. $t \in \Delta$. Since the unitary representation $\left\{\delta_{p}^{\lambda}, U_{t}(g)\right\}$ is irreducible for any t (Proposition 1) and since $f \neq 0$ in $\mathfrak{s}_{\boldsymbol{p}}^{\lambda}$ for $\rho-\mathrm{a}$. a. $t \in \Delta$ by the assumption, we get $\varphi(b, t) \equiv 0$ in $\mathfrak{S}_{\beta}^{\lambda}$ for $\rho-\mathrm{a}$. a, $t \in \Delta$, and hence $\varphi(b, t) \equiv 0$ in $\mathfrak{M}_{p}^{\prime}(\Delta)$. Thus we obtain $\mathfrak{M}^{\prime}=\mathfrak{M}_{p}^{\lambda}(\Delta)$, q.e.d.
§ 4. Proof of Theorems. Throughout this paragraph, we notice that the spaec $\mathfrak{M}_{\nu}^{\lambda}$ defined in Theorem 2 is identical with the space $\mathfrak{M}_{1}^{\lambda}\left(\Delta_{\nu}^{\lambda}\right)$ in the notation stated in $\S 3$ for any λ and ν.

Theorems 1.1 and 1.2 have been proved in $\S 2-$ the formula (1.7) may
be shown by calculating $\mathscr{C}(g) \equiv(U(g) f, f), f=\sum_{\lambda\left(\alpha, m_{i}\right)=\lambda} \sum_{j} \xi_{j m}^{\alpha} u_{\Delta m+p, j}^{\alpha}$. Theorems 1.4 and 1.5 are evident from the fact $\mathbf{G} / \mathbf{V} \cong \mathbf{K}$ and by Peter-Weyl's theory. (Theorem 1.3 shall be proved after the proof of Theorems 2.1--2.3.)

Next, let $\mathfrak{M}_{\imath}^{\lambda}$ and $f_{i}^{\lambda}(\nu=1, \ldots, N(\lambda) ; \lambda=1,2, \ldots)$ be as stated in Theorem 2. Theorem 2.1 have been proved in $\S 3$ (Proposition 4). By the conditions 1°) and $\left.2^{\circ}\right)$, we have $f_{\imath}^{\lambda} \in \mathbb{P}_{\imath}^{\lambda}$ and $f_{\nu}^{\lambda}(b, t) \neq 0$ in $\mathscr{S}_{2}^{\lambda}\left(C L^{2}(\mathbf{K})\right)$ for $\rho-\mathrm{a}$. a. $t \in \Delta_{\nu}^{\lambda}$. Hence the unitary representation $\left\{\mathfrak{M}_{\nu}^{\lambda}, U(g), f_{\nu}^{\lambda}\right\}$ is cyclic by Proposition 8 for every λ and ν. The p. d. functions ($\left.U(g) f_{\nu}^{\lambda}, f_{\nu}^{\lambda}\right), \nu=1,2, \ldots$, are mutually disjoint from the condition 3°) and by Proposition 7. Hence, by Theorem 8 in [1], the direct sum $\left\{\bigoplus_{\vee} \mathbb{M}_{\nu}^{\lambda}, U(g), f^{\lambda}\right\}, f^{\lambda}=\sum_{V} f_{\imath}^{\lambda}$, is a cyclic unitary representation of \mathbf{G}. We may further show by Proposition 6 that the p. d. functions $\left(U(g) f^{\lambda}, f^{\lambda}\right)$ and $\left(U(g) f^{\mu}, f^{\mu}\right)$ are mutually disjoint for $\lambda \neq \mu$. Similar argument is possible for $\left\{\Re_{\nu}^{\alpha}, U(g)\right\}, \nu=1, \ldots, N^{\prime}(\alpha) ; \alpha=1,2, \ldots$ Therefore, by the same argument as in the proof of Theorem 2 in [2], we may prove that the unitary representation $\left\{\mathcal{F}_{\mathrm{g}}, U(g), f^{\circ}\right\}$ stated in Theorem 2.2 is cyclic. The formula (1.12) may be verified by calculating $\Psi(g)=\left(U(g) f^{0}, f^{0}\right)$. Theorem 2.2 is thus proved. Theorem 2.3 may be seen by Proposition 5.

We now prove Theorem 1.3. If $\left\{\xi_{\rho}^{\hat{\lambda}}, U_{t_{1}}(g)\right\}$ and $\left\{\mathscr{S}_{2}^{u}, U_{t_{2}}(g)\right\}\left(i_{1} \neq t_{2}\right)$ are mutually unitary equivalent, there exist $f_{1} \in \mathfrak{F}_{p}^{\lambda}$ and $f_{2} \in \mathscr{F}_{q}^{2}$ such that $\left(U_{t_{1}}(g) f_{1}\right.$, $\left.f_{1}\right)=\left(U_{t_{2}}(g) f_{2}, f_{2}\right)$ for any $g \in \mathbb{G}$, and hence the direct sum $\left\{\mathfrak{F}_{\dot{D}}^{\hat{p}} \oplus \mathfrak{F}_{q}^{u}, U(g), f_{1}\right.$ $\left.+f_{2}\right\}\left(U(g)=U_{t_{1}}(g) \oplus U_{t_{2}}(g)\right)$ is not cyclic by Theorem 8 in [1]. But we may prove by means of Theorems 2.2 and 2.3 verified above that $\left\{\mathscr{S}_{p}^{\prime} \oplus \mathscr{h}_{q}^{u}, U(g), f_{1}\right.$ $\left.+f_{2}\right\}$ is a cyclic unitary representation of \mathbf{G}. That is a contradiction.

In order to prove Theorems 1.6 and 2.4, we first modify Lemma 2 in [2] to the following form:

Lemma 7. Let \tilde{X}, S, T and \mathbf{K} be as stated in $\S 1$ and $F(1)(A \subset \widetilde{X} \equiv S \times T)$ be a measure on \tilde{X} such that $F(\tilde{X})<\infty$, and assume that there exists a nonnegative function $u(a ; \%)$ on $\mathbf{K} \times \widetilde{X}$, measurable in $\langle a, \%\rangle$ and summable on \tilde{X} with respect to F for every $a \in \mathbf{K}$, such that

$$
\begin{equation*}
F(1 a)=\int_{\Delta} u(a ; \chi) d F(\%) \quad(\Lambda a=\{\chi a / \chi \in A\}) \tag{4.1}
\end{equation*}
$$

for any $A \subset \tilde{X}$ and any $a \in \mathbf{K}$. Then there exist a non-negative B-measurable function $\omega(s, t)$ on $\widetilde{X} \equiv S \times T$ and a measure $\rho(\Delta)$ on $T, \rho(T)<\infty$, such that

$$
\begin{equation*}
F(\Lambda)=\int_{\Lambda} \omega(s, t) d s d \rho(t) \text { for any } \Lambda \subset \tilde{X}, \tag{4.2}
\end{equation*}
$$

ds being the invariant measure on S defined in § 1.
Proof. We put $B_{\Lambda}=\left\{\langle b, t\rangle /\left\langle s_{b}, t\right\rangle \in A\right\rangle \subset K \times T$ (see §1) for any $\mid \subset \tilde{X}$ $\equiv S \times T$. and define a measure $F^{*}(B)$ on $\boldsymbol{K} \times T$ by the formula:

$$
\begin{equation*}
\int_{\mathbf{K} \times T} \varphi(b, t) d F^{*}(b, t)=\int_{s \times T} d F(s, t) \int_{\mathbf{K}^{\prime}} \varphi\left(b^{\prime} c_{s}, t\right) d b^{\prime} \quad(\text { see } \S 1) \tag{4.3}
\end{equation*}
$$

for any continuous function $\varphi(b, t)$ on $\mathbf{K} \times T$ with compact carrier. Then we have
(4.4)

$$
F^{*}\left(B_{\mathrm{A}}\right)=F(.1) \text { for any } \Lambda \subset \tilde{X}
$$

and (4.1) implies

$$
F^{*}(B a)=\int_{B} u^{*}(a ; b, t) d F^{*}(b, t) \quad(B a=\{\langle b a, t\rangle /\langle b, t\rangle \in B\})
$$

where $u^{\star}(a ; b, t)=u\left(a ;\left\langle s_{i}, t\right\rangle\right)$ is non-negative, B-measurable in $\langle a, b, t\rangle$ and summable (in $\langle b, t\rangle$) on $\mathbf{K} \times T$ with respect to F^{*} for any $a \in \mathbf{K}$. Therefore, by the same argument as the proof of Lemma 2 in [2], we may show that there exist a non-negative B-measurable function $\omega^{*}(s, t)$ on $\mathbf{K} \times T$ and a measure ρ on $T, \rho(T)<\infty$, such that

$$
F^{*}(B)=\int_{B} \omega^{*}(b, t) d b d \rho(t) \quad \text { for any } \quad B \subset \mathbf{K} \times T
$$

Hence we obtain from (4.4), (1.2) and by simple calculation that

$$
F(A)=\int_{\Lambda} d s d \rho(t) \int_{\kappa^{\prime}} \omega^{*}\left(b^{\prime} c_{s}, t\right) d b^{\prime} \text { for any } \Lambda \subset \tilde{X}
$$

and hence we get (4.2) by putting $\omega(s, t)=\int_{\mathbf{K}^{\prime}} \omega^{*}\left(b^{\prime} c_{s}, t\right) d b^{\prime}$, q.e.d.
Hereafter the indices j and k may run over all natural numbers, not following after the rule defined in $\S 1$.

Now let $\left\{f, U(g), f^{\circ}\right\}$ be a cyclic unitary representation of \mathbf{G}. Then, making use of Lemma 7, we can achieve the same argument as in [2]- from the $\mathrm{b} \in$ ginning of $\$ 3$ (p. 6) to L. $14 \mathrm{in} \mathrm{p} 10-$., and obtain the following result:
$\{\mathfrak{g}, U(g)\}=\{9, U(g)\} \oplus\{\mathfrak{M}, U(g)\} ;\{9, U(g)\}$ is equivalent to a cyclic unitary representation of the group $\mathbf{K}(\cong \mathbf{G} / \mathbf{V})$, and $\{\mathfrak{M}, U(g)\}$ is given as follows: there exists a unitary space $\tilde{5}_{0}$ of all sequences of complex numbers: $\left\{\hat{\xi}_{1}, \ldots\right.$, $\left.\hat{\xi}_{n}\right\}, n \leqq \infty$, such that $\|\xi\|^{2}=\sum_{j=1}^{\infty} \mid \xi_{j} j_{i}^{2}<\infty \quad$ (if $n=\infty$), and exists a matrix of functions $M(a ; s, t)=u_{j k}(a ; s, t) \|$ whose elements $u_{j k}(a ; s, t)(j, k=1, \ldots, n)$ are B -measurable in $\langle a, s, t\rangle$; and every $f \in \mathfrak{M}$ is realized as a \tilde{y}_{0}-valued function $\mathbf{f}(s, t) \equiv\left\{f_{1}(s, t), \ldots, f_{n}(s, t)\right\}$ defined on $\widetilde{X} \equiv S \times T$, and $f \sim \mathbf{f}(s, t)^{14)}$ implies that

$$
\left\{\begin{array}{l}
\|f\|^{2}=\int_{s \times r}\|\mathbf{f}(s, t)\|^{2} d s d \rho(t) \quad\left(\|\mathbf{f}(s, t)\|^{2}=\sum_{\lambda}\left|f_{j}(s, t)\right|^{2}\right) \\
U(x) f \sim(\langle s, t\rangle, x) \mathbf{f}(s, t) \quad \text { for any } \quad x \in \mathbf{V}, \\
U(a) f \sim M(a ; s, t) \mathbf{f}(s a, t) \quad \text { for any } \quad a \in \mathbf{K}
\end{array}\right.
$$

[^4]ρ being a measure on T such that $\rho(T)<\infty$ (obtaind from Lemma 7).
Next, for any B-measurable function $f(s, t)$ on $S \times T$, we define a function $f^{*}(b, t)$ on $\mathbf{K} \times T$ by
$$
f^{*}(b, t) \equiv f\left(s_{b}, t\right)
$$
and put $M^{*}(a ; b, t) \equiv\left\|u_{j k}^{*}(a ; b, t)\right\|$. Then, as is easily seen, the above result concerning $\{\mathfrak{M}, U(g)\}$ is translated into the following form: every $f \in \mathfrak{M}$ is realized as a \boldsymbol{S}_{0}-valued function $\mathbf{f}(b, t)$ defined on $\mathbf{K} \times T$ and $f \sim \mathbf{f}(b, t)$ implies that
\[

\left\{$$
\begin{array}{l}
\|f\|^{2}=\int_{\mathbf{K} \times T}\|\mathbf{f}(b, t)\|^{2} d b d \rho(t), \\
U(x) f \sim(\langle s b, t\rangle, x) \mathbf{f}(b, t) \quad \text { for any } \quad x \in \mathbf{V}, \\
U(a) f \sim M^{*}(a ; b, t) \mathbf{f}(b a, t) \quad \text { for any } \quad a \in \mathbf{K} ;
\end{array}
$$\right.
\]

moreover, if $M_{1}^{*}(a ; b, t)=M_{2}^{*}(a ; b, t)$ as operators in \mathbb{P}, then $M_{1}^{*}(a ; b c, t)$ $=M_{2}^{*}(a ; b c, t)$ in the same sense for any $c \in K$ - see p. 10 in [2].

Starting from this result, we can achieve the similar argument to that in [2]-from p. 10, L. 15 to p. 11, L. 15. ${ }^{15)}$ Thus \mathfrak{M} may be realized as a subspace of the direct sum of at most countable number of $L^{2}(\mathbf{K} \times T, \sigma \otimes \rho)$, and $f \sim\left\{\psi_{\nu}(b, t)\right\} \equiv\left\{\psi_{1}(b, t), \psi_{2}(b, t), \ldots\right\}$ implies

$$
\left\{\begin{array}{l}
\|f\|^{2}=\sum_{\nu=1}^{n} \int_{\mathbf{K} \times r}\left|\psi_{\nu}(b, t)\right|^{2} d b d \rho(t), \quad n \leqq \infty, \\
U(x) f \sim\left\{\left(\left\langle s_{b}, t\right\rangle, x\right) \psi_{\nu}(b, t)\right\} \quad \text { for any } \quad x \in \mathbf{V}, \\
U(a) f \sim\left\{\psi_{\nu}(b a, t)\right\} \quad \text { for any } \quad a \in \mathbf{K} .
\end{array}\right.
$$

Since $\left.L^{2}(\mathbf{K} \times T, \sigma \otimes) \rho\right)=\bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\tilde{n}(\lambda)} \mathfrak{m}_{p}^{\lambda}(T)$ by Lemma 5 and Proposition 4 (§3), it follows that \mathfrak{M} may be expressible in the form:

$$
\mathfrak{M}=\bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\tilde{n}(\lambda) n(\lambda, p)} \bigoplus_{\nu=1}^{\mathfrak{M}} \mathfrak{N}_{\nu p}^{\lambda} \quad(n(\lambda, p) \leqq \infty), \quad \mathfrak{M}_{\nu p}^{\lambda} \subset \mathfrak{M}_{p}^{\lambda}(T) \quad \text { for any } \quad \nu,
$$

and every $\mathfrak{M}_{\sim p}^{\lambda}$ is a closed linear subspace of \mathfrak{M} invariant under $U(g), g \in \mathbf{G}$.
Put

$$
f^{0}=f+h, \quad f \in \mathfrak{M} \quad \text { and } \quad h \in \mathfrak{N},
$$

and

$$
f=\sum_{\lambda} \sum_{p} \sum_{\nu} f_{\nu p}^{\lambda}, \quad f_{\nu p}^{\lambda} \in \mathfrak{M}_{\nu p}^{\lambda} \quad\left(\subset \mathbb{M}_{p}^{\lambda}(T)\right) .
$$

Then $\{\mathfrak{M}, U(g), f\}$ is -- and consequently every $\left\{\mathfrak{M}_{\nu p}^{\lambda}, U(g), f_{\nu p}^{\lambda}\right\}$ is a cyclic unitary representation of G. We put

Such argument is impossible without extending functions on $S \times T$ to those on $\mathrm{K} \times T$ as stated above. The author owes to Mr. S. Murakami's suggestion for this improvement.

$$
\Delta_{\nu p}^{\lambda}=\left\{t / \int_{\mathbf{K}}\left|f_{\nu p}^{\lambda}(b, t)\right|^{2} d b \neq 0\right\} \quad(C T)
$$

Then $\left\{\mathfrak{M}_{\nu p}^{\lambda}, U(g), f_{\nu p}^{\lambda}\right\}$ is cyclic if and only if $\mathfrak{M}_{\nu p}^{\lambda}=\mathfrak{M}_{p}^{\lambda}\left(\Delta_{\nu p}^{\lambda}\right)$ by Proposition 8. We may consider by Proposition 5 that $\mathfrak{M}_{\nu p}^{\lambda}=\mathfrak{M}_{1}^{\lambda}\left(\Delta_{\nu p}^{\lambda}\right)$ and $f \in \mathfrak{M}_{1}^{\lambda}\left(\Delta_{i p}^{\lambda}\right)$. Exchanging indices, we denote for any λ

$$
A_{\nu}^{\lambda} \text { and } f_{\imath}^{\lambda}, \quad \nu=1, \ldots, N(\lambda)(\leqq \infty)
$$

instead of

$$
\begin{aligned}
& \Delta_{\nu p}^{\hat{\nu}} \text { and } f_{\nu p}^{\lambda}, \\
& \nu=1, \ldots, n(\lambda, p)(\leqq \infty) ; p=1, \ldots, \tilde{n}(\lambda)(<\infty) ;
\end{aligned}
$$

and put $\mathfrak{M}_{\nu}^{\lambda}=\mathfrak{M}_{1}^{\lambda}\left(\Delta_{\nu}^{\lambda}\right)$. Then we may consider that

$$
\begin{equation*}
\{\mathfrak{M}, U(g)\}=\bigoplus_{\lambda=1}^{\infty} \bigoplus_{\nu=1}^{N(\lambda)}\left\{\mathfrak{M}_{\nu}^{\lambda}, U(g)\right\}, \quad f=\sum_{\lambda} \sum_{\nu} f_{\nu}^{\lambda}, \tag{4.5}
\end{equation*}
$$

and

$$
f_{\nu}^{\lambda} \in \mathbb{M}_{1}^{\lambda}\left(\Delta_{\nu}^{\lambda}\right), \quad f_{\nu}^{\lambda}(b, t) \neq 0 \text { in } \xi_{1}^{\lambda} \text { for } \rho-\text { a. a. } t \in \Delta_{\nu}^{\lambda} .
$$

Hence

$$
\left.f_{i}^{\lambda}(b, t)=\sum_{\lambda(x, m)=\lambda} \sum_{j} u_{\lambda m+1, j}^{\alpha}(b) f_{v j}^{\alpha, n}(t) \quad\left(\text { convergence in } L^{2}(\mathbf{K} \times T, \sigma \otimes) \rho\right)\right)
$$

for any λ and ν where the series of functions

$$
\left\{\left.f_{v j}^{\alpha m}\right|_{l} ^{j=1, \ldots, n(\lambda) ; \lambda(\alpha, m)=\lambda ;} \begin{array}{l}
\nu=1, \ldots, N(\lambda) ; \quad \lambda=1,2, \ldots
\end{array}\right\}
$$

satisfies the conditions 1°) and 2°) in Theorem 2.2. Since $\{\mathfrak{M}, U(g), f\}$ is cyclic, it follows from (4.5) and by Theorem 8 in [1] that p. d. functions ($U(g) f_{\nu}^{\lambda}$, $\left.f_{2}^{\lambda}\right), \nu=1, \ldots, N(\lambda), \lambda=1,2, \ldots$, are mutually disjoint. Hence the series $\left\{f_{v_{j}}^{\alpha m}\right\}$ satisfies the condition $\left.3^{\circ}\right)$ by Propositions 6 and 7. Therefore $\{\mathfrak{M}, U(g)$, $f\}$ must be of form stated in Theorem 2.2. Similar argument may be achieved for $\{\mathfrak{R}, U(g), h\}$. Consequently we obtain (1.10), (1.11) and (1.12) by simple calculations. Theorem 2.4 is thus proved.

Next, assume that the cyclic unitary representation $\left\{\mathscr{g}, U(g), f^{0}\right\}$ is irreducible. (Notice that any irreducible representation is cyclic.) Then only one couple $\langle\lambda, \nu\rangle$ or $\langle\alpha, \nu\rangle$ may be appear in (1.10). In the case $\{\mathscr{g}, U(g)\}=\left\{\mathfrak{M}_{\nu}^{\lambda}\right.$, $U(g)\}$, by the irreducibility, there exists a point $t_{0} \in T$ such that $\rho\left(T-\left\{t_{0}\right\}\right)=0$. Hence $\left\{\mathcal{F}^{2}, U(g)\right\}$ must be of the form stated in Theorem 1.1 or 1.4. Thus we obtain Theorem 1.6.

Finally, Theorem 3 is easily seen from Theorems 1 and 2.

Literature

[1] R. Godement: Les fonctions de type positif et la theorie des groupes, Trans. Amer.

Math. Soc. 63, No. 1 (1948) pp. 1-84.
[2] S. Itò: Unitary representations of some linear groups: Nagoya Math. Journ. 4 (1952) pp. 1-13.
[3] G. W. Mackey: Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. 35, No. 9 (1949) pp. 537-543.
[4] G. W. Mackey: On induced representations of groups, Amer. J. Math. 73, No. 3 (1951) pp. 576-592.
[5] G. W. Mackey : Induced representations of locally compact groups I, Ann. of Math. 55, No. 1 (1952) pp. 101-139.
[6] A. Weil: L'intégration dans les groupes topologiques et ses applications, Act. Sci. Ind. Paris, 869 (1940).

Mathematical Institute,
Nagoya University

[^0]: ${ }^{3}$) For the precise meaning of this equality, see [6], pp. 42-45.

[^1]: 4) Any element $g \in G$ is uniquely expressible in this form by virture of (1.1).
 ${ }^{5)}$ The function in $\}$ in the right-hand side is a B-measurable function of s independent of the special choice of the system $\left\{c_{s}\right\}$;- see Lemma 1 ($\S 2$).
 ${ }^{6}$ See [1], § 15 .

 - p. d. = positive definite.

[^2]: ${ }^{8)} \sigma \hat{x} \rho$ denotes the product measure of σ and ρ.

[^3]: ${ }^{13)}$ See $[1], \$ 12$.

[^4]: 14) $f \sim \mathbf{f}(s, t)$ means that f is realized as $\mathbf{f}(s, t)$.
