UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS II

SEIZÔ ITÔ

- § 0. Introduction. In his preceding paper [2], the author determined the types of irreducible unitary representations and cyclic unitary representations of the group of all euclidean motions in 2-space E^2 . The purpose of the present paper is to determine the types of irreducible unitary representations and cyclic ones of the group of all euclidean motions in n-space E^n for $n \ge 3$. In this paper, we shall make use of the results of the preceding paper [2], but notations are independent of those in [2].
- § 1. Preliminaries and main theorems. Let G be the group of all euclidean motions in n-space E^n . Then G has a compact subgroup $K \cong SO(n)$ and a normal subgroup V isomorphic to the vector group R^n , and

(1.1)
$$\begin{cases} G = V \cdot K, & V \cap K = \{e\} & (e = \text{the identity of } G) \\ G/V \cong K. \end{cases}$$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \chi = (\chi_1, \ldots, \chi_n) \text{ and } M_a = \begin{pmatrix} a_{11} \ldots a_{1n} \\ \vdots \\ a_{n1} \ldots a_{nn} \end{pmatrix},$$

Received August 12, 1952.

¹⁾ The author wrote in [2] that it seemed to be difficult to solve such problem for $n \ge 3$. But he could solve this problem after he finished the proof-reading of the paper [2].

²⁾ Prof. G. W. Mackey kindly informed to the author that the result of [2] was inculuded in the result of his paper [3] which the author had overlooked. Recently more general cases have been treated in [4] and [5]. However, the results of the papers [3], [4] and [5] seem to be not so explicit as the result of our present paper.

we have

$$(\chi, M_a x) = (\chi a, x) = \exp(\sqrt{-1} \sum_{ij} a_{ij} \chi_i x_i).$$

 $\widetilde{X} = X - \langle \gamma_0 \rangle$ is the product space of the unit sphere $S = S^{n-1}$ in \mathbb{R}^n and $T = \langle 0 < t < \infty \rangle$ as topological spaces; we denote $\chi \in \widetilde{X}$ by $\chi = \langle s, t \rangle$ ($s \in S$, $t \in T$). Then $\chi a = \langle sa, t \rangle$ by the above definitions.

S may be considered as the factor space K/K' of right K'-cosets where $K' \cong SO(n-1)$. Hereafter a', b', c', ... denote elements of K'. We shall denote by s_b the image of $b \in K$ under the natural mapping of K onto S. For every $s \in S$, we fix an inverse image c_s of s under the natural mapping, where we do not demand the B-measurability etc. of the mapping $s \to c_s$. Every $b \in K$ is uniquely expressible in the form $b = b'c_s$, $b' \in K'$, as far as the system $\{c_s\}$ is fixed. We shall consider the Haar measures db on K and db' on K' and the measure ds on S invariant under K such that

$$(1.2) ds \cdot db' = db.^{3}$$

Let $\{\widetilde{U}^{\lambda}(a') = \|\widetilde{u}_{pq}^{\lambda}(a')\|$ $(p, q = 1, \ldots, \widetilde{n}(\lambda))$; $\lambda = 1, 2, \ldots\}$ be a system of irreducible unitary representations of the compact group \mathbf{K}' constructed by selecting a unitary representation from each class of mutually equivalent irreducible representations of \mathbf{K}' , and $\{U^{\alpha}(a) = \|u_{ij}^{\alpha}(a)\| \ (i, j = 1, \ldots, n(\alpha)); \alpha = 1, 2, \ldots\}$ be a system of irreducible unitary representations of the compact group \mathbf{K} constructed by the same method as above. Then $U^{\alpha}(a')$, $a' \in \mathbf{K}'$, may be considered as a unitary representation of \mathbf{K}' and hence, by the complete reducibility, we may assume that $U^{\alpha}(a')$ is of the form:

(1.3)
$$U^{\alpha}(a') = \begin{pmatrix} \widetilde{U}^{\lambda(\alpha,1)}(a') & 0 \\ & \ddots & \\ 0 & \widetilde{U}^{\lambda(\alpha,m_{\alpha})}(a') \end{pmatrix}.$$

We fix such systems $\{U^{\alpha}(a)\}$ and $\{\widetilde{U}^{\lambda}(a')\}$. We denote the number $\widetilde{n}(\lambda(\alpha, 1)) + \ldots + \widetilde{n}(\lambda(\alpha, m-1))$ by $N_m(\alpha)$ or simply by N_m $(m=1, \ldots, m_{\alpha})$. Hereafter i, j, k run over $\{1, \ldots, n(\alpha)\}$ while $p, q, r \longrightarrow \{1, \ldots, \widetilde{n}(\lambda(\alpha, m))\}$ for α and m being considered. Then, if $\mu = \lambda(\alpha, m)$, we have

(1.4)
$$u_{N_{m+p,j}}^{\alpha}(b'a) = \sum_{q} \widetilde{u}_{pq}^{\mu}(b')u_{N_{m+q,j}}^{\alpha}(a) \qquad (by (1.3)).$$

We put for any λ and p

$$\mathfrak{S}_{p}^{\lambda} = \left\{ u_{N_{m}+p,j}^{\alpha}(b) \; \middle/ \; \begin{array}{l} j=1,\; \ldots \;,\; n(\alpha), \; \text{and} \; \left<\alpha,\; m\right> \; \text{runs over} \\ \text{all couples such that} \; \lambda(\alpha,\; m) = \lambda \end{array} \right\}$$

and

$$\mathfrak{H}_{p}^{\lambda} = \mathfrak{L}[\mathfrak{S}_{p}^{\lambda}]$$

³⁾ For the precise meaning of this equality, see [6], pp. 42-45.

where $\mathfrak{L}[\mathfrak{S}]$ denotes the closed linear subspace of $L^2(\mathbf{K})$ spanned by \mathfrak{S} . Then $\mathfrak{S}_{\rho}^{\lambda}$ is a complete orthogonal basis in $\mathfrak{S}_{\rho}^{\lambda}$, and

(1.5)
$$L^{2}(\mathbf{K}) = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{\nu=1}^{\widetilde{n}(\lambda)} \mathfrak{F}_{\rho}^{\lambda}.$$

Making use of these notions, we state here the main theorems.

THEOREM 1.1. Fix an arbitrary element $t \in T$ and natural numbers λ and p $(1 \le p \le \tilde{n}(\lambda))$, and define unitary operators $U_t(g)$, $g \in G$, in the Hilbert space \mathfrak{H}_p^{λ} by

$$(1.6) U_t(g)f(b) = U_t(xa)f(b) = (\langle s_b, t \rangle, x)f(ba) (f \in \mathfrak{S}_b^{\lambda} \subset L^2(\mathbf{K}))$$

for $g = xa^{4}$. Then $\{\delta_{p}^{\lambda}, U_{t}(g)\}$ is an irreducible unitary representation of G; and, for any sequence of complex numbers: $\{\xi_{j}^{\alpha m}/j=1,\ldots,n(\alpha);\ \lambda(\alpha,m)=\lambda\}$ such that $\sum_{|\alpha-m|=1}^{n}\sum_{j=1}^{n}|\xi_{j}^{\alpha m}|^{2}=1$, the function

$$\mathbf{\Phi}(\mathbf{g}) \equiv \mathbf{\Phi}(\mathbf{x}\mathbf{a})$$

(1.7)
$$= \int_{S} (\langle s, t \rangle, x) \left\{ \sum_{\lambda(\alpha, m) = \lambda(\beta, l) = \lambda \neq k} \hat{\varsigma}_{j}^{\alpha m} \overline{\hat{\varsigma}_{k}^{3l}} \times \sum_{i} u_{N_{m+r, i}}^{\alpha}(c_{s}) u_{ij}^{\alpha}(a) \overline{u_{N_{l+r, k}}^{3}(c_{s})} \right\} ds^{5}$$

is a normal elementary 6 p. $d.^{7}$ function on G corresponding to the above irreducible unitary representation.

- 1.2. For any fixed t and λ , the unitary representations $\{\mathfrak{H}_p^{\lambda}, U_t(g)\}$ (defined in 1.1). $p=1,\ldots, \tilde{n}(\lambda)$, are mutually unitary equivalent; while $\{\mathfrak{H}_p^{\lambda}, U_t(g)\}$ and $\{\mathfrak{H}_q^{\lambda}, U_t(g)\}$ are not mutually unitary equivalent for any p and q if $\lambda \neq \mu$.
- 1.3. If $t_1 \neq t_2$, then $\{\mathfrak{H}_p^{\lambda}, U_{t_1}(g)\}$ and $\{\mathfrak{H}_q^{\mu}, U_{t_2}(g)\}$ are not mutually unitary equivalent for any λ , μ and p, q.
- 1.4. Put $\widetilde{\mathfrak{H}}_k^{\vec{i}} \equiv \mathfrak{L}[\{u_{kj}^{\alpha}(b) \mid j=1,\ldots,n(\alpha)\}]$ for any fixed α and k $(1 \leq k \leq n(\alpha))$, and define the unitary operator U(g) in $\widetilde{\mathfrak{H}}_k^{\alpha}$ by

$$(1.8) U(g)f(b) = U(xa)f(b) = U(a)f(b) = f(ba) (f \in \widetilde{\mathfrak{J}}_k^a \subset L^2(\mathbf{K}))$$

for g = xa. Then $\{\tilde{\mathfrak{F}}_k^x, U(g)\}$ is an irreducible unitary representation of G; and

(1.9)
$$\varphi(g) = \varphi(xa) = \sum_{i,j} \xi_i \overline{\xi}_j u_{ij}^a(a), \quad \sum |\xi_i|^2 = 1,$$

is a corresponding normal elementary p. d. function on G.

⁴⁾ Any element $g \in G$ is uniquely expressible in this form by virture of (1.1).

⁵⁾ The function in $\{\ \}$ in the right-hand side is a B-measurable function of s independent of the special choice of the system $\{c_s\}$; — see Lemma 1 (§ 2).

⁶⁾ See [1], § 15.

⁵⁾ p. d. = positive definite.

1.5. $\{\tilde{\mathfrak{H}}_k^a, U(g)\}, k=1,\ldots,n(\alpha),$ are mutually unitary equivalent for any α ; while, if $\alpha \neq \beta$, $\{\tilde{\mathfrak{H}}_k^a, U(g)\}$ and $\{\tilde{\mathfrak{H}}_j^b, U(g)\}$ are not mutually unitary equivalent for any k and j.

1.6. Every irreducible unitary representation of G is unitary equivalent to one of the above stated types. Consequently any normal elementary p. d. function on G is expressible in the form (1.7) or (1.9).

THEOREM 2. Let σ be the Haar measure on the compact group K and ρ be a measure on T such that $\rho(T) < \infty$, and define the unitary operator U(g), $g \in G$, in the Hilbert space $L^2 \equiv L^2(K \times T, \sigma \otimes \rho)^{(8)}$ by

$$U(g)f(b, t) = U(xa)f(b, t) = (\langle s_b, t \rangle, x)f(ba, t) \quad (f \in L^2)$$

for g = xa.

2.1. Let Δ^{λ}_{ν} , $\nu = 1, \ldots, N(\lambda)$ ($\leq \infty$); $\lambda = 1, 2, \ldots$, be subsets of T such that $\rho(\Delta^{\lambda}_{\nu}) > 0$, and $\mathfrak{M}^{\lambda}_{\nu}$ be the totality of functions $\varphi(b, t)$ on $\mathbb{K} \times \Delta^{\lambda}_{\nu}$ of the form:

$$\varphi(b, t) = \sum_{\lambda(\alpha, m) = \sum_{j}} \sum_{u_{N_m+1, j}} u_{N_m+1, j}^{\alpha}(b) \varphi_j^{\alpha m}(t)$$
 (convergence in L^2)

where

$$\sum_{\lambda(\alpha_{j},m)=\lambda} \sum_{j} \int_{\Delta_{\lambda}^{\lambda}} |\varphi_{j}^{\alpha m}(t)|^{2} d\rho(t) < \infty.$$

Then \mathfrak{M}^{λ} is a closed linear subspace of L^2 invariant under U(g), $g \in G$.

2.2. Let $\{f_{ij}^{\alpha m}(t)/j=1,\ldots,n(\alpha);\ \lambda(\alpha,m)=\lambda;\ \nu=1,\ldots,N(\lambda);\ \lambda=1,2,\ldots\}$ be a sequence of functions satisfying:

1°)
$$\sum_{\lambda} \sum_{\nu} \sum_{\lambda(\alpha,m)=\lambda} \sum_{j} \int_{\Delta_{\nu}^{\lambda}} |f_{\nu j}^{\alpha m}(t)|^2 d\rho(t) < \infty,$$

$$2^{\circ}) \sum_{\lambda(\alpha, m) = \lambda} |f_{\nu j}^{\alpha m}(t)|^{2} > 0 \text{ for } \rho - a. \text{ a. } t \in A_{\nu}^{\lambda} \quad (a. \text{ a.} = almost all),$$

3°) for any fixed λ , there is no function $\psi_{\nu\nu}(t)$ for $\nu \neq \nu'$ as follows: $f_{\nu j}^{am}(t) = \psi_{\nu\nu'}(t) f_{\nu j}^{am}(t)$ for all j and all $\langle \alpha, m \rangle (\lambda(\alpha, m) = \lambda)$ for $\rho - a$. $a, t \in A_{\nu}^{\lambda} \cap A_{\nu}^{\lambda}$:

and put

$$f_{\nu}^{\lambda}(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u_{N_m+1, j}^{\alpha}(b) f_{\nu j}^{\alpha m}(t)$$
 (convergence in L^2).

Put $\mathfrak{N}^{\alpha}_{\nu} = \tilde{\mathfrak{h}}^{\alpha}_{1}$ (defined in Theorem 1.4) for $\nu = 1, \ldots, N'(\alpha)$ ($\leq \infty$) and define unitary operators $U(g), g \in G$, by (1.8) and let $\{\xi^{\alpha}_{\nu j} / j = 1, \ldots, n(\alpha); \nu = 1, \ldots, N'(\alpha), \alpha = 1, 2, \ldots\}$ be a sequence as follows:

$$4^{\circ}) \quad \sum_{\alpha} \sum_{\nu} \sum_{j} |\xi^{\alpha}_{\nu j}|^{2} < \infty,$$

⁸⁾ $\sigma \otimes \rho$ denotes the product measure of σ and ρ .

- 5°) $\sum_{j} |\xi_{\nu j}^{\alpha}|^2 > 0$ for any α and ν ,
- 6°) for any fixed α , there is no constant $\eta_{\nu\nu'}$ for $\nu \neq \nu'$ such that $\xi^{\alpha}_{\nu j} = \eta_{\nu\nu'} \xi^{\alpha}_{\nu j}$ for any j;

and put

$$h^{\alpha}_{\nu}(b) = \sum_{i} \xi^{\alpha}_{\nu j} u^{\alpha}_{1j}(b).$$

Let $\{\lambda\}'$ and $\{\alpha\}'$ be subsequences of the sequence $\{1, 2, \ldots\}$ and define the unitary representation $\{\mathfrak{H}, U(g)\}$ of G as the direct sum;

$$(1.10) \qquad \langle \mathfrak{H}, U(g) \rangle = \left[\bigoplus_{(\lambda)'} \bigoplus_{v} \langle \mathfrak{M}_{v}^{\lambda}, U(g) \rangle \right] \oplus \left[\bigoplus_{(\alpha)'} \bigoplus_{v} \langle \mathfrak{N}_{v}^{\alpha}, U(g) \rangle \right]$$

and put

$$(1.11) f^0 = \sum_{\langle \lambda \rangle} \sum_{\nu} f^{\lambda}_{\nu} + \sum_{\langle \alpha \rangle} \sum_{\nu} h^{\alpha}_{\nu}.$$

Then $\{\mathfrak{H}, U(g), f^0\}$ is a cyclic unitary representation of G; the corresponding \mathfrak{h} . d. function $\Psi(g)$ is expressible as follows:

$$\Psi(g) \equiv \Psi(xa)$$

$$(1.12) = \sum_{\langle \lambda \rangle'} \sum_{\nu} \int_{\Delta_{\nu}^{\lambda}} d\rho(t) \int_{s} \left\{ \sum_{\lambda(\alpha, m) = \lambda(\beta, l) = \lambda} \sum_{j,k} f_{\nu j}^{\alpha m}(t) \overline{f_{\nu k}^{\beta l}(t)} \times \left(\langle s, t \rangle, x \right) \sum_{r_{i}} u_{N_{m}+r, i}^{\alpha}(c_{s}) u_{ij}^{\alpha}(a) \overline{u_{N_{l}+r, k}^{\beta}(c_{s})} ds + \sum_{\langle \alpha \rangle'} \sum_{k} \sum_{j} \sum_{k} \xi_{\nu j}^{\alpha} \overline{\xi_{\nu i}^{\alpha}} u_{ij}^{\alpha}(a).$$

- 2.3. If we replace $u^{\alpha}_{N_m+1,j}(b)$ in the definition of $\mathfrak{M}^{\lambda}_{\nu}$ in 2.1 by $u^{\alpha}_{N_m+p,j}(b)$ and $\tilde{\mathfrak{H}}^{\alpha}_{1}$ in 2.2 by $\tilde{\mathfrak{H}}^{\alpha}_{k}$ where p may depend on ν and $\lambda = \lambda(\alpha, m)$, and k—on α and ν , then we obtain a cyclic unitary representation of G which is unitary equivalent to the original one.
- 2.4. Every cyclic unitary representation of G is unitary equivalent to that of above stated type, and any p. d. function on G is expressible in the form (1,12).

THEOREM 3. (Generalization of Bochner's theorem) Any p. d. function $\Psi(g)$ on G is expressible by means of normal elementary p. d. functions in the following form:

$$\Psi(g) = \sum_{\lambda=1}^{\infty} \sum_{\nu=1}^{\infty} \widehat{\xi}_{\nu}^{\lambda} \int_{\Delta_{\nu}^{\lambda}} \Phi_{\nu}^{\lambda}(g; t) d\rho(t) + \sum_{\alpha=1}^{\infty} \sum_{\nu=1}^{\infty} \eta_{\nu}^{\alpha} \Phi_{\nu}^{\alpha}(g)$$

where $\Phi_{\nu}^{\lambda}(g, t)$ and $\Phi_{\nu}^{\alpha}(g)$ are normal elementary p. d. functions (cf. (1.7), (1.9) and (1.12)), $\Delta_{\nu}^{\lambda} \subset T$ and ξ_{ν}^{λ} , $\eta_{\nu}^{\alpha} \geq 0$, $\sum_{\lambda \nu} \xi_{\nu}^{\lambda} \rho(\Delta_{\nu}^{\lambda}) < \infty$, $\sum_{\alpha \nu} \eta_{\nu}^{\alpha} < \infty$.

We shall prove these theorems in § 4 by making use of results of §§ 2 and 3.

Remark. The argument in this paper may be applied to any Lie group G of the following type: G has a closed normal subgroup V isomorphic to a vector group and the factor group G/V is compact.

§ 2. Unitary representations of G in $L^2(K)$. We fix an element $t_0 \in T$ and denote $(\langle s, t_0 \rangle, x)$ by (s, x) briefly, and define unitary operators U(g), $g \in G$, in the Hilbert space $L^2(K)$ as follows:

$$U(g)f(b) = U(xa)f(b) = (s_b, x)f(ba)$$
 $(f \in L^2(\mathbf{K}))$ for $g = xa$.

We shall use notations defined in §1, but, in this paragraph, (.,.) and $\|.\|$ denote respectively the inner product and the norm in $L^2(\mathbf{K})$.

The following lemma may be verified by making use of (1.4) and the orthogonality-relation of the system $\{\widetilde{u}_{pq}^{\lambda}(b')\}$ in $L^2(\mathbf{K}')$.

LEMMA 1. For any $a \in K$ and any $s \in S$, it holds that

$$\int_{\mathbf{K}'} u_{N_m+p,j}^{\alpha}(b'c_sa) \overline{u_{N_l+q,k}^{\alpha}(b'c_s)} db'$$

$$= \begin{cases} \sum_{r_i} u_{N_m+r,j}^{\alpha}(c_s) u_{ij}^{\alpha}(a) u_{k,N_m+r}^{\alpha}(c_s^{-1}) / \tilde{n}(\lambda(\alpha, m)) \\ & \qquad \qquad if \quad \lambda(\alpha, m) = \lambda(\beta, l) \quad and \quad p = q, \\ 0 \qquad \qquad if \quad not; \end{cases}$$

and consequently, for any a, the function of the form in the right-hand side of above equality is a B-measurable function of s independent of the special choice of the system $\{c_s\}$ (see § 1).

Next, if we put $\overline{\mathfrak{G}}_{b}^{\lambda} = \mathfrak{L}[\{U(g)f \mid f \in \mathfrak{F}_{b}^{\lambda}, g \in G\}], \text{ then we have}$

Lemma 2. If $\lambda \neq \mu$ or $p \neq q$, then $\overline{\mathfrak{F}}_p^{\lambda}$ and $\overline{\mathfrak{F}}_q^{\mu}$ are mutually orthogonal in $L^2(\mathbf{K})$.

Proof. It is sufficient to prove that $(U(g)\varphi, \psi) = 0$ for any $\varphi \in \mathfrak{H}_p^{\lambda}$, $\psi \in \mathfrak{H}_q^{\mu}$ and any $g \in G$. φ , ψ and g are expressible in the form:

$$\varphi = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} \hat{\varsigma}_{j}^{\alpha m} u_{N_{m}+p, j}^{\alpha}, \quad \psi = \sum_{\lambda(\beta, l) = \mu} \sum_{k} \gamma_{k}^{\beta l} u_{N_{l}+q, k}^{\beta}, \quad g = xa.$$

Hence we have

$$(U(g)\varphi, \ \psi) = \int_{\mathbf{K}} (s_b, \ x)\varphi(ba)\overline{\psi(b)}db$$
$$= \int_{s} (s, \ x)ds \int_{\mathbf{K}'} \varphi(b'c_s a)\overline{\psi(b'c_s)}db' = 0$$

by (1.2) and Lemma 1, q.e.d.

COROLLARY. $\overline{\mathfrak{D}}_p^{\lambda} = \mathfrak{D}_p^{\lambda}$; consequently \mathfrak{D}_p^{λ} is a subspace of $L^2(\mathbf{K})$ invariant under $U(g), g \in \mathbf{G}$.

This fact is proved from (1.5) and Lemma 2.

LEMMA 3. For any given λ and p, we fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m) = \lambda$ and put $k = N_m(\alpha) + p$. If $\varphi \in \mathcal{S}_p^{\lambda}$ and if the p. d. function $(U(g)\varphi, \varphi)^{\mathfrak{g}_p}$ on G is a minorant O of the p. d. function $(U(g)u_{kk}, u_{kk}^{\alpha})$, then $\varphi = \xi u_{kk}^{\alpha}$, ξ being a complex number.

Proof. By the assumption and by Corollary of Lemma 2, there exists an element $\psi \in \mathfrak{H}_{h}^{\lambda}$ such that

$$(2.1) (U(g)\varphi, \varphi) + (U(g)\psi, \psi) = (U(g)u_{kk}^{a}, u_{kk}^{a}),$$

especially, putting $g = a \in K$, we have

$$\int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db + \int_{\mathbf{K}} \psi(ba) \overline{\psi(b)} db = u_{kk}^{\alpha}(a) / n(\alpha).$$

Each term of the left-hand side is p. d. function of $a \in K$, while $u_{kk}^a(a)$ is an elementary p. d. function on K. Hence we have

(2.2)
$$\begin{cases} \int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db = \eta u_{kk}^{2}(a)/n(\alpha) \\ \int_{\mathbf{K}} \psi(ba) \overline{\psi(b)} db = (1-\eta) u_{kk}^{2}(a)/n(\alpha) \end{cases}$$

On the other hand, φ is expressible in the form:

$$\varphi = \sum_{\lambda(3,-l)=\lambda} \sum_{j} \hat{\varsigma}_{j}^{3l} u_{N_l+p,j}^3.$$

Hence it follows from the orthogonality-relation of $\{u_{ij}^n(b)\}$ that

$$\int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db = \sum_{\lambda(s,b) = \lambda} \sum_{i,j} \xi_{ij}^{a_{ij}} \hat{\xi}_{i}^{a_{ij}} u_{ij}^{a_{ij}}(a) / n(\beta).$$

From this equality and (2.2), we get

$$\sum_{l=1}^{\lambda(\beta,|l|=\lambda)} |\hat{s}_{j}^{3l}|^{2} = \eta \delta_{lphaeta} \delta_{kj} \quad (\delta: ext{Kronecker's delta})$$

where $\sum_{l}^{\lambda(\beta, \ l)=\lambda}$ means the summation for all l such that $\lambda(\beta, \ l)=\lambda$ for fixed β . Hence φ may be expressible as follows:

(2.3)
$$\varphi(b) = \sum_{l}^{\lambda(\alpha, l) = \lambda} \xi_{l} u_{N_{l}+p, k}^{\alpha}(b), \quad \sum_{l}^{\lambda(\alpha, l) = \lambda} |\xi_{l}|^{2} = \eta.$$

Similarly we get

⁹⁾ See [1], § 7.

¹⁰⁾ See [1], § 11; —— of couse, we do not mean the trivial one: the function identically equal to zero.

¹¹⁾ See Theorem 7 in [1].

(2.3')
$$\phi(b) = \sum_{l}^{\lambda(\alpha,l)=\lambda} \eta_{l} u_{N_{l}+p,k}^{\alpha}(b), \qquad \sum_{l}^{\lambda(\alpha,l)=\lambda} |\eta_{l}|^{2} = 1 - \eta.$$

Consequently

(2.4)
$$\sum_{l}^{\lambda(\alpha, l) = \lambda} \{ |\xi_{l}|^{2} + |\eta_{l}|^{2} \} = 1.$$

If we put $g = x \in V$ in (2.1), we have (by (1.2))

$$\int_{S} (s, x) ds \int_{\mathbf{K}'} |\varphi(b'c_{s})|^{2} db' + \int_{S} (s, x) ds \int_{\mathbf{K}'} |\psi(b'c_{s})|^{2} db'$$

$$= \int_{S} (s, x) ds \int_{\mathbf{K}'} |u_{kk}^{\alpha}(b'c_{s})|^{2} db'.$$

Since $\varphi(b)$ and $\varphi(b)$ are continuous by (2.3) and (2.3'), and since $x \in V$ is arbitrary in the above equality, we obtain for any $s \in S$

$$\int_{\mathbf{K}'} |\varphi(b'c_s)|^2 db' + \int_{\mathbf{K}'} |\psi(b'c_s)|^2 db' = \int_{\mathbf{K}'} |\mathbf{u}_{kk}^a(b'c)|^2 db'.$$

Putting $s = s_e$ (whence we may put $c_s = e$) in this equality, we have

(2.5)
$$\int_{\mathbf{K}'} |\varphi(b')|^2 db' + \int_{\mathbf{K}'} |\psi(b')|^2 db' = \int_{\mathbf{K}'} |u_{kk}^a(b')|^2 db'$$
$$= \widetilde{u}_{bb}^{\lambda}(e)/\widetilde{n}(\lambda) \neq 0.$$

By (1.3) and by the assumption: $k = N_m(\alpha) + p$,

$$u_{N_l+b,k}^a(b') \equiv 0$$
 on K' for $l \neq m$.

Hence, from (2.3), (2,3') and (2.5), we get

$$|\hat{z}_m|^2 + |\eta_m|^2 = 1.$$

From this and (2.4), we obtain $\xi_l = \eta_l = 0$ for $l \neq m$, and hence $\varphi = \xi_m u_{N_m + p, k}^{\alpha}$ by (2.3), q.e.d.

Lemma 3. Let α , m and k be as in Lemma 3 for any given λ and p. Then $\{\delta_p^{\lambda}, U(g), u_{kk}^{\alpha}\}$ is a cyclic unitary representation of G.

Proof. For any β , l and any i, j $(1 \le i, j \le n(\beta))$ it holds that

$$u_{N_l+b,i}^3 \in \mathfrak{Q}[\langle U(a)u_{N_l+b,i}^3 / a \in K(\subset G) \rangle]$$

by the irreducibility of $U^3(a)$ as a representation of K. By virtue of this fact and Corollary of Lemma 2, it suffices to prove that $\lambda(\beta, l) = \lambda$ implies

$$(2.6) u_{N_{i}+p_{i-1}}^{\beta} \in \Omega[\{U(g)u_{ki}^{\alpha} / j = 1, \dots, n(\alpha); g \in G\}].$$

Now, if $\lambda(\beta, l) = \lambda = \lambda(\alpha, m)$, then, by Lemma 1, the functions $\varphi_j(s)$ $(j = 1, \ldots, n(\alpha))$ defined by

$$\varphi_{j}(s) \equiv \widetilde{n}(\lambda) \int_{\mathbf{K}'} u_{N_{l}+p,1}^{\beta}(b'c_{s}) \cdot \overline{u_{N_{m}+p,j}^{\alpha}(b'c_{s})} db'$$
$$= \sum_{q} u_{N_{l}+q,1}^{\beta}(c_{s}) u_{j,N_{m}+q}^{\alpha}(c_{s}^{-1})$$

are bounded B-measurable functions on S and it holds for any r $(1 \le r \le \tilde{n}(\lambda))$ and any $s \in S$ that

$$\sum_{j} u_{Nm+r,j}^{\alpha}(c_{s}) \varphi_{j}(s) = \sum_{q} \sum_{j} u_{Nm+r,j}^{\alpha}(c_{s}) u_{j,Nm+q}^{\alpha}(c_{s}^{-1}) u_{Nl+q,1}^{\beta}(c_{s})$$

$$= \sum_{q} u_{Nm+r,Nm+q}^{\alpha}(e) u_{Nl+q,1}^{\beta}(c_{s}) = u_{Nl+r,1}^{\beta}(c_{s}).$$

Hence, by means of the relation: $u_{N_l+p, N_l+q}^{\beta}(b') = \widetilde{u}_{pq}^{\lambda}(b') = u_{N_m+p, N_m+q}^{\sigma}(b')$, we get (for $b = b'c_s$)

$$u_{N_{l}+p,1}^{\beta}(b) = \sum_{r} u_{N_{l}+p,N_{l}+r}^{\beta}(b') u_{N_{l}+r,1}^{\beta}(c_{s})$$

$$= \sum_{r} u_{N_{m}+p,N_{m}+r}^{\alpha}(b') u_{N_{m}+r,j}^{\alpha}(c_{s}) \varphi_{j}(s) = \sum_{i} u_{N_{m}+p,j}^{\alpha}(b) \varphi_{j}(s).$$

On the other hand, there exist complex numbers $\xi_{j\nu}$ and elements $x_{j\nu}$ of $V(\nu = 1, \ldots, N(j))$ for any $\varepsilon > 0$ and every j such that

$$\int_{S} |\varphi_{j}(s) - \sum_{\nu} \xi_{j\nu} \cdot (s, x_{j\nu})|^{2} ds < \varepsilon^{2}/n(\alpha)^{2},$$

since $\varphi_j(s)$, $j=1,\ldots,n(\alpha)$, are bounded and B-measurable on S. Therefore, by simple calculation, we get

$$||u_{N_l+p,1}^{\beta} - \sum_{j\nu} \xi_{j\nu} U(x_{j\nu}) \cdot u_{N_m+p,j}^{\alpha}|| < \varepsilon.$$

This result shows (2.6), q.e.d.

PROPOSITION 1. $\{\mathfrak{H}_{p}^{\lambda},\ U(g)\}$ is an irreducible unitary representation of G for any λ and p $(1 \le p \le \tilde{n}(\lambda))$.

This proposition is clear by Corollary of Lemma 2, Lemmas 3 and 4, and Theorem 7 in [1].

COROLLARY. i) If a unitary operator U in \mathfrak{H}_p^{λ} is permutable with any U(g), $g \in G$, then $U = \xi I$, $|\xi| = 1$; consequently ii) If φ , $\psi \in \mathfrak{H}_p^{\lambda}$ and $(U(g)\varphi, \varphi) = (U(g)\psi, \varphi)$ for any $g \in G$, then $\psi = \xi \varphi$, $|\xi| = 1$.

These are immediate results of Proposition 1.

PROPOSITION 2. For any fixed λ , the unitary representations $\{\mathfrak{H}_p^{\lambda}, U(g)\}$, $p = 1, \ldots, \widetilde{n}(\lambda)$, are mutually unitary equivalent.

Proof. We fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m) = \lambda$. Then $\{ \mathfrak{F}_p^{\lambda}, U(g), u_{N_m+p,1}^{\alpha} \}$, $p = 1, \ldots, \widetilde{n}(\lambda)$, are cyclic unitary representations of G (by Lemma

4). Hence it is sufficient to prove that p. d. functions $(U(g)u_{Nm+p,1}^a, u_{Nm+p,1}^a)$, $p = 1, \ldots, \tilde{n}(\lambda)$, are mutually identical. For any $g = xa \in G$, we have by (1.2) and Lemma 1

$$\begin{split} (U(g)u_{N_{m}+p,1}^{\alpha}, \ u_{N_{m}+p,1}^{\alpha}) &= \int_{S}(s, \ x)ds \int_{\mathbf{K}'} u_{N_{m}+p,1}^{\alpha}(b'c_{s}a) \overline{u_{N_{m}+p,1}^{\alpha}(b'c_{s})}db' \\ &= \int_{S}(s, \ x) \left\{ \sum_{qi} u_{N_{m}+q,i}^{\alpha}(c_{s}) u_{i1}^{\alpha}(a) u_{1,N_{m}+q}^{\alpha}(c_{s}^{-1})/\widetilde{n}(\lambda) \right\} ds \,; \end{split}$$

this is independent of p, q.e.d.

PROPOSITION 3. If $\lambda \neq \mu$, then the unitary representations $\{ \mathfrak{H}_p^{\lambda}, U(g) \}$ and $\{ \mathfrak{H}_q^{\mu}, U(g) \}$ are not mutually unitary equivalent for any p and q.

Proof. By Proposition 2, it suffices to prove this for p=q=1. We denote the operator U(g) considered in \mathfrak{H}_1^{λ} and \mathfrak{H}_1^{μ} by $U_1(g)$ and $U_2(g)$ respectively. If $\{\mathfrak{H}_1^{\lambda}, U_1(g)\}$ is unitary equivalent to $\{\mathfrak{H}_1^{\mu}, U_2(g)\}$, then there exists a unitary transformation U of \mathfrak{H}_1^{λ} onto \mathfrak{H}_1^{μ} such that $U_2(g)=U\cdot U_1(g)\cdot U^{-1}$. We fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m)=\lambda$, and put $k=N_m(\alpha)+1$. Then $u_{kk}^{\alpha}\in\mathfrak{H}_1^{\lambda}$ and $f=U\cdot u_{kk}^{\alpha}\in\mathfrak{H}_1^{\mu}$. The element f is expressible in the form: $f=\sum_{\lambda(\beta,l)=\mu}\sum_{j}\xi_{j}^{\beta l}u_{N_{l+1},j}^{\beta}$, and hence for any $a'\in\mathbf{K}'$

$$(U_2(a')f, f) = \sum_{\lambda(\beta, l) = \mu} \sum_{i,j} \xi_j^{\beta,l} \overline{\xi_i^{\beta,l}} u_{ij}^{\beta}(a')/n(\beta)$$

= $\sum_{\nu q} \tilde{u}_{pq}^{\nu}(a') \sum_{\lambda(\beta, l) = \mu} \xi_{N_l + q}^{\beta,l} \overline{\xi_{N_l + p}^{\beta,l}}/n(\beta)$ (by (1.3)).

On the other hand

$$(U_2(a')f, f) = (U \cdot U_1(a') \cdot U^{-1}f, f)$$

= $(U_1(a')u^{\alpha}_{bb}, u^{\alpha}_{bb}) = \tilde{u}^{\lambda}_{11}(a')/n(\alpha).$

This is a contradiction, because $\lambda \neq \mu$ implies that $\widetilde{u}_{pq}^{\mu}(a')$ and $\widetilde{u}_{11}^{\lambda}(a')$ are mutually orthogonal in $L^2(\mathbf{K}')$ for any p and q, q.e.d.

§ 3. Unitary representations of G in $L^2(\mathbb{K}\times T,\ \sigma\otimes\rho)$. Let Δ be a subset of T and $\mathfrak{M}^{\lambda}_{\rho}(\Delta)$ be the totality of functions $\varphi(b,\ t)\in L^2\equiv L^2(\mathbb{K}\times\Delta,\ \sigma\otimes\rho)$ of the form

$$\varphi(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u_{N_{m}+p, j}^{\alpha}(b) \varphi_{pj}^{\alpha m}(t), \quad \sum \sum \int_{\Delta} |\varphi_{pj}^{\alpha m}(t)|^2 d\rho(t) < \infty.$$

We may prove easily the following

Lemma 5. Any function $\varphi(b, t) \in L^2(\mathbb{K} \times T, \sigma \otimes \rho)$ is uniquely expressible in the form:

(3.1)
$$\varphi(b, t) = \sum_{\mu} \sum_{n} \sum_{\lambda(\alpha, m) = \mu, j} u_{Nm+p, j}^{\alpha}(b) \varphi_{jj}^{\alpha m}(t) \quad (convergence \ in \ L^2)$$

where

(3.2)
$$\varphi_{bj}^{\alpha m}(t) = \int_{\mathbf{K}} \varphi(b, t) \overline{u_{N_m + p, j}^{\alpha}(b)} db;$$

and consequently

$$(3.3) \qquad \sum_{\mu} \sum_{p} \sum_{\lambda(\alpha,m)=\mu} \sum_{j} \int_{T} |\varphi_{jj}^{\alpha m}(t)|^{2} d\rho(t) = \int_{\mathbf{K} \times T} |\varphi(b,t)|^{2} db d\rho(t).$$

PROPOSITION 4. $\mathfrak{M}_{\rho}^{\lambda}(\Delta)$ is a closed linear subspace of $L^{2}(\mathbb{K}\times T, \sigma\otimes\rho)$ invariant under $U(g), g\in \mathbb{G}$, defined in Theorem 2.1.

It is clear from the definition of U(g) and by Lemma 2 that $\mathfrak{M}_{\rho}^{\lambda}(A)$ is a linear subspace of $L^{2}(\mathbb{K}\times T, \sigma\otimes\rho)$ invariant under U(g), $g\in G$. The closedness of $\mathfrak{M}_{\rho}^{\lambda}(A)$ may be proved by virtue of Lemma 4.

Thus $\{\mathfrak{M}_p(A), U(g)\}$, $p=1,\ldots, \tilde{n}(\lambda)$; $\lambda=1,2,\ldots,$ may be considered as unitary representations of G.

LEMMA 6. If $f_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$, $f_2 \in \mathfrak{M}_p^{\mu}(\Delta_2)$ and if p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ have a common minorant, then there exist a Borel set $\Delta_0 \subset \Delta_1 \cap \Delta_2$ such that $\rho(\Delta_0) > 0$ and a B-measurable function $\omega(t)$ defined on Δ_0 such that $0 < |\omega(t)| < \infty$ and $f_1(b, t) = \omega(t)f_2(b, t)$ for $\sigma - a$. a. $b \in K$ for $\rho - a$. a. $t \in \Delta_0$; consequently $\lambda = \mu$.

Proof. Let $\Psi(g)$ be a common minorant of $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$. Then, by Theorem 5 in [1], $\Psi(g)$ is expressible as follows:

$$(3.4) \Psi(g) = (U(g)\psi_1, \ \psi_1) = (U(g)\psi_2, \ \psi_2), \quad \psi_1 \in \mathfrak{M}_b^{\lambda}(\Delta_1), \quad \psi_2 \in \mathfrak{M}_b^{\mu}(\Delta_2);$$

furthermore there exist $\varphi_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$ and $\varphi_2 \in \mathfrak{M}_p^{\mu}(\Delta_2)$ such that

$$\int_{\mathbf{K}\times T} (\langle s_b, t \rangle, y)(\langle s_b, t \rangle, x) f_{\nu}(ba, t) \overline{f_{\nu}(b, t)} db d\rho(t)
= \int_{\mathbf{K}\times T} (\langle s_b, t \rangle, y) \{(\langle s_b, t \rangle, x) \psi_{\nu}(ba, t) \overline{\psi_{\nu}(b, t)} + (\langle s_b, t \rangle, x) \psi_{\nu}(ba, t) \overline{\psi_{\nu}(b, t)} db d\rho(t), \quad \nu = 1, 2,$$

for any y, $x \in V$ and $a \in K$ (we put $f(b, t) \equiv 0$ on $K \times (T - A_{\tau})$ for any function $\in \mathfrak{M}_{p}^{\lambda}(A_{\tau})$). For any Borel set $A \subseteq T$, the characteristic function of the set $K \times A$ may be approximated in $L^{2}(K \times T, \sigma \otimes \rho)$ by means of linear combinations of "characters" $(\langle s_{b}, t \rangle, y)$. Hence (3.5) implies that

(3.6)
$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_{\nu}(ba, t) \overline{f_{\nu}(b, t)} db$$
$$= \int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_{\nu}(ba, t) \overline{\psi_{\nu}(b, t)} db + C$$

¹²⁾ See the foot-note 10).

$$+ \int_{\mathbf{K}} (\langle s_b, t \rangle, x) \varphi_{\nu}(ba, t) \varphi_{\nu}(b, t) db, \quad \nu = 1, 2,$$

for any $x \in V_0$ and $a \in K_0$ for ρ —a. a. $t \in T$ where V_0 and K_0 are dense subsets of V and K respectively such that $\overline{V}_0 = \overline{K}_0 = \S_0$; and hence, by Lebesgue's convergence theorem, (3.6) is true for any $x \in V$ and $a \in K$ for ρ —a. a. $t \in T$. Similar argument shows that (3.4) implies

(3.7)
$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_1(ba, t) \overline{\psi_1(b, t)} db$$
$$= \int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_2(ba, t) \overline{\psi_2(b, t)} db$$

for ρ —a. a. $t \in T$. Each term in (3.6) and (3.7) expresses a p. d. function of g = xa; especially the left-hand side of (3.6) expresses an elementary p. d. function corresponding to the irreducible unitary representation $\{\mathcal{S}_{p}^{\lambda}, U_{t}(g)\}$ or $\{\mathcal{S}_{p}^{\mu}, U_{t}(g)\}$ stated in §2 if $\nu = 1$ or $\nu = 2$ respectively. Hence, by Theorem 7 in [1], there exists a function $\omega_{0}(t) \geq 0$ such that

$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_1(ba, t) \overline{f_1(b, t)} db$$

$$= \omega_0(t) \int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_2(ba, t) f_2(b, t) db$$

for any $x \in V$ and $a \in K$ for a. a. $t \in T$, and hence, by Proposition 3 and Corollary of Proposition 1, we obtain that $\lambda = \mu$ and that

$$f_1(b, t) = \omega(t)f_2(b, t)$$
 for σ —a. a. b

for ρ —a. a. t for a certain $\omega(t)$ $(|\omega(t)|^2 = \omega_0(t))$, which is B-measurable in t by Fubini's theorem. If we put

$$\Delta_0 = \left\{ t / \int_{\mathbf{K}} |\psi_1(b, t)|^2 db = \int_{\mathbf{K}} |\psi_2(b, t)|^2 db \neq 0 \right\} \quad \text{(see (3.7))},$$

then we may easily show that the set Δ_0 and the function $\omega(t)$, considered on Δ_0 , have the properties stated in Lemma 6, q.e.d.

PROPOSITION 5. The unitary representations $\{\mathfrak{M}_p^{\lambda}(\Delta), U(g)\}$ and $\{\mathfrak{M}_q^{\lambda}(\Delta), U(g)\}$ are mutually unitary equivalent for any p and q $(1 \leq p, q \leq \tilde{n}(\lambda))$.

This fact is easily verified from the definition of $\mathfrak{M}_p^{\lambda}(\Delta)$ and by Proposition 2.

PROPOSITION 6. If $\lambda \neq \mu$, then, for any p, q, any Δ_1 , Δ_2 , and any $f_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$ and $f_2 \in \mathfrak{M}_q^{\mu}(\Delta_2)$, the p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ are mutually disjoint.¹³⁾

¹³) See [1], § 12.

This proposition is evident by Lemma 6, Proposition 5 and the definition of $\mathfrak{M}_{D}^{\lambda}(\Delta)$.

PROPOSITION 7. Assume that $f_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$ and $f_2 \in \mathfrak{M}_p^{\lambda}(\Delta_2)$. In order that the p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ are not mutually disjoint, it is necessary and sufficient that there exist a Borel set $\Delta \subset \Delta_1 \cap \Delta_2$ such that $\rho(\Delta) > 0$ and a B-measurable function $\omega(t)$ defined on Δ such that $0 < |\omega(t)| < \infty$ and that $f_1(b, t) = \omega(t)f_2(b, t)$ for $\sigma - a$. a. $b \in K$ for $\rho - a$. a. $t \in \Delta$.

Proof. The necessity is clear by Lemma 6.

To prove the sufficiency, we put $\omega_1(t) = \min\{1, |\omega(t)|\}$ on Δ and define

$$f(b, t) = \begin{cases} \omega_1(t)f_1(b, t) & \text{on } \mathbf{K} \times \mathbf{\Delta}, \\ 0 & \text{on } \mathbf{K} \times (T - \mathbf{\Delta}). \end{cases}$$

Then we may prove that $f \in \mathfrak{M}_{p}^{\lambda}(\Delta) \subset \mathfrak{M}_{p}^{\lambda}(\Delta_{1}) \cap \mathfrak{M}_{p}^{\lambda}(\Delta_{2})$ and that p. d. function (U(g)f, f) is a common minorant of $(U(g)f_{1}, f_{1})$ and $(U(g)f_{2}, f_{2})$, q.e.d.

PROPOSITION 8. In order for $\{\mathfrak{M}_p^{\lambda}(\Delta), U(g), f\}$ $(f \equiv f(b, t) \in \mathfrak{M}_p^{\lambda}(\Delta))$ to be a cyclic unitary representation of G, it is necessary and sufficient that $f(b, t) \equiv 0$ as an element of $\mathfrak{H}_p^{\lambda}(\subset L^2(K))$ for $\rho - a$. a. $t \in \Delta$.

Proof. The necessity is clear by the definition of U(g). We shall prove the sufficiency. Put

$$\mathfrak{M}' = \mathfrak{Q}[\{U(g)f \mid g \in \mathbf{G}\}]$$

and let φ be any element of $\mathfrak{M}_p^{\lambda}(\Delta) \ominus \mathfrak{M}'$. Then

$$\int_{\mathbf{K}\times\Delta} (\langle s_b, t\rangle, x) f(ba, t) \overline{\varphi(b, t)} db d\rho(t) = 0 \quad \text{for any } x \text{ and } a.$$

By the similar argument as in the proof of Lemma 6, it follows from the above equality that

$$\int_{\mathbb{R}} (\langle s_b, t \rangle, x) f(ba, t) \overline{\varphi(b, t)} db = 0 \quad \text{for any } x \text{ and } a$$

for ρ —a. a. $t \in \Delta$. Since the unitary representation $\{\mathfrak{H}^{\lambda}_{\rho}, U_{t}(g)\}$ is irreducible for any t (Proposition 1) and since $f \neq 0$ in $\mathfrak{H}^{\lambda}_{\rho}$ for ρ —a. a. $t \in \Delta$ by the assumption, we get $\varphi(b, t) \equiv 0$ in $\mathfrak{H}^{\lambda}_{\rho}$ for ρ —a. a. $t \in \Delta$, and hence $\varphi(b, t) \equiv 0$ in $\mathfrak{M}^{\lambda}_{\rho}(\Delta)$. Thus we obtain $\mathfrak{M}' = \mathfrak{M}^{\lambda}_{\rho}(\Delta)$, q.e.d.

§ 4. Proof of Theorems. Throughout this paragraph, we notice that the space $\mathfrak{M}^{\lambda}_{\nu}$ defined in Theorem 2 is identical with the space $\mathfrak{M}^{\lambda}_{1}(\mathcal{L}^{\lambda}_{\nu})$ in the notation stated in § 3 for any λ and ν .

Theorems 1.1 and 1.2 have been proved in §2—the formula (1.7) may

be shown by calculating $\Phi(g) \equiv (U(g)f, f)$, $f = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} \hat{\varsigma}_{jm}^{\alpha} u_{N_m + p, j}^{\alpha}$. Theorems 1.4 and 1.5 are evident from the fact $G/V \cong K$ and by Peter-Weyl's theory. (Theorem 1.3 shall be proved after the proof of Theorems 2.1—2.3.)

Next, let $\mathfrak{M}^{\lambda}_{\nu}$ and f^{λ}_{ν} ($\nu=1,\ldots,N(\lambda)$; $\lambda=1,2,\ldots$) be as stated in Theorem 2. Theorem 2.1 have been proved in §3 (Proposition 4). By the conditions 1°) and 2°), we have $f^{\lambda}_{\nu} \in \mathfrak{M}^{\lambda}_{\nu}$ and $f^{\lambda}_{\nu}(b,t) \equiv 0$ in $\mathfrak{H}^{\lambda}_{\nu}(\subset L^{2}(\mathbf{K}))$ for ρ —a. a. $t \in \mathcal{A}^{\lambda}_{\nu}$. Hence the unitary representation $\{\mathfrak{M}^{\lambda}_{\nu}, U(g), f^{\lambda}_{\nu}\}$ is cyclic by Proposition 8 for every λ and ν . The p. d. functions $(U(g)f^{\lambda}_{\nu}, f^{\lambda}_{\nu}), \nu=1, 2, \ldots$, are mutually disjoint from the condition 3°) and by Proposition 7. Hence, by Theorem 8 in [1], the direct sum $\{\bigoplus_{\nu} \mathfrak{M}^{\lambda}_{\nu}, U(g), f^{\lambda}\}$, $f^{\lambda} = \sum_{\nu} f^{\lambda}_{\nu}$, is a cyclic unitary representation of G. We may further show by Proposition 6 that the p. d. functions $(U(g)f^{\lambda}, f^{\lambda})$ and $(U(g)f^{\mu}, f^{\mu})$ are mutually disjoint for $\lambda \neq \mu$. Similar argument is possible for $\{\mathfrak{N}^{\nu}_{\nu}, U(g)\}$, $\nu=1,\ldots,N'(\alpha)$; $\alpha=1,2,\ldots$. Therefore, by the same argument as in the proof of Theorem 2 in [2], we may prove that the unitary representation $\{\mathfrak{H}, U(g), f^{0}\}$ stated in Theorem 2.2 is cyclic. The formula (1.12) may be verified by calculating $\Psi(g)=(U(g)f^{0}, f^{0})$. Theorem 2.2 is thus proved. Theorem 2.3 may be seen by Proposition 5.

We now prove Theorem 1.3. If $\{\delta_p^{\lambda}, U_{t_1}(g)\}$ and $\{\delta_q^{\mu}, U_{t_2}(g)\}$ $(t_1 \neq t_2)$ are mutually unitary equivalent, there exist $f_1 \in \delta_p^{\lambda}$ and $f_2 \in \delta_q^{\mu}$ such that $(U_{t_1}(g)f_1, f_1) = (U_{t_2}(g)f_2, f_2)$ for any $g \in G$, and hence the direct sum $\{\delta_p^{\lambda} \oplus \delta_q^{\mu}, U(g), f_1 + f_2\}$ $(U(g) = U_{t_1}(g) \oplus U_{t_2}(g))$ is not cyclic by Theorem 8 in [1]. But we may prove by means of Theorems 2.2 and 2.3 verified above that $\{\delta_p^{\lambda} \oplus \delta_q^{\mu}, U(g), f_1 + f_2\}$ is a cyclic unitary representation of G. That is a contradiction.

In order to prove Theorems 1.6 and 2.4, we first modify Lemma 2 in [2] to the following form:

LEMMA 7. Let \widetilde{X} , S, T and K be as stated in §1 and $F(\Lambda)$ ($\Lambda \subset \widetilde{X} \equiv S \times T$) be a measure on \widetilde{X} such that $F(\widetilde{X}) < \infty$, and assume that there exists a nonnegative function $u(a; \chi)$ on $K \times \widetilde{X}$, measurable in $\langle a, \chi \rangle$ and summable on \widetilde{X} with respect to F for every $a \in K$, such that

$$(4.1) F(\Lambda a) = \int u(a; \chi) dF(\chi) (\Lambda a = \{\chi a \mid \chi \in \Lambda\})$$

for any $A \subseteq \widetilde{X}$ and any $a \in K$. Then there exist a non-negative B-measurable function $\omega(s, t)$ on $\widetilde{X} \equiv S \times T$ and a measure $\rho(\Delta)$ on T, $\rho(T) < \infty$, such that

(4.2)
$$F(\Lambda) = \int_{\Lambda} \omega(s, t) ds d\rho(t) \quad \text{for any} \quad \Lambda \subset \widetilde{X},$$

ds being the invariant measure on S defined in § 1.

Proof. We put $B_{\Lambda} = \{\langle b, t \rangle / \langle s_b, t \rangle \in \Lambda \} \subset \mathbb{K} \times T$ (see § 1) for any $A \subset \widetilde{X} = S \times T$, and define a measure $F^*(B)$ on $\mathbb{K} \times T$ by the formula:

(4.3)
$$\int_{\mathbf{K} \times T} \varphi(b, t) dF^*(b, t) = \int_{S \times T} dF(s, t) \int_{\mathbf{K}'} \varphi(b'c_s, t) db' \quad (\text{see } \S 1)$$

for any continuous function $\varphi(b, t)$ on $\mathbf{K} \times T$ with compact carrier. Then we have

$$(4.4) F^*(B_{\wedge}) = F(A) \text{for any } A \subset \widetilde{X},$$

and (4.1) implies

$$F^*(Ba) = \int_B u^*(a; b, t) dF^*(b, t) \quad (Ba = \{\langle ba, t \rangle / \langle b, t \rangle \in B\})$$

where $u^*(a; b, t) = u(a; \langle s_b, t \rangle)$ is non-negative, B-measurable in $\langle a, b, t \rangle$ and summable (in $\langle b, t \rangle$) on $K \times T$ with respect to F^* for any $a \in K$. Therefore, by the same argument as the proof of Lemma 2 in [2], we may show that there exist a non-negative B-measurable function $\omega^*(s, t)$ on $K \times T$ and a measure ρ on T, $\rho(T) < \infty$, such that

$$F^*(B) = \int_B \omega^*(b, t) db d\rho(t)$$
 for any $B \subset K \times T$.

Hence we obtain from (4.4), (1.2) and by simple calculation that

$$F(\Lambda) = \int_{\Lambda} ds d\rho(t) \int_{K'} \omega^*(b'c_s, t) db' \quad \text{for any} \quad \Lambda \subset \widetilde{X},$$

and hence we get (4.2) by putting $\omega(s, t) = \int_{K'} \omega^*(b'c_s, t) db'$, q.e.d.

Hereafter the indices j and k may run over all natural numbers, not following after the rule defined in $\S 1$.

Now let $\{\emptyset, U(g), f^0\}$ be a cyclic unitary representation of **G**. Then, making use of Lemma 7, we can achieve the same argument as in [2]—from the beginning of §3 (p. 6) to L. 14 in p. 10—, and obtain the following result:

 $\{\mathfrak{H},\ U(g)\}=\{\mathfrak{N},\ U(g)\}\oplus\{\mathfrak{M},\ U(g)\};\ \{\mathfrak{M},\ U(g)\}\$ is equivalent to a cyclic unitary representation of the group $\mathbf{K}(\cong \mathbf{G}/\mathbf{V})$, and $\{\mathfrak{M},\ U(g)\}$ is given as follows: there exists a unitary space \mathfrak{H}_0 of all sequences of complex numbers: $\{\xi_1,\ldots,\xi_n\}$, $n\leq\infty$, such that $\|\xi\|^2=\sum_{j=1}^\infty|\xi_j|^2<\infty$ (if $n=\infty$), and exists a matrix of functions $M(a;s,t)=\|u_{jk}(a;s,t)\|$ whose elements $u_{jk}(a;s,t)$ ($j,k=1,\ldots,n$) are B-measurable in $\{a,s,t\}$; and every $f\in\mathfrak{M}$ is realized as a \mathfrak{H}_0 -valued function $\mathbf{f}(s,t)\equiv\{f_1(s,t),\ldots,f_n(s,t)\}$ defined on $\widetilde{X}\equiv S\times T$, and $f\sim\mathbf{f}(s,t)^{14}$ implies that

$$\begin{cases} \|f\|^2 = \int_{S \times T} \|\mathbf{f}(s, t)\|^2 ds d\rho(t) & (\|\mathbf{f}(s, t)\|^2 = \sum_{j} |f_j(s, t)|^2), \\ U(x)f \sim (\langle s, t \rangle, x)\mathbf{f}(s, t) & \text{for any } x \in \mathbf{V}, \\ U(a)f \sim M(a; s, t)\mathbf{f}(sa, t) & \text{for any } a \in \mathbf{K}; \end{cases}$$

¹⁴⁾ $f \sim \mathbf{f}(s, t)$ means that f is realized as $\mathbf{f}(s, t)$.

 ρ being a measure on T such that $\rho(T) < \infty$ (obtaind from Lemma 7).

Next, for any B-measurable function f(s, t) on $S \times T$, we define a function $f^*(b, t)$ on $K \times T$ by

$$f^*(b, t) \equiv f(s_b, t)$$

and put $M^*(a; b, t) \equiv ||u_{jk}^*(a; b, t)||$. Then, as is easily seen, the above result concerning $\{\mathfrak{M}, U(g)\}$ is translated into the following form: every $f \in \mathfrak{M}$ is realized as a \mathfrak{H}_0 -valued function $\mathbf{f}(b, t)$ defined on $\mathbf{K} \times T$ and $f \sim \mathbf{f}(b, t)$ implies that

$$\begin{cases} \|f\|^2 = \int_{\mathbf{K}\times T} \|\mathbf{f}(b, t)\|^2 db d\rho(t), \\ U(x)f \sim (\langle s_b, t \rangle, x) \mathbf{f}(b, t) & \text{for any } x \in \mathbf{V}, \\ U(a)f \sim M^*(a; b, t) \mathbf{f}(ba, t) & \text{for any } a \in \mathbf{K}; \end{cases}$$

moreover, if $M_1^*(a; b, t) = M_2^*(a; b, t)$ as operators in \mathfrak{M} , then $M_1^*(a; bc, t) = M_2^*(a; bc, t)$ in the same sense for any $c \in K$ —see p. 10 in [2].

Starting from this result, we can achieve the similar argument to that in [2]—from p. 10, L. 15 to p. 11, L. 15.¹⁵⁾ Thus $\mathfrak M$ may be realized as a subspace of the direct sum of at most countable number of $L^2(K \times T, \sigma \otimes \rho)$, and $f \sim \{\psi_{\nu}(b, t)\} \equiv \{\psi_1(b, t), \psi_2(b, t), \ldots\}$ implies

$$\begin{cases} ||f||^2 = \sum_{\nu=1}^n \int_{\mathbf{K} \times T} |\psi_{\nu}(b, t)|^2 db d\rho(t), & n \leq \infty, \\ U(x)f \sim \{(\langle s_b, t \rangle, x) \psi_{\nu}(b, t)\} & \text{for any } x \in \mathbf{V}, \\ U(a)f \sim \{\psi_{\nu}(ba, t)\} & \text{for any } a \in \mathbf{K}. \end{cases}$$

Since $L^2(\mathbf{K} \times T, \ \sigma \otimes \rho) = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\widetilde{n}(\lambda)} \mathfrak{M}_p^{\lambda}(T)$ by Lemma 5 and Proposition 4 (§ 3), it follows that \mathfrak{M} may be expressible in the form:

$$\mathfrak{M} = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\widetilde{n}(\lambda)} \bigoplus_{\nu=1}^{n(\lambda, p)} \mathfrak{M}_{\nu p}^{\lambda} \quad (n(\lambda, p) \leq \infty), \quad \mathfrak{M}_{\nu p}^{\lambda} \subset \mathfrak{M}_{p}^{\lambda}(T) \quad \text{for any} \quad \nu,$$

and every $\mathfrak{M}_{\vee p}^{\lambda}$ is a closed linear subspace of \mathfrak{M} invariant under $U(g), g \in G$.

$$f^0 = f + h$$
, $f \in \mathbb{M}$ and $h \in \mathbb{N}$,

and

$$f = \sum_{\lambda} \sum_{p} \sum_{\nu} f_{\nu p}^{\lambda}, \quad f_{\nu p}^{\lambda} \in \mathfrak{M}_{\nu p}^{\lambda} \quad (\subset \mathfrak{M}_{p}^{\lambda}(T)).$$

Then $\{\mathfrak{M},\ U(g),\ f\}$ is — and consequently every $\{\mathfrak{M}_{\nu p}^{\lambda},\ U(g),\ f_{\nu p}^{\lambda}\}$ is a cyclic unitary representation of G. We put

Such argument is impossible without extending functions on $S \times T$ to those on $K \times T$ as stated above. The author owes to Mr. S. Murakami's suggestion for this improvement.

$$\Delta_{\nu\rho}^{\lambda} = \left\{ t / \int_{\mathbf{K}} |f_{\nu\rho}^{\lambda}(b, t)|^2 db \neq 0 \right\} \ (\mathbf{C}T).$$

Then $\{\mathfrak{M}_{\nu\rho}^{\lambda}, U(g), f_{\nu\rho}^{\lambda}\}$ is cyclic if and only if $\mathfrak{M}_{\nu\rho}^{\lambda} = \mathfrak{M}_{\rho}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$ by Proposition 8. We may consider by Proposition 5 that $\mathfrak{M}_{\nu\rho}^{\lambda} = \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$ and $f \in \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$. Exchanging indices, we denote for any λ

$$A_{\nu}^{\lambda}$$
 and f_{ν}^{λ} , $\nu = 1, \ldots, N(\lambda)$ ($\leq \infty$)

instead of

$$\Delta_{\nu\rho}^{\Lambda}$$
 and $f_{\nu\rho}^{\Lambda}$,
 $\nu = 1, \ldots, n(\lambda, \rho) \ (\leq \infty); \ \rho = 1, \ldots, \tilde{n}(\lambda) \ (< \infty);$

and put $\mathfrak{M}^{\lambda}_{\nu} = \mathfrak{M}^{\lambda}_{1}(\mathcal{A}^{\lambda}_{\nu})$. Then we may consider that

$$(4.5) \qquad \{\mathfrak{M}, \ U(g)\} = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{\nu=1}^{N(\lambda)} \{\mathfrak{M}_{\nu}^{\lambda}, \ U(g)\}, \quad f = \sum_{\lambda} \sum_{\nu} f_{\nu}^{\lambda},$$

and

$$f_{\nu}^{\lambda} \in \mathfrak{M}_{1}^{\lambda}(\Delta_{\nu}^{\lambda}), f_{\nu}^{\lambda}(b, t) \neq 0$$
 in $\mathfrak{F}_{1}^{\lambda}$ for ρ —a. a. $t \in \Delta_{\nu}^{\lambda}$.

Hence

$$f_{\nu}^{\lambda}(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u_{Nm+1, j}^{\alpha}(b) f_{\nu j}^{\alpha m}(t) \quad \text{(convergence in } L^{2}(\mathbf{K} \times T, \sigma \otimes \rho))$$

for any λ and ν where the series of functions

$$\left\{f_{\nu j}^{\alpha m} \middle| \begin{array}{l} j=1, \ldots, n(\lambda); \lambda(\alpha, m)=\lambda; \\ \nu=1, \ldots, N(\lambda); \lambda=1, 2, \ldots \end{array}\right\}$$

satisfies the conditions 1°) and 2°) in Theorem 2.2. Since $\{\mathfrak{M}, U(g), f\}$ is cyclic, it follows from (4.5) and by Theorem 8 in [1] that p. d. functions $(U(g)f_{\nu}^{\lambda}, f_{\nu}^{\lambda})$, $\nu=1,\ldots,N(\lambda)$, $\lambda=1,2,\ldots$, are mutually disjoint. Hence the series $\{f_{\nu j}^{\alpha m}\}$ satisfies the condition 3°) by Propositions 6 and 7. Therefore $\{\mathfrak{M}, U(g), f\}$ must be of form stated in Theorem 2.2. Similar argument may be achieved for $\{\mathfrak{N}, U(g), h\}$. Consequently we obtain (1.10), (1.11) and (1.12) by simple calculations. Theorem 2.4 is thus proved.

Next, assume that the cyclic unitary representation $\{\mathfrak{H},\ U(g),\ f^0\}$ is irreducible. (Notice that any irreducible representation is cyclic.) Then only one couple $\langle \lambda,\ \nu \rangle$ or $\langle \alpha,\ \nu \rangle$ may be appear in (1.10). In the case $\{\mathfrak{H},\ U(g)\} = \{\mathfrak{M}^{\lambda},\ U(g)\}$, by the irreducibility, there exists a point $t_0 \in T$ such that $\rho(T - \{t_0\}) = 0$. Hence $\{\mathfrak{H},\ U(g)\}$ must be of the form stated in Theorem 1.1 or 1.4. Thus we obtain Theorem 1.6.

Finally, Theorem 3 is easily seen from Theorems 1 and 2.

LITERATURE

[1] R. Godement: Les fonctions de type positif et la theorie des groupes, Trans. Amer.

- Math. Soc. 63, No. 1 (1948) pp. 1-84.
- [2] S. Itò: Unitary representations of some linear groups: Nagoya Math. Journ. 4 (1952) pp. 1-13.
- [3] G. W. Mackey: Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. 35, No. 9 (1949) pp. 537-543.
- [4] G. W. Mackey: On induced representations of groups, Amer. J. Math. 73, No. 3 (1951) pp. 576-592.
- [5] G. W. Mackey: Induced representations of locally compact groups I, Ann. of Math. 55, No. 1 (1952) pp. 101-139.
- [6] A. Weil: L'intégration dans les groupes topologiques et ses applications, Act. Sci. Ind. Paris, 869 (1940).

Mathematical Institute, Nagoya University