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1. Introduction

In [3] we initiated our study of the automorphism groups of a certain class of near-
rings. Specifically, let P be any complex polynomial and let JfP denote the near-ring of
all continuous selfmaps of the complex plane where addition of functions is pointwise
and the product fg of two functions / and g in JfP is defined by fg=f°P°g- The near-
ring Jff is referred to as a laminated near-ring with laminating element P. In [3], we
characterised those polynomials P(z) = anz

n + an^1z"~1 + ...+a0 for which Aut./Tp is a
finite group. We are able to show that Aut JfP is finite if and only if D e g P ^ 3 and
a; =̂ 0 for some i =/= 0, n. In addition, we were able to completely determine those infinite
groups which occur as automorphism groups of the near-rings JfP. There are exactly
three of them. One is GL(2) the full linear group of all real 2 x 2 nonsingular matrices
and the other two are subgroups of GL(2). In this paper, we begin our study of the
finite automorphism groups of the near-rings JfP. We get a result which, in contrast to
the situation for the infinite automorphism groups, shows that infinitely many finite
groups occur as automorphism groups of the near-rings under consideration. In
addition to this and other results, we completely determine Aut J/~P when the coefficients
of P are real and Deg P = 3 or 4.

2. Polynomials of arbitrary degree

In this section we get some results without placing any restriction on DegP other
than it exceed two (the cases where Deg P = 1 and 2 were covered in [3]). We adhere to
the notation of [3]. In particular, %? denotes the complex plane regarded as a vector
space over the real field and n(P) = {p-\P(z)):ze<8}. As in [3], the set P~\P{<d)) will
play a special role in our considerations and will be denoted by Z(P). We will not
hesitate to use without mention Corollary 2.3 of [3] which implies that for any complex
polynomial P, Aut JVP is isomorphic to LA(P) the group of all linear automorphisms t
of <£ with the property that t{_A]eIl(P) for each AeTl(P). We begin our considerations
with a sequence of lemmas.

Lemma 2.1. Let t be a linear automorphism of ^ which has finite order and suppose
t(l) = l. Then either t is the identity or there exists a real number a such that

t(x + yi) = x + ay — yi for all x + yi. (2.1.1)

297



298 K. D. MAGILL, JR. , P. R. MISRA AND U. B. TEWARI

Proof. There exist real numbers a and b such that t(i) = a + bi. One readily shows
that for any positive integer n, we have

tn(i) = a(l+b + b2 + ...+b"-1) + b"i. (2.1.2)

Since t has finite order, t" is the identity for some integer n and for that integer, it
follows from (2.1.2) that

b" = l (2.1.3)

and

a(l + b + b2 + ...+bn'1) = 0. (2.1.4)

Since b is real, we must have b = l or b= — 1. If b = l, it follows from (2.1.4) that a — 0
which implies that t is the identity. If b= — 1, we have t(i) = a — i which implies t(x + yi) = x
+ ay — yi and the proof is complete.

Lemma 2.2. Let t be a linear automorphism of %> which has finite order and suppose
t ( l )= — 1. Then either t(z)= — z for all ze'tf or there exists a real number a such that

t{x + yi)= —x + ay + yi for all x + yi. (2.2.1)

Proof. Again, we have t(i) = a + bi and one verifies that

tn(i) = a(l-b + b2~b3 + ...+bn-1) + bni (2.2.2)

for an odd integer n while

(2.2.3)

when n is even. Since t has finite order, t" must be the identity for some positive integer
n. Regardless of whether n is odd or even, it follows from (2.2.2) and (2.2.3) that b" = 1
and hence we must have b=l or b= — 1. If b = l then t(i) = a + i which implies t(x + yi)
— —x + ay + yi. If b= — 1, then n is even and it follows from (2.2.3) that a = 0. In this
instance t(i) = — i and we have t(z) = — z for all z.

The proofs of the next two lemmas are very similar to the proofs of Lemmas 2.1 and
2.2 and for that reason will be omitted.

Lemma 2.3. Let t be a linear automorphism of ^ which has finite order and suppose
t(i) = i. Then either t is the identity or there exists a real number a such that

t(x + yi)=-x + (ax + y)i for all x + yi. (2.3.1)

Lemma 2.4. Let t be a linear automorphism of C which has finite order and suppose
t(i)= —i. Then either t(z)= — z for all ze^ or there exists a real number a such that
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t(x + yi) = x + (ax-y)i for all x + yi. (2.4.1)

The next corollary is an immediate consequence of the previous four.

Corollary 2.5. Let t be a linear automorphism of %> which has finite order and suppose
that either t(l) = l, t ( l )= —1, t(i) = i or t(i)— —i. Then the order oft is either one or two.

Definition 2.6. Let F denote the linear automorphism of ̂  which is defined by f(z)
= f for allze<<?.

Corollary 2.7. Let G be a finite subgroup of GL(2) which contains F and let t be any
element in G. Then all of the following statements are valid.

Ift(l)=l, then either t is the identity or t = T. (2.7.1)

Ift(l)= - 1 , then either t(z)=-zfor all z or t(z)=-zfor all z. (2.7.2)

Ift(i) = i, then either t is the identity or t(z)= —zfor all z. (2.7.3)

If t(0 = -U then either t(z) =-zfor all z or t = T. (2.1 A)

Proof. We discuss only (2.7.1) as the remaining cases follow in the same manner. By
Lemma 2.1, either t is the identity or t(x + yi) = x + ay — yi for some real number a.
Suppose a=/=0. Then Po t is an element of G which has infinite order. This, of course, is
a contradiction so a = 0 and t = F.

Corollary 2.8. Let G be a finite subgroup of GL(2) which contains F and let t be any
element of G which either maps a nonzero real number to a real number or a nonzero pure
imaginary number to a pure imaginary number. Then t satisfies one of the following
conditions.

t is the identity. (2.8.1)

t = T. (2.8.2)

t{z)=-z for all ZB<€. (2.8.3)

t{z)=-z for all zeV. (2.8.4)

Proof. Suppose t(a) = b where a^O. Then t(l) = b/a and for any positive integer n, we
have t"(l)=(b/a)n. Since t has finite order, this implies (b/a)" = l for some n which, in
turn, implies b/a=l or b/a=-l. It then follows from (2.7.1) and (2.7.2) that either
(2.8.1), (2.8.2), (2.8.3) or (2.8.4) holds. The case where t(ai) = bi follows in a similar
manner.

The next result is an immediate consequence of the previous one.
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Corollary 2.9. Let G be a finite subgroup of GL{2) which contains T and suppose each
element of G either maps a nonzero real number to a real number or a nonzero pure
imaginary number to a pure imaginary number. Then G is either isomorphic to Z2, the
cyclic group of order two or to IK4 the Klein four group.

Lemma 2.10. Suppose all the coefficients of P are real. Then TelA(P).

Proof. For any ze<g,we have P(z) = P(z) so that P(zi) = P(z2) if and only if P(r(zt))
= P(T{z2)). Lemma 3.1 of [3] now applies.

We are now ready to state the first theorem of this section. Its proof is accomplished
by simply piecing together various previous results.

Theorem 2.11. Let P(z) = anz" + an_lz"~i + ...+a0 be a polynomial with real
coefficients such that n = D e g P > 3 and at^0for some i^O or n. Suppose also that all the
zeros of P(z) — a0 are real. Then Aut./Kp is isomorphic to either Z2 or IK4.

Proof. By Theorem 3.6 of [3], LA(P) is finite and TeLA(P) by Lemma 2.10. By
hypothesis, Z(P) consists of real numbers and contains at least one nonzero real
number. Since each teLA(P) must map Z(P) onto Z(P) it follows from Corollary 2.9
that LA(P) is isomorphic to either Z2 or K4.

We will later see that both situations occur. That is, there are polynomials P for
which Aut JVP is isomorphic to Z2 and others for which Aut J/P is isomorphic to IK4.

Lemma 2.12. Let P(z) = anz" + an^1z"~1 + ...+a0 (a n f0) and suppose P " 1 ^ ^ ) )
= {z1,z2,...,zn} where the zt are all distinct. Then zy + z2 + • • • + zn = — (an_ Jan).

Proof. {z1; z2 , . . . , zn} is the collection of zeros of the polynomial

and it is well known that the sum of the zeros is — (an _ Jan).

Theorem 2.13. Let P(z) = anz" + an_1z
n~1 + ...+a0 where n = D e g P ^ 3 , all at are real

and an-1i=0. Then Aut Jfr is isomorphic to Z2.

Proof. LA(P) contains both the identity map and T because of Lemma 2.10. We
need only show that there are no other elements in LA(P). With this in mind, suppose
teLA(P) and choose zx such that

consists of n distinct elements. Then t[P~1(P(z1))] = F~1(P(w)) for some w and we have
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From Lemma 2.12 we get

which readily implies that t(l) = l. Now LA(P) is finite by Theorem 3.6 of [3] so
Corollary 2.7 now applies and we conclude that either t is the identity or t = F.

In order to state our next theorem, we need to introduce a class of finite groups.
Specifically, for each positive integer n, we denote by GRn the group of all 2 x 2 real
matrices of the form

[; "3 - [; -
where a=cos(2kn/n) and b = sin(2kn/n) k = l,2,3,...,n. These are precisely the matrices
which represent the linear automorphisms t and F defined by t(z) = caz and T(z) = u>z
where a is an nth root of unity. We will not hesitate to identify GRn with its
corresponding group of linear automorphisms when it is convenient to do so. It is easy
to see that GRn is a group of order 2n. It is commutative only when n= 1 or 2 and in
these cases it is isomorphic respectively to Z2 and IK4. Since GR3 contains six elements
and is not commutative, it must necessarily be isomorphic to S3 the symmetric group
on three elements. And now we are in a position to state and prove

Theorem 2.14. Let P(z) = az" + bzm + c where n ^ 3, n > m > 1 and a, b and c are all
real numbers with a=£0=fcb. Then Aut-zTp is isomorphic to GRn^m.

Proof. According to Lemma 3.2 of [3] it is sufficient to show that Aut./Tp is
isomorphic to GRn_m where Q(z)=z" + dzm and d is a nonzero real number. Let n — m
= k and we have

Q{z) = zm{zk + d). (2.14.1)

Lemma 2.10 tells us that YeLA(Q). This fact will be used at various times throughout
the remainder of the proof without explicit mention. In the first case we consider, F
turns out to be the only element in LA(Q) other than the identity.

Case 1: k = l. Then Q(z) = z" + dz" ~l and it follows immediately from Theorem
2.13 that Aut./TQ is isomorphic to Z2 = GRX.

Case 2: k = 2. Here, we have Z(g) = {0,(-d)*, - ( -d)*} where (-<*)* and -(-<*)*
are either both real numbers or both pure imaginary numbers depending upon whether
or not d is negative or positive. Thus, any element t e LA(Q) must either carry a nonzero
real number to a nonzero real number or a pure imaginary number to a pure imaginary
number. It follows from Corollary 2.9 that LA(Q) is isomorphic to either Z2 or (K4. The
latter is, in fact, the case and to see that, all we need to do is exhibit ate LA(Q) which
is distinct from the identity and from F. Consider t(z)= — z. Then Q(t(z)) is either Q(z)
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or — g(z) depending upon whether m is even or odd. In either event we have Q(:t)
= Q(z2) if and only if Q(t(zl)) = Q(t{z2)) and it follows from Lemma 3.1 of [3] that
teLA(Q). Thus LA(Q) is isomorphic to K4 = GR2.

Let {coua>2,...,cot} be the kth roots of unity and for each iCase 3: fe^3 and
— 1,2, 3 , . . . , k define

and

Then we have

One readily shows that

and

ti(z) = a>iz for all ze<<?

ti(z) = a)iz for all ze<<?.

Q(ti(z)) = co7

(2.14.2)

(2.14.3)

(2.14.4)

(2.14.5)

(2.14.6)

from whence it readily follows that Q(z1) = Q(z2) if and only if Q(ti(z1)) = Q(ti(z2)) if and
only if fi(F£(z1)) = fi(Fi(z2)). Thus

(2.14.7)

by Lemma 3.1 of [3]. We will show, in fact, that GRk = LA(Q). Let r = |d|1/fc and let
{a1; a2,..., <xk} denote the kth roots of — 1 if d>0 and the fcth roots of 1 if d<0. Then

= {0,mum2,...,rak}. (2.14.8)

Now we take any element teLA(Q) and since t maps Z ( 0 bijectively onto Z(Q) the
hypothesis of Lemma 4.1 of [3] is satisfied (note: it is not satisfied when /c = 4). It
follows that either t(z) = wz or t(z) = wz for an appropriate complex number w=fO.
Suppose the former holds. Then wa1 = J(a1) = aj for some i which implies w = a,/a1. It
follows that w is a feth root of unity regardless of whether the a,- are kth roots of — 1 or
kth roots of 1. Thus, t = tj for some j which means teGRk. Similarly, one shows that if
t(z) = wz, then t = T} for some j and hence, in this case also, teGRk. Consequently, GRk

= LA(Q) and we conclude that Aut JfQ is isomorphic to GRk when k ̂  3 and k j= 4. It
remains for us to treat

Case 4: fc = 4. With one exception, this case is identical to the preceding case even
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up to the point where we have GR4.aLA(Q). The exception occurs because we cannot
use Lemma 4.1 of [3] to show LA(Q) c GR^. Instead, we have to do this directly. We
will discuss the details only in the case d>0 which means that {<Xi,<x2, a3,a4} represent
the 4lh roots of — 1. Let q = (r^/2/2), v = l + i and w= — i+1 and we have

Z{Q) = {0,qv, -qv,qw, -qw}. (2.14.9)

Since any teLA(Q) must map Z(Q) bijectively onto itself, t(v) can be any one of the
vectors v, —v,w, — w and t(w) can be any one of the remaining two vectors which are
each linearly independent from t(v). With some calculation one shows that t must be
given by one of the following equations:

t(z) = z, t{z)=-z, t(z) = iz, t(z)=-iz

t(z)=z, t(z)=-z, t(z) = iz, t{z)=-iz.

In other words, t e GR4. We have thus shown that GR4 = LA(Q) and the proof is now
complete.

3. Third and fourth degree polynomials

Theorem 4.3 of [3] tells us that if Deg P = 1 or Deg P = 2 and the coefficient of z is
zero then Aut^Kp is isomorphic to GUI). It further tells us that if DegP = 2 and the
coefficient of z is not zero then AutyKp is isomorphic to G b the group of all real 2 x 2
matrices of the form

[, -i

' , where b + 0.
0, b\

We have therefore completely determined A u t J ^ when DegP is either one or two. In
this section we supplement this information by determining A u t J ^ when P has real
coefficients and Deg P = 3 or 4. The result for Deg P = 3 is an immediate consequence of
several of our preceeding results.

Theorem 3.1. Let P(z) = az3 + bz2 + cz + d be a cubic polynomial with real coefficients.
Then

is isomorphic to Z2 if b=f=O, (3.1.1)

is isomorphic to IK4 if b = 0 and c=/=0, (3.1.2)

is isomorphic to Gc if b = 0 = c. (3.1.3)

Proof. (3.1.1) follows from Theorem 2.13, (3.1.2) follows from Theorem 2.14 and
(3.1.3) follows from Theorem 4.4 of [3].
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Theorem 3.2. Let P(z) = a4.z
4' + a3z

3+a2z
2 + alz + a0 be a fourth degree polynomial

with real coefficients. Then we have the following:

is isomorphic to Z2 if a3j=0. (3.2.1)

is isomorphic to Z2 if a3=0, a2j=O and ax =/=(). (3.2.2)

is isomorphic to IK4 (/ a3 = 0, o 2 ^0 and a1=0. (3.2.3)

is isomorphic to S3 if a3=0, a 2 =0 and a^O. (3.2.4)

is isomorphic to Gc if a3 = 0, a2 = 0 and at=0. (3.2.5)

Proof. (3.2.1) follows from Theorem 2.13, both (3.2.3) and (3.2.4) follow from
Theorem 2.14 and (3.2.5) follows from Theorem 4.3 of [3]. It remains for us to verify
(3.2.2). We need only show that LA(Q) is isomorphic to Z2 where Q(z) = z4 + az2 + bz

Case 1: Z(Q) consists entirely of real numbers.
Then Z{Q) is either {0,r}, {0,r1;r2} or {0,rur2,r3}. Let teLA(Q). Then t(l) = d and d

must be real since otherwise t would not map Z(Q) into Z(Q). Since t has finite order n,
we have l = t"(l) = d" which implies f(l) = 1 or t(l)=—1. It follows that either t is the
identity on real numbers or t takes every real number to its negative. If Z(Q) is either
{0, r] or {0, r1; r2, r3} it evidently contains some real number and not its negative so that
in these instances we must have f( l )=l . If Z(Q) = {0,rl5r2}, we may assume Q(z) =
z(z — rl)

2{z—r2) which implies r2=—2rx (since the coefficient of z3 is zero). Since
r2^ —rt we must again have t(l) = l. It now follows from Corollary 2.7 that t must be
either the identity or F.

Case 2: Z(Q) contains nonreal numbers.
Since OeZ(Q) and complex roots occur in conjugate pairs, Z(Q) must contain exactly

two complex numbers. Moreover, Z(Q) must contain a nonzero real number since the
coefficient of z is not 0 while the constant term is. Thus, we have

= {Q,r,v,v} (3.2.6)

where r ̂  0 is real and v is not. This means that we have

Q(z) = z(z-r)(z-v)(z~v). (3.2.7)

Now let t e LA(Q). We want to show that t(r) = r. Suppose, to the contrary, that t(r) f r.
There is no loss in generality if we assume that t(r) = v. Let v = c + di. Since the
coefficient of z3 is zero, we have r + v + v = 0 which implies c= — r/2. Let k= —2d/r and
we have

r v=-r-(\-ki). (3.2.8)
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Now t(r) = v implies t(l) = v/r and from (5.16.8) we get

(3.2.9)

Next choose a real number r± between 0 and r such that P~1(P(rl}) contains another
real number r2 distinct from rt which also lies between 0 and r. Since t e LA(Q), we have
Q(t{ri)) = Q(t{r2)). From (3.2.9) we see that

t(rj)=-1j(l+ki) 7 = 1,2. (3.2.10)

Next, use (3.2.7), (3.2.8) and (3.2.9) to compute each g(t(r,)). Setting Q(t(rl)) = Q{t{r2))
and equating imaginary parts we obtain

(r1-'-2)]- (3.2.11)

By setting Q(ri) = Q(r2) we obtain

r2)]. (3.2.12)

From (3.2.11) and (3.2.12) we obtain r\ — r2=r3(rl—r2) and by replacing r\ — r\ by
r3(ri-r2) in either (3.2.11) or (3.2.12) we get (l + /c2)/4 = l or, equivalently,

fc2 = 3. (3.2.13)

From (3.2.7) and (3.2.8), one shows that the coefficient of z2 is \v\2 — r2. But (3.2.13) and
(3.2.8) together imply \v\2 — r2 = 0. This is the contradiction we seek for we are
considering the case Q(z) = z4 + az2 + bz where neither a nor b are zero. Therefore we
must indeed have t(r) = r and it follows from Corollary 3.7 that either t is the identity or
t = F. Thus, LA(Q) is isomorphic to Z2 and the proof is complete.

Some concluding remarks are in order. It is evident that much remains to be done in
order to completely determine Aut^Tp for an arbitrary complex polynomial P. The next
step is probably to determine Aut^K"p when DegP = 5 and P has real coefficients.
Although many of the special cases follow from previous results and techniques used in
this paper and in [3], we are still unable to completely solve the problem for 5th degree
polynomials. In particular, we are unable to determine LA(P) whenever

Z(P) = {0,v,v,-v,-v}.

Once Aut Jf'p is known for Deg P — 5, we might have enough information to make some
educated guesses at what the general results (if such exist) might be.
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