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ON WITT'S DIMENSION FORMULA FOR FREE LIE
ALGEBRAS AND A THEOREM OF KLYACHKO

D. BLESSENOHL AND H. LAUE

It is shown that Witt's basic dimension formula and a more recent result of Klyachko imply
each other. Then Klyachko's identities between certain idempotents in the group ring of
Sn are supplemented by identities involving Wever's classical idempotent. This leads to a
direct proof of Klyachko's theorem (and hence Witt's formula), avoiding any commutator
collecting process. Furthermore, this approach explains why the Witt dimensions are
numbers which otherwise occur when "counting necklaces".

0. INTRODUCTION

A classical result in Lie theory is Witt's formula for the dimensions of the homo-
geneous subspaces of a finitely-generated free Lie algebra L: If H is the subspace of L

generated by all homogeneous elements of multidegree (kj,..., k(), then

where n = ki + ... + kt.

The subspace of all homogeneous elements of multidegree (1, . . . ,1) is a module
for the symmetric group S on the set of free generators. A result of Klyachko [5] states
that, under mild conditions on the scalar ring, this module is isomorphic to Ms where
M is a faithful irreducible module for the subgroup generated by the longest cycle in
5.

We establish a short chain of equivalences between these two theorems. The link is
given by an application of a theorem from character theory of symmetric groups. At a
certain point the well-known "counting of necklaces" comes in. Thus the Witt dimension
numbers are embedded in their natural combinatorial surroundings. In the final section
we slightly modify and reorganise the ideas of the second part of [5]. In particular, we
show that Klyachko's result as described above may be obtained independently of any
commutator collecting process. By virtue of our results in the second section, this also
holds (at least over Q) for Witt's dimension formula. Throughout, we work in the Lie
algebra generated by the free generators of a free associative algebra, but we do not
make use of the theorem proved by Witt that this Lie algebra is free.
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1. LINEARISATION OF Az{k1,...,kt)

Let R be a commutative ring with 1. For any set Z, the free iZ-algebra which is
freely generated by Z is denoted by Az. Let I G N, and let Z be a set of I elements
z j , . . . , zi. For all m G N let A^ be the i?-span in Az of all monomials zix . . . Zjm of
degree m. If k\,..., k( G No , we write j4^(fci,..., ki) for the iZ-span of all monomials
whose Zj-degree is kj for 1 ^ j ^ £. In this section we connect these spaces with the
group ring of Sn over JR where n = fcj + . . . + kt.

Let X be a set of n elements xi,...,xn and £ be the set of all mappings <p: X —•
Z with the property \zj(p~1\ = kj for 1 ^ j <£. Sn acts on Jf by XJTT = Xjn for all
j € { 1 , - . . , n } , 7T G S1,,. Obviously, 7ryj 6 S for all TT G 5 n and <p € 2 . This yields a
transitive action of 5 n on S. For all <p, rj> G E we set

Then YViV is a Young subgroup of Sn, corresponding to the decomposition (fcj,..., kf)

of n ; hence YVt<p = S^ x . . . x Skt • As 3 ,̂,̂ , is the stabiliser of ip in Sn, we have
|S | = n!/(A:1!... kt\). If n G Y ^ , then 7 )̂V, = w • YVtV. We set

and for fixed cp G E we define the i?-linear mapping

by {{x\il)).. .{xn%l)))hv = J3 sci,, ...£„„. for all tp G S. The function A ,̂ may be

viewed as a "complete linearisation" of the elements of Az(ki,... ,ki). As the sets

YVt$ (ip G S) are left cosets of Yv<lf and Sn is their disjoint union, the elements

£3 x l 7 . . . x n R . (^ 6 E) are i?-linear independant. Hence the linearisation Av is

injective.

The i2-space Az(ki,..., ki) is an iZSn-left module via the il-linear extension of

the 5n-action

(see [2, (2), (3)]). In the same manner, A also is an RSn-left module. We prove

(1) Ay, is an RSn — left module homomorphism:
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PROOF: For all r , <r 6 Sn, i/> £ E , we have (by [2, (8)])

= ((xlTrp) .. .

hence (1). D

X is a (regular) iZ^n-right module via the iZ-linear extension of the 5n-action

(Xi,, . . . Xn<r)T = X! aT . . . Xn<TT (<T, TE Sn)

(see [2, (9)]).

(2) Ifk\\.. .kfi is a unit in R, then im Â , is the space ofSxed elements

under the right action ofYVtV on A.

Before we prove (2), we introduce the notation W = ^ cr £ RSn for all W C Sn

and remark

(3) {(xnl>)...(xni>))Av = (xln...xnn)Y^ for all V € S, 7T G K ^ ,

as
Hence im Av = AVVtV and irn Av consists of fixed elements under the right action of
YViV. If o € A is a fixed point under the right action of YVlV, then

a =

This proves (2). D
We now turn to the Lie multiplication o in Az (Ax respectively), defined by

o o 6 = ab — ba. Let Lz ( L x respectively) be the Lie algebra generated by Z (X
respectively). (By Witt's theorem, it is freely generated by Z (X respectively), but
this result will not be needed in this paper.) We set

C = LxnA, Lx = LxnAx.

Then, by [2, (13)], £ is a submodule of the i?5rt-right module A. As in [2], we use the
left normed notation for Lie monomials. We have
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(4) ((xitp) o . . . o (xnip))A,p = (XITT o . . . o xnx)YVtlfi for all ip G E , TT G 1^,^ •

PROOF: Let

2

wn = (id - (n , . . . , 1)) . . . (id - (2,1)) = J J (id - (j,..., 1))

as in [6, (4)]. Then

i o . . . o (xnil>))hv — (wn((xiip)... (xnip)))Av by [2, (11)]

= a»n((a!j)r...*BW)F»,,v) by (3)

= {xlK o . . . o xnK)YViV by [2, (11)].

Hence (3) remains valid if the associative multiplication is replaced by the Lie product,
that is, (4). Therefore, the proof of (2) also works for the associated Lie structures,
yielding

(5) If k\!... k(\ is a unit in R, then L (k\,..., ki)Kv is the space of

fixed elements under the right action ofYVtV on C. .

As Lz(ki,..., ki) is generated by the elements (x\tj>) o . . . o (xnrp) (rf> G E), £ by
the elements Xin o . . . o xnn (n G Sn), we have

(6) Lz(k1,...,kt)Av = CYVtV.

Hence Kv induces also an injective linearisation of Lie elements (see, for example, [1,

4.2]). D

2. CONNECTIONS BETWEEN ( W D F ) AND (Ind)

In this section let R be a field of characteristic 0 containing a primitive n-th root

of unity e. The character of Sn with respect to the right module C will be denoted

by xc, and for any group G, we write 1Q for the trivial character of G. If x > x' a r e

characters of G over R, we write (X>X')G ^OI their usual scalar product.
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LEMMA 2.1. Let Y be a Young subgroup of Sn of type 5 ^ x ... x Skt where

n = k1 + ... + kt. Then 6imR Lz{k1, .. .kt) = (x-c , lyn) •

PROOF: Let S be as in Section 1 and tp £ E. As Kv is injective, we have, by (5),
dim* Lz(k1 ,...kt) = diinfi CC{J^V) • But

&mRCc(YVtV) = (Xc k , v , l > w ) y ^

by the Frobenius reciprocity theorem. Now the lemma follows, as Y^,^ and Y are
conjugate in Sn. U

LEMMA 2.2. Let T be a transitive cyclic subgroup of Sn, A a faithful irreducible
character of T over R, and let Y be as in Lemma 2.1. Let #T be the number of orbits
of length n with respect to the right action of T on the set of right cosets ofY in Sn.
Then

(A5", l£") = # T .

PROOF: Let S be a set of representatives of the set of double cosets YxT (x (E Sn).
Using the Frobeuius reciprocity law, Maschke's theorem and the orthogonality relations
we conclude that

»es

where ly is the class function on Y' which is "conjugate" to ly via s, that is, ly •
The condition Y' D T = 1 means that \YsT\ = \Y\ • \T\ which holds if and only if
{Tst | t £ T} is an orbit of length n with respect to the right action of T on the set of
right cosets of Y in Sn. Thus the proof is complete. U

The following interpretation of the numbers which occur in Witt's dimension for-
mula is well-known ([3, 2.1.21]).

LEMMA 2.3.
(n/d)\

Our lemmas show the equivalence of Witt's dimension formula
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(WDF) <MmRLz(k1,...,kt) = - £
n d\kt kt \ - . w - / \ - « . , - / •

for all ki,..., ki € N such that k\ + . . . + kt = n.

with the statement that

(7) (xc, ly 1 ) = (A5n, lyn) for all Young subgroups Y of Sn
^ ' Sn ^ ' Sn

where X is the character corresponding to a faithful irreducible

RT-module M, T as in Lemma 2.2.

Applying [4, 2.2.10], we can continue our chain of equivalences by

(8) xc = AS"

which means that

(Ind) C^MS".

This last statement was first proved (in a more general setting), and plays a central
role in [5]. On the one hand, our chain of equivalences may be viewed as a new proof
of (Ind), based on (WDF). On the other hand, they show that any independent proof
of (Ind) conversely leads to (WDF). Klyachko's proof in [5] is, however, based on [5,
Proposition 1], involving Hall bases and other non-trivial methods. In our final section
we show that a certain analysis and rearrangement of Kylachko's ingenious methods in
the second part of [5] suffices to give a simpler proof of (Ind).

3. IDENTITIES IN RSn

In this section let R be a commutative ring with 1, let t be trancendental over
i?, and let R(t) be the ring of polynomial fractions over R with denominators whose
leading coefficients do not divide 0. We use the terminology for algebras of Section 1,

indicating by an upper bar when we consider algebras over R(t) instead of R.
x x

If T € N, we have the standard left action of Sr on A x . . . x A given by
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for all a £ Sr and Uij e / . If (m l r . . ,mr) £ Nr and u, £ l ^ . \ M for 1 < j ^ r ,
we define

6(j,(ui,...,ur)) = m1 + ... + rjij.

Following Klyacliko [5], we define, for all cr £ Sr, setting u = (u j , . . . ,ur),

Ind(er,u) =

and
4Ind(<r,U)

K ^

if ttj y£ 0 for all j . Moreover, we set jK(TOll...lfnp)U = 0 if Uj = 0 for any index j . Then

•K^(ml,...,mr) is multilinear, and as in [5] one has

LEMMA 3 . 1 . Let r € N , (mi,.. . , m r ) G N r and ( « ] , . . -,ur) £ Ami x ... x A'mr ,

l<i<r. Then

For all m € N and cr £ Sm, let ind <r = X) J • K »i, • • • > *m-i are the unique

nonnegative integers such that 0 < i3, < j and <r = (2,1)'1 (3,2,1)'2 . . . ( m , . . . ,
then it is easily seen that ind a = i\ + %2 + • • • + im-i • We set

n

If u = (xit,..., xir) £ Xr, then S(j, u) = j for 1 < j < r, and Ind(<7, u) = ind cr,
hence

Starting from this equation, one proves inductively by means of 3.1

LEMMA 3.2. (See [5, Proposition 3].) If (mu ... ,mr) £ Nr , m = nil + ... + mr

and Ui £ Lm. for 1 < i < r, then

(where the righthand side is defined via the usual left action of R(t)Sm on Am, see

(0))-

In particular, the case r — 1 yields
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COROLLARY 3.3. IfmeN and u g £ * tiien nmu = u.

By a further specialisation we obtain the following identity in the group ring of Sn

over R(t)

THEOREM 3.4. Knu>n = wn (where wn is as ill [6, (4)], see after (4)).

PROOF: wnxi .. .xn — x\ o . . . o xn, hence Knwnx\ ... xn = wnxi xn, by 3.3.

This implies via [2, (8)] the claim of the theorem. u

As is seen from the definition of /cn, the theorem states the following identity in

the group ring of Sn over R[i]

<r€Sn

Let X C Sn be the set of all cycle products

where n > ji > j 2 > • • • > ji ^ 2 and 0 <; i < n. Then wn = X) C-1)1" 7r-

Comparing coefficients in (9), we see that (9) is equivalent to

Now we fix n and suppose that R contains a primitive n-th root of unity e. Then
(l — £J) = n, and therefore 3.4 implies (t — e) that

(11)

If n is a unit in R (wliich will be assumed in the sequel), then

i i "-1

A = — y ei n d o> C — — Y^£-~'{1 n)'
n n ^-^ ' " n ^

<r£Sn t=0

are the elements of RSn wliich are called Cn, cn in [5j. The reader is asked to forgive
our changes in notation, made for the sake of uniformity in our terminology. Moreover,
it should be noted that , in [5], the product of permutations has to be read from right
to left. Thus we have, in our context, by [5, Lemma 2], the following identities

AnSn — ^n) SnAn — <,n> Sn — U i A
n ~ Ani

which imply, as in [5, Lemma 3], that

https://doi.org/10.1017/S0004972700003488 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003488


[9] Free Lie algebras 57

(12) (nRSn and XnRSn are isomorpliic RSn-right modules.

By (11), we have

(13) Anwn = wn,

hence

(14) Antt = « for all u G £ (see [5, Proposition 3]).

The statement (12) enables us to prove

THEOREM 3.5. wn\n = nXn.

PROOF: Using the preparations above and [2, (10), (7), (9)], we have

C = An£ C \nA = Xn{Xl... xn)RSn = ( 1 , . . . xn)XnRSn S An.RSn S <n.RSn.

In particular, XnA is a free i?-rnodule of rank (n — 1)!. As is easily seen (see [1, 4.8.1]),

C is also free over R of rank (n — 1)!. In the special case of R = C, this implies

(15) XnA=C,

hence by the Specht-Wever theorem, wnAna;i .. .xn = nXnXj ...xn, and therefore ([2,
(8)]) u>nAn = nXn. As this equation holds in the group ring of Sn over Z[l/n, e],
it holds in general (that is, if R contains a primitive n-th root of unity t and n is
invertible in R). U

The proof shows that C C XnA = (nRSn for every ring R containing e and
n"1. From 3.5 and the Specht-Wever theorem follows that C D XnA and therefore
£ S (nRSn, that is, (Ind).
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