
JFP 21 (4 & 5): 413–465, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000189 First published online 16 August 2011

413

Purely functional lazy nondeterministic
programming

SEBASTIAN FISCHER, OLEG KISELYOV and

CHUNG-CHIEH SHAN

(e-mail: oleg@okmij.org)

Abstract

Functional logic programming and probabilistic programming have demonstrated the broad

benefits of combining laziness (nonstrict evaluation with sharing of the results) with non-

determinism. Yet these benefits are seldom enjoyed in functional programming because the

existing features for nonstrictness, sharing, and nondeterminism in functional languages are

tricky to combine. We present a practical way to write purely functional lazy nondeterministic

programs that are efficient and perspicuous. We achieve this goal by embedding the programs

into existing languages (such as Haskell, SML, and OCaml) with high-quality implementations,

by making choices lazily and representing data with nondeterministic components, by working

with custom monadic data types and search strategies, and by providing equational laws for

the programmer to reason about their code.

1 Introduction

Nonstrict evaluation, sharing, and nondeterminism are all valuable features in

functional programming. Nonstrict evaluation lets us express infinite data structures

and their operations in a modular way (Hughes, 1989). Sharing lets us represent

graphs with cycles, such as circuits (surveyed by Acosta-Gómez, 2007), and express

memoization (Michie, 1968), which underlies dynamic programming. Since Rabin

& Scott’s Turing-award paper (1959), nondeterminism has been applied to model

checking, testing (Claessen & Hughes, 2000), probabilistic inference, and search.

These features are each available in mainstream functional languages. A call-by-

value language can typically model nonstrict evaluation with thunks and observe

sharing using reference cells, physical identity comparison, or a generative feature

such as Scheme’s gensym or SML’s exceptions. Nondeterminism can be achieved

using amb (McCarthy, 1963), threads, or first-class continuations (Felleisen, 1985;

Haynes, 1987). In a nonstrict language like Haskell, nondeterminism can be expressed

using a list monad (Wadler, 1985) or another MonadPlus instance, and sharing can

be represented using a state monad (Acosta-Gómez, 2007, Section 2.4.1).

These features are particularly useful together. For instance, sharing the results of

nonstrict evaluation—known as call-by-need or lazy evaluation—ensures that each

expression is evaluated at most once. This combination is so useful that it is often

built-in: as delay in Scheme, lazy in OCaml, and memoization in Haskell.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

414 S. Fischer et al.

In fact, many programs need all three features. As we illustrate in Section 2, lazy

functional logic programming (FLP) can be used to express search problems in the

more intuitive generate-and-test style yet solve them using the more efficient test-

and-generate strategy, which is to generate candidate solutions only to the extent

demanded by the test predicate. This pattern applies to property-based test-case

generation (Fischer & Kuchen, 2007; Christiansen & Fischer, 2008; Runciman et al.,

2008) as well as probabilistic inference (Koller et al., 1997; Goodman et al., 2008).

Given the appeal of these applications, it is unfortunate that combining the

three features naively leads to unexpected and undesired results, even crashes. For

example, lazy in OCaml is not thread-safe (Nicollet et al., 2009), and its behavior

is unspecified if the delayed computation raises an exception, let alone backtracks.

Although sharing and nondeterminism can be combined in Haskell by building

a state monad that is a MonadPlus instance (Hinze, 2000; Kiselyov et al., 2005),

the usual monadic encoding of nondeterminism in Haskell loses nonstrictness (see

Section 2.2). The triple combination has also been challenging for theoreticians and

practitioners of FLP (López-Fraguas et al., 2007, 2008). After all, Algol has made

us wary of combining nonstrictness with any effect.

The FLP community has developed a sound combination of laziness and nondeter-

minism, call-time choice, embodied in the Curry language. Roughly, call-time choice

makes lazy nondeterministic programs predictable and comprehensible, because their

declarative meanings can be described in terms of (and are often the same as) the

meanings of eager nondeterministic programs.

1.1 Contributions

We embed lazy nondeterminism with call-time choice into mainstream functional

languages in a shallow way (Hudak, 1996), rather than, say, building a Curry

interpreter in Haskell (Tolmach & Antoy, 2003). This new approach is especially

practical because these languages already have mature implementations, because

functional programmers are already knowledgeable about laziness, and because

different search strategies can be specified using overloading via type classes.

Furthermore, we provide equational laws that programmers can use to reason about

their code, in contrast to previous accounts of call-time choice based on directed,

nondeterministic rewriting.

The key novelty of our work is that nonstrictness, sharing, and nondeterminism

have not been combined in such a general way before in purely functional program-

ming. Nonstrictness and nondeterminism can be combined using data types with

nondeterministic components such that a top-level constructor can be computed

without fixing its arguments. However, such an encoding defeats Haskell’s built-

in sharing mechanism because a piece of nondeterministic data that is bound to a

variable that occurs multiple times may evaluate to a different (deterministic) value at

each occurrence. We retain sharing by annotating programs explicitly with a monadic

combinator for sharing. We provide a generic library to define nondeterministic

data structures that can be used in nonstrict, nondeterministic computations with

explicit sharing annotations. Furthermore, we provide a Template Haskell library

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 415

to automatically derive the definitions of such nondeterministic data structures and

their basic operations from conventional data type declarations.

Our library does not directly support logic variables—perhaps the most con-

spicuous feature of FLP—and the associated solution techniques of narrowing and

residuation, but logic variables can be emulated using nondeterministic generators

(Antoy & Hanus, 2006).

We present our concrete code in Haskell, but we have also implemented our

approach in OCaml. Our monadic computations perform competitively against

corresponding computations in Curry that use nondeterminism, narrowing, and

unification. The complete code, along with many tests, is available on Hackage as

package explicit-sharing-0.9.

1.2 Structure of the paper

We strove to make the paper accessible not only to Haskell programmers interested in

nondeterminism, but also to Prolog and, in general, logic programmers interested in

Haskell. Therefore, the paper begins by reviewing how to represent nondeterminism

in a pure functional language and how to reason about such purely functional

nondeterministic programs. In Section 2, we describe nonstrictness, sharing, and

nondeterminism and why they are useful together. We also show that their naive

combination is problematic, to motivate the explicit sharing of nondeterministic

computations. In Section 3, we clarify the intuitions of sharing and introduce

equational laws to reason about lazy nondeterminism. Section 4 develops an easy-

to-understand implementation in several steps. Subtle issues of observing the results

of nondeterministic computations are discussed in Section 5. Section 6 generalizes

and speeds up the simple implementation and describes the automatic derivation of

nondeterministic data types with corresponding type-class instances. In Section 7,

we explain sharing across nondeterminism and how to avoid repeated sharing. We

review related work in Section 8 and then conclude. The Appendix gives a complete

example of using our library, including the definition of an interactive eval-print-like

loop.

2 Nonstrictness, sharing, and nondeterminism

In this section, we describe nonstrictness, sharing, and nondeterminism and explain

why combining them is useful and nontrivial. For completeness, we first describe

representing nondeterminism in a pure functional language and illustrate equational

reasoning about nondeterministic programs.

2.1 Lazy evaluation

Lazy evaluation is illustrated by the following Haskell predicate, which checks

whether a given list of numbers is sorted:

isSorted :: [Int] -> Bool

isSorted [] = True

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

416 S. Fischer et al.

isSorted [_] = True

isSorted (x:y:ys) = (x <= y) && isSorted (y:ys)

In a nonstrict language, such as Haskell, the arguments to a function are evaluated

only as far as needed (or, demanded) by the body of the function to compute the

result. The predicate isSorted only demands the complete input list if it is sorted.

If the list is not sorted, then it is only demanded up to the first two elements that

are out of order.

As a consequence, we can apply isSorted to infinite lists and it will yield False

if the given list is unsorted. Consider the following function that produces an infinite

list:

iterate :: (a -> a) -> a -> [a]

iterate next x = x : iterate next (next x)

The test isSorted (iterate (‘div‘2) n) yields the result False if n>0. It does

not terminate if n<=0 because an infinite list cannot be identified as being sorted

without considering each of its elements. In this sense, isSorted is not total (Escardó,

2007).

In a nonstrict language, variables can be bound to not yet evaluated expressions

rather than only fully evaluated values like in a call-by-value language. This allows

to evaluate arguments of functions only when they are needed. If a variable occurs

several times in the body of a function, the bound expression is duplicated and may

have to be evaluated several times. For example, the function iterate duplicates the

variable x, which occurs twice in its body. Nonstrict languages can be distinguished

by how they handle duplicated variables. In a language with a call-by-name

evaluation strategy, duplicated unevaluated expressions are evaluated independently

each time a duplicated occurrence is demanded. For example, the call iterate

(‘div‘2) (factorial 100) yields a list that starts with the elements factorial

100 and factorial 100 ‘div‘ 2. When passing this list to isSorted in a language

with a call-by-name strategy, the expression factorial 100 is evaluated twice. A

call-by-need or lazy evaluation strategy prevents such duplicated evaluation, ensuring

that each expression bound to a variable is evaluated at most once—even if the

variable occurs more than once. In a lazy language, iterate (‘div‘2) (factorial

100) builds a list in which all occurrences of factorial 100 are shared but none

is evaluated. If we pass such a list to isSorted, the value of factorial 100 is

computed only once. This property—called sharing—makes lazy evaluation strictly

more efficient than nonstrict evaluation without sharing. The controlled use of

destructive updates represented by sharing also allows efficiency gains over purely

functional eager programs, as demonstrated by Bird et al. (1997).

2.2 Nondeterminism

Programming nondeterministically can simplify the declarative formulation of an

algorithm. As logic programming languages such as Prolog and Curry have shown,

the expressive power of nondeterminism simplifies programs because different

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 417

nondeterministic results can be viewed individually rather than as members of

a set of possible results (Antoy & Hanus, 2002).

In this section, we discuss nondeterminism and how it can be represented in the

pure functional language Haskell. We add example programs in Curry to document

the difference between a language with built-in nondeterminism and nondeterminism

modeled in a deterministic language.

In a nondeterministic language like Curry, expressions evaluate to any of possibly

many values. For example, the Curry declaration

coin = 0

coin = 1

defines a (zero-argument) function coin that yields 0 or 1 when evaluated.

Nondeterministic expressions can be combined using built-in or user-defined

functions. Such combinations are themselves nondeterministic. For example, in

Curry, the expression 1+coin yields 1 or 2 nondeterministically and coin+coin

yields 0, 1, or 2.

To model nondeterministic computations in a pure functional language, the

implicit computational effect of nondeterminism must be made explicit. Haskell

adopts a style of programming popularized by Wadler (1992) in which effectful

computations are expressed in a domain-specific monadic sublanguage embedded

into a pure functional language. Nondeterministic computations are expressed using

monads that are instances of the type class MonadPlus.

We now briefly review using monads to model nondeterminism. We recall that a

monad m is a type constructor that provides two polymorphic operations:

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Following Moggi (1989), we call monadic values computations. The operation return

builds a deterministic computation that yields a value of type a, and the operation

>>= (“bind”) chains computations together. Haskell’s do-notation is syntactic sugar

for long chains of >>=. For example, the expression

do x <- e1

e2

desugars into e1 >>= \x -> e2, which builds a bigger computation out of e1 and

e2. That bigger computation performs (or executes) e1, binds the resulting value to

the variable x, and then executes e2. If a monad m is an instance of MonadPlus, then

two additional operations are available:

mzero :: m a

mplus :: m a -> m a -> m a

Here, mzero is the primitive failing computation, and mplus chooses nondetermin-

istically between two computations.

One of the implementations of MonadPlus is a list monad (Wadler, 1985): return

builds a singleton list, mzero is an empty list, and mplus is list concatenation. We

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

418 S. Fischer et al.

encourage the reader however not to think of MonadPlus m => m a values as lists.

One should think of them as expressions in a small language of nondeterminism,

whose expression forms are return, (>>=), mzero, and mplus; that language

is embedded in Haskell. We should reason about nondeterministic expressions

using the equational laws explained below rather than in terms of any particular

implementation.

The Curry definition of coin shown above can be translated to Haskell using

return and mplus:

coin :: MonadPlus m => m Int

coin = return 0 ‘mplus‘ return 1

We have translated the two Curry definition clauses into arguments of mplus in a

single Haskell clause and wrapped the integers with calls to return. The type of coin

is m Int for an arbitrary MonadPlus instance m; that is, coin is a nondeterministic

computation that yields, or results in, an integer. In Curry, the type of coin is just

Int and nondeterminism is implicit.

The following Curry program demonstrates how to reason about nondeterministic

computations.

coin’ | x+y > 0 = x

where x = coin

y = coin

This function binds two variables x and y to the results of calls to coin and yields

the result of x if at least one of the variables is bound to 1. To reason about possible

results of this function, we check all possible combinations of bindings for x and y

and observe that both 0 and 1 are possible results of coin’.

To translate coin’ into Haskell, we use do-notation instead of a where clause

to bind the variables. The convenience function guard is semideterministic, meaning

that it yields at most one result: it yields () if its argument is True and fails

otherwise.

coin’ :: MonadPlus m => m Int

coin’ = do x <- coin

y <- coin

guard (x+y > 0)

return x

guard :: MonadPlus m => Bool -> m ()

guard b = if b then return () else mzero

To reason about the Haskell version of the coin’ function, we can pick a specific

instance of MonadPlus, inline the definitions of the monadic operations, and compute

the results by evaluating the resulting expression using Haskell’s reduction rules. A

more high-level approach, which is independent of a specific instance of MonadPlus,

is to reason via equational laws. MonadPlus instances need to satisfy the monad

laws as well as additional laws for the interaction of mzero and mplus with the

>>= combinator. Figure 1 shows the laws, writing ret for return, ∅ for mzero and

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 419

ret x �= k = k x (Lret)

a �= ret = a (Rret)

(a �= k1) �= k2 = a �= λx. k1x �= k2 (Bassc)

∅ �= k = ∅ (Lzero)

(a ⊕ b) �= k = (a �= k) ⊕ (b �= k) (Ldistr)

Fig. 1. The laws of a monad with nondeterminism.

⊕ for ‘mplus‘. The additional laws, involving mzero and mplus, are not agreed

upon (MonadPlus 2008). Figure 1 shows our choice: the inclusion of (Lzero) and

(Ldistr) and omitting monoid laws for ∅ and ⊕. Because of the (Ldistr) law, we

do not regard Maybe as a monad for nondeterminism (despite Haskell’s MonadPlus

instance for Maybe), since in the Maybe monad, (ret False ⊕ ret True) �= guard

equals ∅ instead of ∅ ⊕ ret ().

To use these laws to reason about the monadic version of coin’, we desugar the

do-notation and apply the laws of Figure 1:

coin �= λx. coin �= λy. guard (x + y > 0) �= λ . ret x

= (ret 0 ⊕ ret 1) �= λx. coin �= λy. guard (x + y > 0) �= λ . ret x (Def. coin)

= (ret 0 �= λx. coin �= λy. guard (x + y > 0) �= λ . ret x)

⊕ (ret 1 �= λx. coin �= λy. guard (x + y > 0) �= λ . ret x) (Ldistr)

= (coin �= λy. guard (0 + y > 0) �= λ . ret 0)

⊕ (coin �= λy. guard (1 + y > 0) �= λ . ret 1) (Lret)

= ((guard (0 + 0 > 0) �= λ . ret 0) ⊕ (guard (0 + 1 > 0) �= λ . ret 0))

⊕ ((guard (1 + 0 > 0) �= λ . ret 1) ⊕ (guard (1 + 1 > 0) �= λ . ret 1))

(Def. coin, Ldistr, Lret)

= ((∅ �= λ . ret 0) ⊕ (ret () �= λ . ret 0))

⊕ ((ret () �= λ . ret 1) ⊕ (ret () �= λ . ret 1)) (Def. guard)

= (∅ ⊕ ret 0) ⊕ (ret 1 ⊕ ret 1) (Lzero, Lret)

We call equational reasoning steps that involve the monad laws (such as those

in Figure 1) execution of a nondeterministic computation. We tacitly use other

equational laws such as α, β, η-conversions, arithmetic, and pair construction and

projections.

As a more complex example for a nondeterministic program, we consider a

function that yields a permutation of a given list nondeterministically. First, we

show the Curry version, where nondeterminism is implicit.

perm :: [a] -> [a]

perm [] = []

perm (x:xs) = insert x (perm xs)

insert :: a -> [a] -> [a]

insert x xs = x : xs

insert x (y:ys) = y : insert x ys

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

420 S. Fischer et al.

The operation perm permutes a list by recursively inserting elements at arbitrary

positions. To insert an element x at an arbitrary position in xs, the operation insert

either puts x in front of xs or recursively inserts x somewhere in the tail of xs if xs

is not empty. In Curry, any matching clause of a defined operation is applied, not

necessarily the first matching clause as in Haskell where the first clause of insert

would catch all applications.

The Haskell version of perm takes a list as argument and returns a nondetermin-

istic computation that yields a permutation of this list.

perm :: MonadPlus m => [a] -> m [a]

perm [] = return []

perm (x:xs) = do ys <- perm xs

insert x ys

The function insert shown below takes a list as second argument. Since perm xs is

a list-yielding computation rather than a list, we cannot pass it to insert directly;

we have to build a bigger computation that first performs the computation perm xs,

binds the result to ys, and then performs the computation insert x ys. The func-

tion insert receives as its second argument the result of the perm xs computation

rather than the computation itself. Our translation therefore corresponds to a call-

by-value strategy rather than the call-by-need strategy of Curry—a difference that

will become important below.

insert :: MonadPlus m => a -> [a] -> m [a]

insert x xs = insert_head ‘mplus‘ insert_tail xs

where insert_head = return (x:xs)

insert_tail [] = mzero

insert_tail (y:ys) = do zs <- insert x ys

return (y:zs)

To translate insert into monadic style, we merge the different clauses of Curry’s

insert into a single clause using mplus, with a helper function insert_tail to

pattern-match on xs. We explicitly yield mzero if the argument to insert_tail is

empty, which corresponds to pattern match failure in Curry.

2.3 Sharing of nondeterminism

Nondeterminism is especially useful when formulating search algorithms. Following

the generate-and-test pattern, we can find solutions to a search problem by non-

deterministically describing candidate solutions and using a separate predicate to

filter results. It is much easier for a programmer to express generation and testing

separately than to write an efficient search procedure by hand because the generator

can follow the structure of the data (to achieve completeness easily) and the test can

operate on fully determined candidate solutions (to achieve soundness easily).

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 421

We demonstrate this technique with a toy example, permutation sort,1 which

motivates the combination of nonstrictness, sharing, and nondeterminism. Below is

a simple declarative specification of sorting in Curry. In words, to sort a list is to

compute one of its sorted permutations.

sort :: [Int] -> [Int]

sort xs | isSorted ys = ys

where ys = perm xs

This definition of sort makes crucial use of call-time choice: On one hand, the

result ys of perm is evaluated only to the extent demanded by isSorted. (The

function isSorted in Curry looks like the one in Haskell, Section 2.1.) In this sense,

ys can be seen as a computation that yields a permutation nondeterministically

and is executed during the evaluation of isSorted. On the other hand, the second

occurrence of ys on the right-hand side of sort denotes the same permutation as

was passed to isSorted. In this sense, ys can be seen as a single, but not yet

evaluated, permutation.

A naive Haskell encoding of sort uses do-notation to bind the result of perm,

and the guard function to select a sorted permutation.

sort :: MonadPlus m => [Int] -> m [Int]

sort xs = do ys <- perm xs

guard (isSorted ys)

return ys

Unfortunately, this Haskell program is grossly inefficient compared to the Curry

program above. Using the list monad, it takes about a second to sort 10 elements,

more than 10 s to sort 11 elements, and more than 3 min to sort 12 elements.

The reason for the inefficiency is that, as explained above, the employed monadic

encoding corresponds to call-by-value, rather than call-by-need, evaluation. The

function isSorted takes a list of integers. To obtain such a list, sort must perform

the computation perm xs first. However, isSorted can reject a permutation as soon

as two elements are out of order, without knowing the rest of the permutation. The

naive Haskell encoding of Curry’s perm offers no way to compute the permuted

list partly, to the needed extent. As a result, many nondeterministic choices are

performed needlessly, leading to the observed inefficiency.

In short, the usual, naive monadic encoding of nondeterminism in Haskell

loses nonstrictness. In the next two sections, we develop an alternative monadic

encoding of nondeterminism that models the nonstrictness of nondeterministic Curry

executions more closely.

1 Permutation sort is a standard example in the FLP community to demonstrate call-time choice because
it is a small program that combines nondeterminism, nonstrictness, and sharing in a nontrivial way. It
is frequently used to test the performance of Curry systems.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

422 S. Fischer et al.

2.4 Retaining nonstrictness by sacrificing sharing

The naive monadic encoding of nondeterminism loses nonstrictness because the

arguments to a constructor cannot be monadic. For example, the second argument

of the constructor for ordinary lists

(:) :: a -> [a] -> [a]

has the type [a] rather than m [a]. We cannot use this constructor to build lists with

a nondeterministic spine, that is, a list whose tail is a nondeterministic computation

(a monadic value).

To overcome this limitation, we redefine data structures so that their components

may be nondeterministic. A data type for lists with nondeterministic components is

as follows:

data List m a = Nil | Cons (m a) (m (List m a))

We define operations to construct such lists conveniently:

nil :: Monad m => m (List m a)

nil = return Nil

cons :: Monad m => m a -> m (List m a) -> m (List m a)

cons x y = return (Cons x y)

Unlike (:), cons and Cons take monadic values as arguments. We redefine the

nonstrict isSorted to test nondeterministic lists:

isSorted :: MonadPlus m => m (List m Int) -> m Bool

isSorted ml =

do l <- ml

case l of

Nil -> return True

Cons mx mxs -> do xs <- mxs

case xs of

Nil -> return True

Cons my mys ->

do x <- mx

y <- my

if x <= y

then isSorted (cons (return y) mys)

else return False

We define a lazier version of the monadic permutation algorithm that generates lists

with nondeterministic components.

perm :: MonadPlus m => m (List m a) -> m (List m a)

perm ml = do l <- ml

case l of

Nil -> nil

Cons mx mxs -> insert mx (perm mxs)

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 423

Unlike the previous version in Section 2.2, this version of perm takes as argument

a computation that yields a list with monadic components. In the following, we

call such computations nondeterministic lists. A crucial difference from the previous

version of perm is that we no longer execute the recursive call of perm in order to pass

the result to the operation insert, because insert now takes a nondeterministic

list as its second argument:

insert :: MonadPlus m => m a -> m (List m a) -> m (List m a)

insert mx mxs = cons mx mxs ‘mplus‘ insert_tail mxs

where insert_tail mxs = do Cons my mys <- mxs

cons my (insert mx mys)

The operation insert either creates a new list with the nondeterministic mx in

front of the nondeterministic mxs or inserts mx somewhere in the tail of mxs. Unlike

the previous version of insert, this version creates a nondeterministic list with

a nondeterministic spine. Also, note that the pattern match in the do-expression

binding is nonexhaustive. If the computation mxs yields Nil, the pattern-match

failure is a failing computation.

Our second attempt at permutation sort in Haskell now checks lazily whether

generated permutations are sorted:

sort :: MonadPlus m => m (List m Int) -> m (List m Int)

sort xs = let ys = perm xs

in do True <- isSorted ys

ys

Unfortunately, this version of the algorithm does not sort. It yields an arbitrary per-

mutation of its input, not necessarily a sorted one. This is because the shared variable

ys in the new definition of sort is bound to a monadic value m (List m Int),

which is a nondeterministic computation yielding a permutation of the input. In

the previous version of sort, we bound ys (using do-notation) to a (deterministic)

result of a nondeterministic permutation computation. The new sort makes sure

that there is a sorted permutation but then yields an arbitrary permutation. In other

words, this monadic encoding of nondeterminism corresponds to nondeterministic

call-by-name, rather than call-by-need, evaluation.2

In short, the presence of nondeterministic components in data structures compli-

cates nondeterministic programming, for example, expressing Curry algorithms in

Haskell. In Curry, variables denote values, fully determined if not yet fully computed.

In the Curry version of sort, both occurrences of the variable ys denote the same

result of the permutation function. A faithful encoding of lazy nondeterminism

must preserve this intuition. In order for the monadic sort to work, the shared

nondeterministic computation ys, used twice in sort, must yield the same result

each time.

2 In contrast to a deterministic language, a call-by-name evaluation strategy in a nondeterministic
language can lead to more results than a call-by-need strategy because nondeterminism in duplicated
expressions is executed independently.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

424 S. Fischer et al.

2.5 Explicit sharing

Our new approach to nondeterminism is lazy in that it preserves both nonstrictness

and sharing. We provide a combinator share, which can be used explicitly to

introduce a variable that stands for fully determined values. One may regard the

application share m as an explicit sharing annotation on the expression m. The

combinator share has the signature3

share :: m a -> m (m a)

where m is an instance of MonadPlus that supports explicit sharing. (We describe the

implementation of explicit sharing in Sections 4–6.) The function sort can then be

redefined to actually sort:

sort xs = do ys <- share (perm xs)

True <- isSorted ys

ys

In this version of sort, the variable ys denotes the same permutation wherever it

occurs but is nevertheless only computed as much as demanded by the predicate

isSorted.

3 Programming with lazy nondeterminism

In this section, we formalize the share combinator and specify equational laws with

which a programmer can reason about nondeterministic programs with share and

predict their observations. Before the laws, we first present a series of small examples

to clarify how to use share and what we designed share to do.

3.1 The intuition of sharing

We demonstrate the intuition of sharing using the function duplicate, which

executes a given computation a twice.

duplicate :: Monad m => m a -> m (a, a)

duplicate a = do u <- a

v <- a

return (u,v)

3.1.1 Sharing enforces call-time choice

We contrast three ways to bind x:

dup_coin_let = let x = coin in duplicate x

dup_coin_bind = do x <- coin

duplicate (return x)

dup_coin_share = do x <- share coin

duplicate x

3 In fact, the signature has additional class constraints (see Section 6).

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 425

Table 1. Three ways to bind the result of a nondeterministic computation

computation number of results coin is executed. . .

dup_coin_let 4 . . . twice inside duplicate

dup_coin_bind 2 . . . once before duplicate

dup_coin_share 2 . . . once inside duplicate

The programs dup_coin_let and dup_coin_bind do not use share, so we can

reason about them as we did for coin’ in Section 2.2: using the laws of MonadPlus

in Figure 1. The differences among all three programs are summarized in Table 1.

The program dup_coin_let binds the variable x to the nondeterministic compu-

tation coin. Substituting coin for x and then for the argument of duplicate gives

us

(ret 0 ⊕ ret 1) �= λu. (ret 0 ⊕ ret 1) �= λv. ret (u, v),

which, by the (Ldistr) and (Lret) laws, is equal to

(ret (0, 0) ⊕ ret (0, 1)) ⊕ (ret (1, 0) ⊕ ret (1, 1)),

with four so-called primitive choices, each a pair of numbers. The function

duplicate executes its argument x twice—performing two independent coin flips.

In contrast, dup_coin_bind binds x to the result of the coin computation rather

than to coin itself. Whereas in dup_coin_let, the variable x is of the type m Int, in

dup_coin_bind it is of type Int. Applying the equational laws to dup_coin_bind

gives a different expression,

(ret 0 ⊕ ret 1) �= λx. ret x �= λu. ret x �= λv. ret (u, v),

which, by the (Lret) law, is equal to

(ret 0 ⊕ ret 1) �= λx. ret (x, x).

We no longer substitute coin in the body of duplicate; rather, we substitute

return x, which is a deterministic computation, whose two executions yield the

same result. Hence, the expression dup_coin_bind equals ret (0, 0) ⊕ ret (1, 1).

On one hand, dup_coin_share resembles dup_coin_let in that the variable x

is of the type m Int, so x is bound to a computation. Unlike in dup_coin_let,

however, x is bound to a shared coin computation, which behaves quite like

return x in dup_coin_bind. As in Sections 2.4 and 2.5, we wish to share the

results of computations, and we wish shared computations to denote determined

values. In dup_coin_bind, x has the type Int and indeed represents an integer. In

dup_coin_share, x has the type m Int, yet it represents one integer rather than a

set of integers. Thus, dup_coin_share is equal to dup_coin_bind.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

426 S. Fischer et al.

3.1.2 Sharing preserves nonstrictness

The sorting example in Section 2 shows how nonstrictness can improve performance

significantly. Here, we illustrate nonstrictness with two shorter examples that

demonstrate that, unlike monadic bind, share is lazy although, as seen above,

it has a similar effect on the number of results as monadic bind:

strict_bind = do x <- undefined :: m Int

duplicate (const (return 2) (return x))

lazy_share = do x <- share (undefined :: m Int)

duplicate (const (return 2) x)

Whereas strict_bind is equal to undefined (that is, diverges), lazy_share is

equal to ret (2, 2). Of course, real programs do not contain undefined or other

intentionally divergent computations. We use undefined above to stand for an

expensive search whose results are unused.

Alternatively, undefined above may stand for an expensive search that in the

end fails to find any solution. If the rest of the program does not need any result

from the search, then the shared search is not executed at all. Thus, if we replace

undefined with mzero in the examples above, by the law (Lzero) strict_bind

would become equal to mzero (that is, fail), but lazy_share would still be equal to

ret〈2, 2〉 after this change.

3.1.3 Intuitions of observation

So far, we have been content to show that dup_coin_bind equals ret (0, 0) ⊕
ret (1, 1), equating an expression to a tree of primitive choices. Our library provides a

(partial) function results that can be used to collect the results of a nondeterministic

computation with sharing in a set, from which the results can be extracted and

printed, for example. This function lets us observe the nondeterministic computations

with sharing. (We will see in Section 3.4 that results is an instance of the general

observation function collect, which is not limited to sets.)

Our implementation restricts observable computations in two ways:

1. The computation can only use the MonadPlus operations and share. No other

operations can enter sharing computations.

2. The results must not contain any reference to the sharing monad. Rather, they

must have the form of answers, that is, trees of primitive choices.

In Section 5, we discuss how we use the type system to enforce these restrictions.

A consequence of the second restriction is that we can only observe fully

determined results without nondeterministic components. We cannot observe a call

to the share function, which yields a computation, or to our sort function, which

yields a nondeterministic list (see Section 2.4), because the results of these functions

are not admissible as answers. In order to pass the result of the sort function to

results, we need to convert it into a list without nondeterministic components, for

example by using the following function.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 427

convertList :: Monad m => List m a -> m [a]

convertList Nil = return []

convertList (Cons mx mxs) = do x <- mx

xs <- mxs >>= convertList

return (x:xs)

It is the responsibility of users of the library to apply such a conversion function

prior to observing the result of a sharing computation. To relieve users from

writing conversions, we provide below an overloaded conversion function that works

for arbitrary types with nondeterministic components (Section 6.2) and a way to

automatically derive instances for specific types (Section 6.3).

Applying convertList forces the execution of any nondeterminism hidden in

the components of a nondeterministic list. For example, cons coin (cons coin

nil) is a deterministic computation producing a list with two nondeterministic

components, each of which is an independent coin flip. We cannot observe such a

list directly, but we can observe cons coin (cons coin nil) >>= convertList,

as a set {[0,0],[0,1],[1,0],[1,1]}.
The Appendix shows a complete example of how to use the library by defining

nondeterministic data-types, monadic operations on them, and calling results to

enumerate converted results. It also shows how to define a print loop that resembles

the eval-print loops of interactive Curry systems.

3.1.4 Sharing recurs on nondeterministic components

We now explain how share acts on values with nondeterministic components, as in

the type List m a introduced in Section 2.4. We define two functions for illustration:

the function first takes the first element of a List; the function dupl builds a

List with the same two elements.

first :: MonadPlus m => m (List m a) -> m a

first l = do Cons x xs <- l

x

dupl :: Monad m => m a -> m (List m a)

dupl x = cons x (cons x nil)

The function dupl is subtly different from duplicate: whereas duplicate executes

a computation twice and returns a data structure with the results, dupl does not

execute the given computation but returns a data structure with two copies of the

computation.

The following two examples illustrate the benefit of data structures with nonde-

terministic components.

heads_bind = do x <- cons coin undefined

dupl (first (return x))

heads_share = do x <- share (cons coin undefined)

dupl (first x)

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

428 S. Fischer et al.

Despite the presence of undefined, neither expression is equal to undefined; both

yield defined results. Since only the head of the list x is demanded, the undefined

tail of the list is not executed.

The expression cons coin undefined above denotes a deterministic computation

that returns a data structure containing a nondeterministic computation coin.

The monadic bind in heads_bind shares this data structure, coin and all, but

not the result of coin. The monad laws entail that heads_bind is equal to

cons coin (cons coin nil), containing two copies of coin. Observing

heads_bind >>= convertList executes these latent computations and gives the set

{[0,0],[0,1],[1,0],[1,1]}. Therefore, heads_bind is like dup_coin_let above.

Informally, monadic bind performs only shallow sharing, which is not enough for

data with nondeterministic components.

Our share combinator performs deep sharing: all components of a shared data

structure are shared as well.4 For example, the variable x in heads_share stands

for a fully determined list with no latent nondeterminism. Observing

heads_share >>= convertList thus gives only the set {[0,0],[1,1]}.

3.1.5 Sharing applies to unbounded data structures

Our final example involves a list of nondeterministic, unbounded length, all of

whose elements are also nondeterministic. The set of possible lists is infinite, yet

nonstrictness lets us compute with it.

coins :: MonadPlus m => m (List m Int)

coins = nil ‘mplus‘ cons coin coins

dup_first_coin = do cs <- share coins

dupl (first cs)

The nondeterministic computation coins yields every finite list of zeroes and ones.

Unlike the examples above using undefined, each possible list is fully defined and

finite, but there are an infinite number of possible lists, and generating every list

requires an unbounded number of choices. Even though, as discussed above, the

shared variable cs represents a fully determined result of such an unbounded number

of choices, computing dup_first_coin only makes the few choices demanded

by dupl (first cs). In particular, first cs represents the first element and is

demanded twice, each time giving the same result, but no other element is demanded.

Thus, applying results to observe dup_first_coin >>= convertList gives the

set {[0,0],[1,1]}. As we will see, dup_first_coin equals dupl mzero ‘mplus‘

heads_share.

4 Applying share to a function does not cause any nondeterminism in its body to be shared. This
behavior matches the intuition that invoking a function creates a copy of its body by substitution.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 429

ret x �= k = k x (Lret)

a �= ret = a (Rret)

(a �= k1) �= k2 = a �= λx. k1x �= k2 (Bassc)

∅ �= k = ∅ (Lzero)

(a ⊕ b) �= k = (a �= k) ⊕ (b �= k) (Ldistr)

share (a ⊕ b) = share a ⊕ share b (Choice)

share ∅ = ret ∅ (Fail)

share a �= λx. b = b where x is not free in b (Ignore)

share (share e �= k) = share e �= share ◦ k (Flat)

share a �= λx. k x (share x) = share a �= λx. k x (ret x) (Repeat)

share a �= λx. (f x ⊕ g x) = (share a �= f) ⊕ (share a �= g) (Rdistr)

share (ret (c x1 . . . xn)) = share x1 �= λy1. . . . share xn �= λyn. ret (ret (c y1 . . . yn))

(HNF)

where c is a constructor with n nondeterministic components

Fig. 2. The laws of a monad with nondeterminism and sharing.

3.2 The laws of sharing

As demonstrated in Section 2.2, the laws for nondeterminism monads (Figure 1)

let us reason about nondeterministic computations and in particular predict their

results. This section introduces additional laws for the interaction of monadic

operations with share, formalizing the intuitions developed above. The new laws

are shown in Figure 2, where we also repeat the laws for nondeterminism monads

to ease reference. In this section, we show how to use the laws to reason about

nondeterministic computations with share, such as the examples in Section 3.1. In

Section 4, we further use the laws to guide an implementation.

In Section 3.1, we used the laws (Lret) and (Ldistr) of Figure 1 to deduce that

dup_coin_bind equals ret (0, 0) ⊕ ret (1, 1). To show how the laws of Figure 2 entail

call-time choice, we derive the same result for dup_coin_share, which is

share (ret 0 ⊕ ret 1) �= λx. x �= λu. x �= λv. ret (u, v).

We first use the (Choice) law, which entails that share (ret 0 ⊕ ret 1) equals

share (ret 0) ⊕ share (ret 1). The (HNF) law then further equates share (ret 0)

to ret (ret 0) and share (ret 1) to ret (ret 1). In the (HNF) law (HNF is short for

“head normal form”), c stands for a constructor with n nondeterministic components.

Since the constructor 0 has no nondeterministic components, by setting n to 0, we

have

ret (ret 0) �= λx. x �= λu. x �= λv. ret (u, v)

= ret 0 �= λu. ret 0 �= λv. ret (u, v) = ret (0, 0)

and similarly for the share (ret 1) case. We thus obtain that dup_coin_share equals

dup_coin_bind.

Generally, we cannot simplify the computation e �= λu. e �= λv. ret (u, v) to

e �= λu. ret u �= λv. ret (u, v) and hence to e �= λu. ret (u, u). For example, if e is

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

430 S. Fischer et al.

coin, as in dup_coin_let, then this transformation is invalid. However, it is valid to

replace e with retu if we know e is deterministic, such as retx for some x. Intuitively,

a computation created by share behaves like a deterministic computation. Accord-

ingly, the (Choice) law allows to identify shared nondeterministic computations with

their results.

The preservation of nonstrictness is illustrated by lazy_share in Section 3.1.2.

After simplifying const (ret 2) x there to ret 2, we obtain

share undefined �= λx. duplicate (ret 2).

Because x is unused, we apply the (Ignore) law, giving us duplicate (ret 2), and the

final result is ret (2, 2).

A more interesting example of preserving nonstrictness is the following seemingly

“left-recursive” code.

zeros
def
= share zeros �= λx. ret 0 ⊕ x

This code is not unusual: if we replace share with ret, we get a computation that

yields infinitely many choices, each zero. The computation zeros is the same. More

precisely, let us prove that zeros = ret 0 ⊕ zeros. To start, we use the law (Rdistr),

followed by (Ignore) for one of the resulting choices.

zeros = share zeros �= λx. ret 0 ⊕ x (Definition of zeros)

= (share zeros �= λx. ret 0) ⊕ (share zeros �= λx. x) (Rdistr)

= ret 0 ⊕ (share zeros �= id) (Ignore)

(We cannot apply (Ignore) to zeros immediately because the result of share zeros

is used on the right-hand side of bind—but only in some choices.) We examine

share zeros �= id:

share zeros �= id

= share(share zeros �= λx. ret 0 ⊕ x) �= id (Definition of zeros)

= share zeros �= λx. share(ret 0 ⊕ x) �= id (Flat)

= share zeros �= λx. (share(ret 0) �= id) ⊕ (share x �= id) (Choice)

= share zeros �= λx. (ret(ret 0) �= id) ⊕ (share x �= id) (HNF, n = 0)

= share zeros �= λx. ret 0 ⊕ (share x �= id) (Lret)

= (share zeros �= λx. ret 0) ⊕ (share zeros �= (λx. share x �= id))

(Rdistr)

= ret 0 ⊕ (share zeros �= (λx. share x �= id)) (Ignore)

= ret 0 ⊕ ((share zeros �= λx. share x) �= id) (Bassc)

= ret 0 ⊕ ((share zeros �= λx. ret x) �= id) (Repeat, k = λy. id)

= ret 0 ⊕ (share zeros �= id) (Rret)

We just showed that zeros = ret 0 ⊕ (share zeros �= id) = share zeros �= id, so

zeros = ret0⊕zeros as claimed. That is, we could have defined zeros without using

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 431

share in the first place. This is not a surprise because the computation returned

by share zeros in the definition of zeros is only used once. This proof relies on

the laws (Flat) and (Repeat). Without (Flat), we could not get rid of the pattern

share(share zeros �= . . .). Similarly, without (Repeat), we would be stuck at the

second-but-last line of the derivation.

We turn to values with nondeterministic components. We have seen that

heads_bind (which does not use share) equals cons coin (cons coin nil),

which yields a nondeterministic list with two independent occurrences of coin.

That is why the computation heads_bind >>= convertList yields four different

results. To predict the result of heads_share, we need to apply the (HNF) law in a

nontrivial way, with c being Cons and n being 2:

share (cons coin undefined) �= λx. dupl(first x)

= share coin �= λy1. share undefined �= λy2. ret (cons y1 y2) �= λx. dupl(first x)

(HNF n = 2, Bassc)

= share coin �= λy1. share undefined �= λy2. dupl y1 (Lret, Def. first)

= share coin �= λy1. dupl y1 (Ignore)

= (share (ret 0) �= λy1. dupl y1) ⊕ (share (ret 1) �= λy1. dupl y1)

(Def. coin, Choice)

= dupl(ret 0) ⊕ dupl(ret 1) (HNF n = 0, Lret)

(Again we use the (Ignore) law to discard an unused shared computation, namely, the

list tail ignored by first.) This derivation shows that applying share to

ret (Cons coin undefined) exposes and lifts the latent choice coin in the list to

the top level. Therefore, sharing a list that contains a choice is equivalent to sharing

a choice of a list. That is why the computation heads_share >>= convertList

equals an answer with only two primitive choices.

The (Ignore) law also comes in handy when analyzing the expression

dup_first_coin, which creates an infinite number of choices but demands only a

few of them. Using (Choice), (HNF), and (Ignore), we conclude that dup_first_coin

equals

dupl ∅ ⊕ (dupl (ret 0) ⊕ dupl (ret 1))

Therefore, observing dup_first_coin >>= convertList gives {[0,0],[1,1]}.

3.3 Intuitions behind our laws

In this section, we motivate the less-conventional laws of Figure 2 and relate the

equational laws with observations of lazy nondeterministic programs with explicit

sharing.

Early choice. The motivation for our (Choice) law comes from Constructor-Based

Rewriting Logic (CRWL) (González-Moreno et al., 1999), a standard formalization

of FLP. To every term e (which we assume is closed in this informal explanation),

CRWL assigns a denotation �e�, the set of partial values that e can reduce to. A

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

432 S. Fischer et al.

partial value is built up using constructors such as Cons and Nil, but any part can

be replaced by ⊥ to form a lesser value. A denotation is a downward-closed set of

partial values (so it always contains the least partial value ⊥).

López-Fraguas et al.’s Theorem 1 (2008) is a fundamental property of call-time

choice. It states that, for every context C and term e, the denotation �C[e]� equals the

denotation
⋃

t∈�e��C[t]�, i.e., the union of denotations of C[t] where t is drawn from

the denotation of e. Thus, even if e is nondeterministic, the denotation of a large

term that contains e can be obtained by separately considering each partial value

that e can reduce to. Especially, if e is an argument to a function that duplicates its

argument, this argument denotes the same value wherever it occurs. The monadic

operation ⊕ for nondeterministic choice resembles the CRWL operation ?, which

yields one of its arguments nondeterministically and is defined as follows:

x ? y -> x x ? y -> y

Using the theorem above, we conclude that �C[a?b]� = �C[a]?C[b]�, which inspired

our (Choice) law.

The intuition behind the (Choice) law is that choices are made as if they are

executed eagerly. However, actual eager execution is not an option as it does not

comply to the intuition of late demand.

Late demand. The laws (Rdistr) and (Ignore) show a different perspective on sharing

in nonstrict programs: we can proceed in a derivation (e.g., make a choice) without

executing a shared computation, if that computation is not demanded. While the

law (Ignore) applies if the value of the shared computation is never used, (Rdistr)

lets us postpone the shared computation to after a subsequent choice that does not

need it. The two laws are present in one form or another in call-by-need calculi,

which permit evaluation in the body of a let expression if the let-bound variable

is not needed right away. In particular, in the HOLet calculus of López-Fraguas

et al. (2008), our (Ignore) law is called (Elim) and a more general version of our

(Rdistr) is called (Contx). A law similar to (Rdistr) was used in a parsing library by

Claessen (2004) to arrange for multiple parsers to process input in parallel so that

nondeterminism does not cause a space leak.

Consequences of our laws. Our laws are term equalities on nondeterministic compu-

tations with sharing. Although it is convenient to reason using the laws, they equate

more terms than it might first appear.

First, the (Rdistr) law implies that some choices can be reordered, as demonstrated

by the following derivations. Starting from the same expression, we can proceed in

two different ways—with or without using the (Rdistr) law. We can proceed without

using it:5

share (ret 0 ⊕ ret 1) �= λa. (ret 0 ⊕ ret 10) �= λy. a �= λx. ret(x + y)

= (share (ret 0) ⊕ share (ret 1)) �= λa. (ret 0 ⊕ ret 10) �= λy. a �= λx. ret(x + y)

5 Some steps are omitted for brevity.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 433

= ((ret 0 ⊕ ret 10) �= λy. ret(0 + y)) ⊕ ((ret 0 ⊕ ret 10) �= λy. ret(1 + y))

= (ret 0 ⊕ ret 10) ⊕ (ret 1 ⊕ ret 11)

We can also use the (Rdistr) law in the second step:

share (ret 0 ⊕ ret 1) �= λa. (ret 0 ⊕ ret 10) �= λy. a �= λx. ret(x + y)

= share (ret 0 ⊕ ret 1) �= λa. (a �= λx. ret(x + 0)) ⊕ (a �= λx. ret(x + 10))

= (share (ret 0 ⊕ ret 1) �= λx. ret(x + 0))

⊕ (share (ret 0 ⊕ ret 1) �= λx. ret(x + 10))

= (ret 0 ⊕ ret 1) ⊕ (ret 10 ⊕ ret 11)

Our laws thus equate (ret0⊕ret10)⊕(ret1⊕ret11) and (ret0⊕ret1)⊕(ret10⊕ret11).

Consequently, if it happens that ∅ is the left and the right unit of ⊕, (Rdistr) and

(Choice) imply that ⊕ is commutative.

Second, the (Choice) and (Ignore) laws imply that ⊕ is idempotent:

c = share(a ⊕ b) �= λ . c = (share a �= λ . c) ⊕ (share b �= λ . c) = c ⊕ c

Our laws thus equate c ⊕ c and c.

3.4 Observational equivalence

Recall from Section 3.1.3 that eventually we have to observe the results of a

nondeterministic computation with sharing, so that we can print them out, for

example. We introduced the (partial) observation function results to “run” a

computation with sharing and compute the results as a set.

The function results uses the more general function collect for observing nonde-

terministic computations with sharing.6

results a = collect (liftM Data.Set.singleton a)

The type of computed results must be an instance of the type class Nondet that

defines a method failure for failing computations and (?) for nondeterministic

choice.

class Nondet n where

failure :: n

(?) :: n -> n -> n

Valid definitions of the (?) operation are idempotent and allow choice reordering:

a ? a = a (Idempotence)

(a ? b) ? (c ? d) = (a ? c) ? (b ? d) (Choice Reordering)

These laws are derived from the remarks in Section 3.3. Choice reordering reflects

right distributivity of sharing computations. While the (Rdistr) law of Figure 2

allows to permute a single choice with subsequent choices, choice reordering allows

to permute a single choice with any other choice. If failure and (?) form a monoid,

6 We describe the types of results and collect in Section 5.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

434 S. Fischer et al.

collect ∅ = failure (rZero)

collect (a ⊕ b) = collect a ? collect b (rPlus)

collect (ret v) = v (rRet)

Fig. 3. The laws of observing a computation with nondeterminism and sharing. The laws, in

particular, (rRet), apply only if both of their sides are well typed. See Section 5 for the typing

of collect.

then choice reordering is equivalent to commutativity. We define several instances

of Nondet (including one for Data.Set.Set a) for observing nondeterministic

computations with sharing in Section 5.1.

Recall that we can only observe trees of primitive choices, or answers. Answers

are built using the monadic operations ∅, ⊕, and ret. The partial function collect

acts homomorphically on ∅, ⊕, and ret, as depicted in Figure 3. Thus, to predict

the observation of a computation with sharing, we have to show it equivalent to an

answer and then apply the laws of Figure 3. (There are expressions that cannot be

observed; see Section 5 for an example.)

Let e1 and e2 be two nondeterministic computations with sharing that are equal

according to the laws of Figure 2. Suppose that both collecte1 and collecte2 are well

typed, so the type of each of the two applications, if defined, is an instance of Nondet.

If collect e1 is defined (because e1 is an answer, for instance), then we conjecture

that collect e2 is defined too and collect e1 = collect e2. In short, we conjecture that

collect maps sharing computations that are equal according to Figure 2 to equal

results in an arbitrary (valid) instance of Nondet. Colloquially speaking, we need

collect e to reduce e. Of course, this step depends on the implementation of collect,

which we consider next.

4 Implementing lazy nondeterminism

We start to implement share in this section. We begin with a very specific version

and generalize it step by step. Revisiting the equational laws for share, we show

how memoization can be used to achieve the desired properties. First, we consider

values without nondeterministic components, namely, values of type Int. We then

extend the approach to values with nondeterministic components, namely, lists of

numbers. Finally, in Section 6, we give an implementation for arbitrary user-defined

nondeterministic types and for arbitrary instances of Nondet.

4.1 The tension between late demand and early choice

Lazy execution means to execute shared computations at most once and not until

they are demanded. The laws (Fail) and (Ignore) from Figure 2 formalize such late

demand. In order to satisfy these laws, we could be tempted to implement share as

follows:

share :: Monad m => m a -> m (m a)

share a = return a

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 435

and so share mzero is trivially return mzero, just as the law (Fail) requires;

(Ignore) is clearly satisfied too. But (Choice) fails because ret (a ⊕ b) is not equal to

reta⊕ retb. For example, if we take dup_coin_share from Section 3.1.1 and replace

share with return, we obtain dup_coin_let—which, as explained there, shares

only a nondeterministic computation, not its result as desired. Instead of remaking

the choices in a shared monadic value each time it is demanded, we must make the

choices only once and reuse them for duplicated occurrences.

We could be tempted to try a different implementation of share that ensures that

choices are performed immediately:

share :: Monad m => m a -> m (m a)

share a = a >>= \x -> return (return x)

This implementation does not satisfy the (Fail) and (Ignore) laws. The (Lzero) law

of MonadPlus shows that this implementation renders share mzero equal to mzero,

not the return mzero required by (Fail). This attempt to ensure early choice using

early demand leads to eager sharing, rather than lazy sharing as desired.

4.2 Memoization

We can combine late demand and early choice using memoization. The idea is to

delay the choice until it is demanded, and to remember the choice when it is made

for the first time so as to not make it again if it is demanded again.

To demonstrate the idea, we define a very specific version of share that fixes the

observation type and the type of shared values. We use a state monad to remember

shared monadic values. A state monad is an instance of the following type class,

which defines operations to query and update a threaded state component.

class MonadState s m where

get :: m s

put :: s -> m ()

In our case, the threaded state is a list of thunks, initially empty. Each thunk can be

either unevaluated or evaluated.

data Thunk a = Uneval (Memo a) | Eval a

Here, Memo is the name of our monad. It threads a list of Thunks through

nondeterministic computations represented as lists.7

newtype Memo a = Memo {

unMemo :: [Thunk Int] -> [(a, [Thunk Int])] }

This version of the Memo monad threads thunks of type Thunk Int and can therefore

only share integers. The instance declarations for the type classes Monad, MonadState,

and MonadPlus are as follows:

7 In this preliminary implementation, we use lists to represent sets of results.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

436 S. Fischer et al.

instance Monad Memo where

return x = Memo (\ts -> [(x,ts)])

m >>= f = Memo (concatMap (\(x,ts) -> unMemo (f x) ts) . unMemo m)

instance MonadState [Thunk Int] Memo where

get = Memo (\ts -> [(ts,ts)])

put ts = Memo (_ -> [((),ts)])

instance MonadPlus Memo where

mzero = Memo (const [])

a ‘mplus‘ b = Memo (\ts -> unMemo a ts ++ unMemo b ts)

It is crucial that the thunks are passed to both alternatives separately in the

implementation of mplus. The list of thunks thus constitutes a first-class store

(Morrisett, 1993)—using mutable global state to store the thunks would not suffice

because thunks are created and evaluated differently in different nondeterministic

branches.

We can implement a very specific version of share that works for integers in the

Memo monad.

share :: Memo Int -> Memo (Memo Int)

share a = memo a

memo :: MonadState [Thunk a] m => m a -> m (m a)

memo a = do thunks <- get

let index = length thunks

put (thunks ++ [Uneval a])

return (do thunks <- get

case thunks!!index of

Eval x -> return x

Uneval a ->

do x <- a

thunks <- get

let (xs,_:ys) = splitAt index thunks

put (xs ++ [Eval x] ++ ys)

return x)

This implementation of share adds an unevaluated thunk to the current store and

returns a monadic action that, when executed, queries the store and either returns

the already evaluated result or evaluates the unevaluated thunk before updating the

threaded state. The evaluation of the thunk a (in the line x <- a of the last do

form) may change the state; therefore, we need to query the state thunks again in

the next line before updating the state.

This implementation of share satisfies the (Fail) and (Ignore) laws because the

argument a given to share is not demanded until the inner action is performed.

Thanks to the properties (Idempotence) and (Choice Reordering) in Section 3.4,

which are true of lists viewed as sets, we conjecture that the (Choice) law is satisfied

as well. We argue informally for this conjecture as follows. Consider the computation

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 437

share (a ⊕ b) �= λx. c, which our implementation executes by passing an expanded

store to c.

1. If executing c does not access the newly stored thunk, then the result of the

computation share (a⊕ b) �= λx. c does not depend on what thunk is stored,

so it is same as the result of share a �= λx. c and of share b �= λx. c and,

by (Idempotence), of

(share a �= λx. c) ⊕ (share b �= λx. c)

as desired.

2. If executing c accesses the newly stored thunk a ⊕ b right away, then we

might as well nondeterministically choose whether to store the thunk a or the

thunk b. In other words, the result of the computation share (a ⊕ b) �= λx. c

is same as the result of

(share a �= λx. c) ⊕ (share b �= λx. c)

as desired.

3. Finally, suppose executing c makes a nondeterministic choice (between c1

and c2, say) without immediately accessing the newly stored thunk. Then, the

result of the computation share (a ⊕ b) �= λx. c does not depend on whether

the thunk is stored before or after c makes its choice, so it is same as the result

of

(share (a ⊕ b) �= λx. c1) ⊕ (share (a ⊕ b) �= λx. c2).

Because (Choice Reordering) assures that the computations

((share a ⊕ share b) �= λx. c1) ⊕ ((share a ⊕ share b) �= λx. c2)

and

(share a ⊕ share b) �= λx. c1 ⊕ c2

have the same result, we have reduced satisfying (Choice) for c to satisfying

(Choice) for c1 and c2.

We further conjecture that this argument generalizes from observing lists viewed

as sets to observing other valid instances of Nondet, and from sharing integers

to sharing data with nondeterministic components. The latter generalization is the

topic of the next section.

4.3 Nondeterministic components

The version of share just developed memoizes only integers. However, we want to

memoize data with nondeterministic components, such as permuted lists that are

computed on demand. So, instead of thunks that evaluate to numbers, we redefine

the Memo monad to store thunks that evaluate to lists of numbers.

newtype Memo a = Memo {

unMemo :: [Thunk (List Memo Int)]

-> [(a, [Thunk (List Memo Int)])] }

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

438 S. Fischer et al.

The instance declarations for Monad and MonadPlus stay the same. In the MonadState

instance, the state type needs to be changed to [Thunk (List Memo Int)]. We also

reuse the memo function, which has now a different type. We could try to define

share simply as a renaming for memo again:

share :: Memo (List Memo Int) -> Memo (Memo (List Memo Int))

share a = memo a

However, with this definition lists are not shared deeply. For example, in the

expression

share (cons (return 0 ‘mplus‘ return 1) nil)

the cons expression producing the Cons value will be memoized, but the components

of the Cons value will not. This behavior corresponds to the expression heads_bind

where the head and the tail of the demanded list are still executed whenever

they are demanded and may hence yield different results when duplicated. This

implementation does not satisfy the (HNF) law.

We can remedy this situation by recursively memoizing the head and the tail of a

shared list:

share :: Memo (List Memo Int)

-> Memo (Memo (List Memo Int))

share a = memo (do l <- a

case l of

Nil -> nil

Cons x xs -> do y <- share x

ys <- share xs

cons y ys)

This implementation of share memoizes data containing nondeterministic compo-

nents as deeply as demanded by the computation. Each component is executed at

most once and memoized individually in the list of stored thunks.8

5 Observing nondeterministic computations

In order to observe the results of a computation that yields a value with nondeter-

ministic components, we need

1. a function (such as convertList) that executes all nondeterministic compo-

nents and combines the resulting alternatives to compute a nondeterministic

choice of deterministic results, and

2. a function (such as results) that computes the results as a set.

8 This implementation of share does not actually type-check because share x in the body needs to
invoke the previous version of share, for the type Int, rather than this version, for the type List
Memo Int. The two versions can be made to coexist, each maintaining its own state, but we develop a
polymorphic share combinator in Section 6 below, so the issue is moot.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 439

We can define an operation runMemo that computes the results of a nondetermin-

istic computation as a list:

runMemo :: Memo a -> [a]

runMemo m = map fst (unMemo m [])

However, the type of this definition is too permissive. For example, we are free to call

runMemo (share nil), which results in a value of type [Memo (List Memo Int)].

But the computations inside the resulting list cannot be sensibly executed again

using runMemo because they access a reference into a store that has already been

dismissed by the first call to runMemo.

The situation is very similar to returning references from ST-monad computations:

smuggle :: ST s (ST s Int)

smuggle = do x <- newSTRef 42

return (readSTRef x)

We can use smuggle in ST-monad computations; however, observing smuggle using

runST would attempt to “smuggle” out the ST reference x past runST. If the attempt

succeeded, we would get a value that contains a reference to an already disposed

heap. To prevent such attempts, the ST monad is parameterized by a polymorphic

type variable s (Launchbury & Peyton Jones, 1994). The higher-rank type of runST

ensures that the result of runST does not contain references to the heap used for

running the computation.

Using this idea, we assign a higher-rank type to our observation function to restrict

the kind of computations that can be observed, as described in Section 3.1.3. An at-

tempt to execute results (share nil) leads to a type error in our implementation

described in Section 6.

In Section 6.1, we provide a type class Sharing, which extends nondeterminism

monads with the share operation. We let the function results have the following

type:

results :: Ord a => (forall s . Sharing s => s a) -> Data.Set.Set a

results a = collect (liftM Data.Set.singleton a)

As with the function runST for the ST monad, this type ensures that

1. sharing computations can only use the operations of MonadPlus and share

and

2. the result of type a cannot contain any reference to the sharing monad s.

We cannot even observe nil because it is of type s (List s a) for some monad s

and, hence, results nil would be of type Set (List s a). The type variable s,

however, is not allowed to escape. Although the value nil does not actually contain

any reference to s, we need to apply convertList in order to observe nil. This is

perfectly reasonable because from the type List s a it is not apparent whether the

corresponding list contains nondeterministic components (i.e., is nonempty) or not

(i.e., is empty).

We also cannot observe computations that yield functions that involve shared

computations. For example, the computation share coin >>= \x -> return

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

440 S. Fischer et al.

(\y -> x) has the type Sharing s => s (a -> s Int). Applying results to this

expression leads to a type error because the type variable s escapes.

5.1 Observation types

The function collect used in the definition of results has the following type:

collect :: Nondet n => (forall s . Sharing s => s n) -> n

For the definition of results to type check, we must make Data.Set.Set a an

instance of Nondet for instances a of Ord. We implement failure as empty set and

(?) as set union:

instance Ord a => Nondet (Data.Set.Set a) where

failure = Data.Set.empty

(?) = Data.Set.union

This instance is valid if the Ord instance for a actually defines an ordering relation

(which we assume) because then set union is idempotent and allows reordering of

choices (as it is associative and commutative).

Users may be tempted to use laws of the observation type to reason about sharing

computations and indeed, our implementation of sharing in Section 6 inherits the

monoid laws for ⊕ and ∅ from the underlying set type.

In combination with the laws of Figure 2, such additional laws for the sharing

monad may lead to unexpected identities. For example, if ∅ is a unit of ⊕, then we

can derive

ret (ret 0) = share (ret 0) (HNF)

= share (ret 0 ⊕ ∅) (Unit)

= share (ret 0) ⊕ share ∅ (Choice)

= ret (ret 0) ⊕ ret ∅. (HNF, Fail)

The expressions in this equation chain all have the type Sharing s => s (s Int),

so the higher-rank type of results prevents us from projecting the left- and right-

hand sides into the type Data.Set.Set (Data.Set.Set Int). In other words, we

cannot distinguish the left- and right-hand sides by applying the results function.

The function

noEmpty :: Data.Set.Set (Data.Set.Set a) -> Bool

noEmpty s = Data.Set.null (Data.Set.filter Data.Set.null s)

yields True when applied to {{0}} but False when applied to {{0}, ∅}. However,

the type of results prohibits the observation of this inconsistency. If we apply the

monadic join function9 to prevent the type variable s for the sharing monad from

escaping then the inconsistency disappears.

9 join x = x >>= id

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 441

The set type is not the only observation type that satisfies idempotence and

choice reordering. For example, we can define a function that checks whether

a nondeterministic computation with sharing yields a result by making Bool an

instance of Nondet.

instance Nondet Bool where

failure = False

(?) = (||)

Based on this instance, we can define a function hasResult that checks whether the

given computation yields a result.

hasResult :: (forall s . Sharing s => s a) -> Bool

hasResult a = collect (liftM (const True) a)

This function is similar to not . Data.Set.null . results but does not compute

an intermediate set of results and sometimes terminates even if the given computation

can yield an unbounded number of results.

Both instances defined so far form a commutative monoid because (?) is

associative and commutative and failure is its unit. As an example for an instance

that does not form a monoid consider the type of probability distributions defined

as

type Dist a = Data.Map.Map a Rational

We can define a Nondet instance for Dist a by averaging weights in the definition

of (?).

instance Ord a => Nondet (Dist a) where

failure = Data.Map.empty

d1 ? d2 = Data.Map.map (/2) (Data.Map.unionWith (+) d1 d2)

This definition of (?) is not associative and failure is no unit. But (?) is idempotent

and satisfies choice reordering such that this instance is valid. Like in the previous

instances, (?) is also commutative because weights are averaged evenly. A biased

version of (?) (that picks an argument with a probability different from 1
2
) would

not be commutative but still allow choice reordering.

The following function can be used to observe the probability distribution of a

nondeterministic computation with sharing.

resultDist :: Ord a => (forall s . Sharing s => s a) -> Dist a

resultDist a = collect (liftM (\x -> Data.Map.singleton x 1) a)

The probability distribution computes for each result the probability that it would

be returned by a random strategy that picks one alternative of mplus with the

probability 1
2
. The following session using an interactive Haskell environment

demonstrates that mzero and mplus do not satisfy the monoid laws.

ghci> resultDist (return 1)

fromList [(1,1 % 1)]

ghci> resultDist (mzero ‘mplus‘ return 1)

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

442 S. Fischer et al.

fromList [(1,1 % 2)]

ghci> resultDist (return 1 ‘mplus‘ (return 2 ‘mplus‘ return 3))

fromList [(1,1 % 2),(2,1 % 4),(3,1 % 4)]

ghci> resultDist ((return 1 ‘mplus‘ return 2) ‘mplus‘ return 3)

fromList [(1,1 % 4),(2,1 % 4),(3,1 % 2)]

A computation that may fail yields results with total probability less than one, and

the individual probabilities for computations that yield one of many different results

depend on how the calls to mplus are nested.

We can nest mplus to construct computations that yield a result with a probability

m/2n � 1 for nonnegative integers m and n, but it is more convenient to provide

an additional operation that lets users set probabilities freely. Although we can use

the Dist type to observe sharing computations, the type of collect restricts us from

using such additional operations to construct sharing computations with freely set

probabilities.

To clarify the interaction of the share combinator with probabilistic inference,

we compare observations of dup_coin_let, dup_coin_bind, and dup_coin_share

(see Section 3.1.1) with the Set type with corresponding observations with the Dist

type. The observations with the Set type reflect the results derived in Sections 3.1.1

and 3.2.

ghci> results dup_coin_let

fromList [(0,0),(0,1),(1,0),(1,1)]

ghci> results dup_coin_bind

fromList [(0,0),(1,1)]

ghci> results dup_coin_share

fromList [(0,0),(1,1)]

When observing these computations with the Dist type, the results are the same

but have associated probabilities.

ghci> resultDist dup_coin_let

fromList [((0,0),1 % 4),((0,1),1 % 4),((1,0),1 % 4),((1,1),1 % 4)]

ghci> resultDist dup_coin_bind

fromList [((0,0),1 % 2),((1,1),1 % 2)]

ghci> resultDist dup_coin_share

fromList [((0,0),1 % 2),((1,1),1 % 2)]

Like with the Set type, the results of dup_coin_bind and dup_coin_share are

exactly the same. The shared coin computation in dup_coin_share causes only

one nondeterministic choice although it is executed twice inside duplicate.

If a nondeterministic computation with sharing can yield an unbounded number

of results, it is useful to compute them incrementally, while ignoring the order

and multiplicities of computed results. For this purpose, we provide a function

resultList that returns a list of results in the IO monad.

resultList :: (forall s . Sharing s => s a) -> IO [a]

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 443

We use the IO type to account for the unspecified order and multiplicities of

computed results (which is similar to the role IO plays in imprecise exceptions

(Peyton Jones et al., 1999)). As the result list is computed lazily, this function can

be used to implement an interactive eval-print loop for querying results (see the

Appendix).

6 Generalized, efficient implementation

In this section, we generalize the implementation ideas described in Section 4 such

that

1. arbitrary user-defined types with nondeterministic components can be passed

as arguments to the combinator share,

2. user-defined types with nondeterministic components can be converted into

corresponding types without nondeterministic components, and

3. arbitrary instances of Nondet can be used to observe nondeterministic compu-

tations with sharing.

We achieve the first and second goal by introducing type classes with the interface

to share and convert nondeterministic data. We achieve the third goal by defining a

monad Lazy n that turns any instance n of Nondet into a monad for nondeterminism

with sharing.

All of these generalizations are motivated by practical applications in nondeter-

ministic programming.

1. The ability to work with user-defined types makes it possible to draw on the

sophisticated type and module systems of existing functional languages.

2. The ability to convert between types with nondeterministic components and

corresponding types without makes it easier to compose deterministic and

nondeterministic code.

3. The ability to plug in different underlying search types makes it possible to

express techniques such as weighted results as demonstrated in Section 5.1.

For example, we have applied our approach to express and sample from probability

distributions as OCaml programs in direct style (Filinski, 1999). With less devel-

opment effort than state-of-the-art systems, we achieved comparable concision and

performance (Kiselyov & Shan, 2009).

Our library is available as package explicit-sharing-0.9 on Hackage.

6.1 Sharing nondeterministic data

We have seen in the previous section that, in order to share nested, nondeterministic

data deeply, we need to traverse it and apply the combinator share recursively to

every nondeterministic component. We have implemented deep sharing for nonde-

terministic lists, but want to generalize this implementation to support arbitrary

user-defined types with nondeterministic components. We define the following type

class that allows arbitrary user-defined types to be passed to share:

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

444 S. Fischer et al.

class MonadPlus m => Shareable m a where

shareArgs :: MonadPlus n

=> (forall b . Shareable m b => m b -> n (m b))

-> a -> n a

A nondeterministic type a with nondeterministic components wrapped in the monad

m can be made an instance of Shareable m by implementing the function shareArgs,

which applies a monadic transformation to each nondeterministic component. The

type of shareArgs is a rank-2 type: the first argument is a polymorphic function

that can be applied to nondeterministic data of any type.

For example, we can make List m Int, the type of nondeterministic lists of

numbers, an instance of Shareable m as follows.

instance MonadPlus m => Shareable m Int where

shareArgs _ c = return c

instance Shareable m a => Shareable m (List m a) where

shareArgs _ Nil = return Nil

shareArgs f (Cons x xs) = do y <- f x

ys <- f xs

return (Cons y ys)

The implementation mechanically applies the given transformation to the nondeter-

ministic arguments of each constructor.

Based on the Shareable type class, we can define the operation share with

a more general type. In order to generalize the type of share to allow not only

different types of shared values but also different monad type constructors, we define

another type class.

class MonadPlus m => Sharing m where

share :: Shareable m a => m a -> m (m a)

Nondeterminism monads that support the operation share are instances of this

class. In Section 6.4, we define an instance of Sharing.

6.2 Converting nondeterministic data

We have seen in Section 3.1.3 that data structures with nondeterministic components

are not observable. To observe them, a programmer must convert them to a

(generally different) data structure without nondeterministic components, forcing

the latent nondeterminism hidden in the monadic components. We introduced

such a conversion function convertList, which turns lists with nondeterministic

components into ordinary Haskell lists. It is the responsibility of the programmer

to define such conversion functions for each data type with nondeterministic

components.

A conversion function traverses a value of a data type and converts each

encountered component in turn. To clarify the pattern of structural induction and

to ease writing conversion functions, we introduce the type class Convertible.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 445

class MonadPlus m => Convertible m a b where

convert :: a -> m b

The type class has no functional dependency, because one source data type a may

be converted to several data types. The desired target type b is determined from the

context or from a user-provided type annotation. The conversion may force latent

nondeterminism and hence has to be performed in a nondeterminism monad m.

Converting deterministic data is trivial:

instance MonadPlus m => Convertible m Int Int where

convert c = return c

We provide another Convertible instance to convert nondeterministic lists into

ordinary Haskell lists.

instance Convertible m a b => Convertible m (List m a) [b] where

convert Nil = return []

convert (Cons x xs) = do y <- x >>= convert

ys <- xs >>= convert

return (y:ys)

Finally, we provide a second Convertible instance for lists, to convert in the

other direction.

instance Convertible m a b => Convertible m [a] (List m b) where

convert [] = nil

convert (x:xs) = cons (convert x) (convert xs)

This instance lets us convert ordinary Haskell lists, for example of type [Int],

into nondeterministic lists, of type List m Int, to be used in lazy nondeterministic

computations.

6.3 Deriving nondeterministic data types

The previous two sections showed that, for each data type with nondeterministic

components, the user has to provide instances of the type classes Shareable and

Convertible. These instances are quite regular, following the pattern of structural

induction. Defining them by hand is tedious and error-prone. We have written a

tool that uses Template Haskell to synthesize a monadic data type declaration and

corresponding instances automatically. For example, given the definition

data List a = Nil | Cons a (List a)

running our tool like

$(derive monadic ’’List)

produces the data type declaration

data MList m a = MNil | MCons (m a) (m (MList m a))

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

446 S. Fischer et al.

which is the same as the declaration given in Section 2.4 but using different type

and constructor names. Additionally, our tool produces the following functions.

mNil :: Monad m => m (MList m a)

mCons :: Monad m => m a -> m (MList m a) -> m (MList m a)

matchMList :: Monad m => m (MList m a)

-> m b -> (m a -> m (MList m a) -> m b) -> m b

mNil and mCons are defined like nil and cons in Section 2.4. matchMList can be

used for matching nondeterministic lists against patterns and hides the application

of monadic bind to execute latent nondeterminism:

matchMList ml n c = do l <- ml

case l of

MNil -> n

MCons x xs -> c x xs

In addition to the data type declaration with con- and de-structor functions, our

tool also generates the following instances of the Shareable and Convertible type

classes:

instance Shareable m a => Shareable m (MList m a)

instance Convertible m a b => Convertible m (List a) (MList m b)

instance Convertible m a b => Convertible m (MList m a) (List b)

The generated implementations of these instances are the same as the implementa-

tions in Sections 6.1 and 6.2, modulo renaming constructors.

Our derivation tool can also be used to generate data types where only some

components are nondeterministic. To demonstrate how, we define a data type for

strict lists:

data ListS a = NilS | ConsS !a (ListS a)

The first component of the cons cell is defined to be strict. When building such a

list, GHC will arrange to force the computations for the list elements; the spine of

the list will still be computed lazily. Our tool takes the strictness annotation as a

determinism annotation, generating the following declaration:

data MListS m a = MNilS | MConsS !a (m (MListS m a))

The spine of the list is produced lazily and possibly nondeterministically; the

elements of the list are deterministic and evaluated eagerly like in ListS.

The types of the auxiliary con- and de-structors generated for strict lists resemble

those generated for the lazy list type, but the definitions account for the deterministic

list elements. For example, the generated definition of the mConsS function uses

monadic bind to ensure that the first argument of MConsS is deterministic:

mConsS :: Monad m => m a -> m (MListS m a) -> m (MListS m a)

mConsS mx mxs = do x <- mx

return (MConsS x mxs)

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 447

The second argument mxs is passed to MConsS without using bind, hence maintaining

latent nondeterminism.

A consequence of our use of strictness annotations to signify determinism is

that our tool cannot construct a data type with deterministic but lazy components.

For example, to define a type of infinite streams with nondeterministic elements,

users should provide the type definition and a corresponding constructor function

manually.

Strictness annotations also influence the type-class instances. The Shareable

instance for strict nondeterministic lists is generated as follows:

instance Shareable m a => Shareable m (MListS m a) where

shareArgs _ MNilS = return MNilS

shareArgs f (MConsS x xs) = do y <- shareArgs f x

ys <- f xs

return (MConsS y ys)

Instead of calling f x in order to share x recursively, we compute shareArgs f x.

Note that, unlike in the Shareable instance for MList, the type of the variable y is

a, not m a. For converting from the nonmonadic to the monadic type, we use the

generated constructor functions, which take care of deterministic components:

instance Convertible m a b =>

Convertible m (ListS a) (MListS m b) where

convert NilS = mNilS

convert (ConsS x xs) = mConsS (convert x) (convert xs)

When converting in the other direction, we use the bind operation on possibly

nondeterministic components and convert deterministic components directly:

instance Convertible m a b =>

Convertible m (MListS m a) (List b) where

convert MNilS = return NilS

convert (MConsS x xs) = do y <- convert x

ys <- xs >>= convert

return (ConsS y ys)

With this ability to automatically derive “monadic versions” of data types, Haskell

challenges dedicated FLP languages. With additional support for translating non-

monadic function declarations into monadic ones, lazy nondeterministic programs

could be written in Haskell as elegantly as in a language like Curry. We believe that

Template Haskell can also be used to convert function declarations, for example,

to convert the nonmonadic definition of isSorted given in Section 2.1 into the

monadic definition given in Section 2.4.

Our converter relies on the Derive tool10 and is available as a module in our

Hackage package.

10 Available as package derive on Hackage.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

448 S. Fischer et al.

6.4 Using an arbitrary state monad

The implementation of memoization in Section 4 uses a state monad to thread a

list of thunks through nondeterministic computations. The straightforward general-

ization is to rely on the MonadPlus and MonadState type classes without fixing a

concrete instance.

The type for Thunks generalizes easily to an arbitrary monad:

data Thunk m a = Uneval (m a) | Eval a

Instead of using a list of thunks, we use a ThunkStore with the following interface,

which clearly resembles a first-class store (Morrisett, 1993). Note that the operations

lookupThunk and insertThunk deal with thunks of arbitrary type.

type Key -- abstract

emptyThunks :: ThunkStore

getFreshKey :: MonadState ThunkStore m => m Key

lookupThunk :: MonadState ThunkStore m => Key -> m (Thunk m a)

insertThunk :: MonadState ThunkStore m => Key -> Thunk m a -> m ()

There are different options to implement this interface. We have implemented

thunk stores using the generic programming features provided by the modules

Data.Typeable and Data.Dynamic but omit corresponding class contexts for the

sake of clarity.

Lazy monadic computations can be performed in a monad that threads a

ThunkStore. In Section 6.5, we define a type constructor Lazy that transforms

any instance n of Nondet into an instance Lazy n of MonadPlus and MonadState

ThunkStore. We can define the instance of Sharing, which implements the operation

share, in terms of this interface.

instance Nondet n => Sharing (Lazy n) where

share a = memo (a >>= shareArgs share)

The implementation of share uses the operation memo to memoize the argument

and the operation shareArgs to apply share recursively to the nondeterministic

components of the given value. The function memo resembles the specific version

given in Section 4.2 but has a more general type.

memo :: MonadState ThunkStore m => m a -> m (m a)

memo a = do key <- getFreshKey

insertThunk key (Uneval a)

return (do thunk <- lookupThunk key

case thunk of

Eval x -> return x

Uneval b -> do x <- b

insertThunk key (Eval x)

return x)

The only difference in this implementation of memo from before is that it uses more

efficient thunk stores instead of lists of thunks.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 449

We could be tempted to use the predefined type State ThunkStore a to represent

nondeterministic computations with sharing. Unfortunately, this type does not allow

to use failure and (?) for implementing mzero and mplus because they would

require a to be an instance of Nondet. Instead, we use a well-known technique to

implement state monads based on continuations. This is not only more efficient than

using the predefined State type but also solves the problem of using the Nondet

operations to implement a MonadPlus instance.

6.5 Efficient implementation

We now give an efficient implementation of the monad Lazy n for nondeterministic

computations with sharing. We use the permutation sort in Section 2 for a rough

measure of performance. We develop our implementation in several steps. All

implementations run permutation sort in constant space (5 MB or less) and the final

implementation executes permutation sort on a list of length 20 as fast as the fastest

available compiler for Curry, the Münster Curry Compiler (MCC).11

As detailed below, we achieve this competitive performance by

1. using a continuation-based state monad to thread the store of thunks,

2. reducing the number of store operations when storing shared results, and

3. manually inlining and optimizing library code.

6.5.1 Continuation-based state monad

The Monad instance for the predefined State monad performs pattern matching

in every call to >>= in order to thread the store through the computation. This is

wasteful especially during computations that do not access the store because they

do not perform explicit sharing. We can avoid this pattern matching by using a

different instance of MonadState.

We define the continuation monad transformer ContT:

newtype ContT n m a = C { unC :: (a -> m n) -> m n }

runContT :: Monad m => ContT n m n -> m n

runContT m = unC m return

We can make ContT n m an instance of the type class Monad without using

operations from the underlying monad m:

instance Monad (ContT n m) where

return x = C (\c -> c x)

m >>= k = C (\c -> unC m (\x -> unC (k x) c))

An instance for MonadPlus can be defined using the corresponding operations of

the Nondet class if the result type m n of continuations supports them:

11 We performed our experiments on a Lenovo ThinkPad with a 2.13 GHz Intel Core i7 processor using
GHC 7.0.3 with optimizations (-O2).

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

450 S. Fischer et al.

instance Nondet (m n) => MonadPlus (ContT n m) where

mzero = C (\c -> failure)

mplus a b = C (\c -> unC a c ? unC b c)

This instance relies on m n to be an instance of Nondet but the result type a of

monadic computations is unrestricted.

The interesting exercise is to define an instance of MonadState using ContT. When

using continuations, a reader monad—a monad where actions are functions that

take an environment as input but do not yield one as output—can be used to pass

state. More specifically, we need the following operations of reader monads:

ask :: MonadReader s m => m s

local :: MonadReader s m => (s -> s) -> m a -> m a

The function ask queries the current environment, and the function local executes

a monadic action in a modified environment. The type constructor Reader s is a

reader monad for any type s, for example, s = ThunkStore.

newtype Reader s a = Reader { runReader :: s -> a }

In combination with ContT, the function local is enough to implement state

updates:

instance MonadState s (ContT n (Reader s)) where

get = C (\c -> ask >>= c)

put s = C (\c -> local (const s) (c ()))

Reader s n inherits Nondet operations from an underlying Nondet instance n:

instance Nondet n => Nondet (Reader s n) where

failure = Reader (\s -> failure)

a ? b = Reader (\s -> runReader a s ? runReader b s)

With these definitions, we can define our monad transformer Lazy:

type Lazy n = ContT n (Reader ThunkStore)

We can reuse from Section 6.4 the definition of the Sharing instance and of the

memo function used to define share.

The function collect, used to observe nondeterministic computations with

sharing using the underlying Nondet instance, can be defined as follows.

collect :: Nondet n => (forall s . Sharing s => s n) -> n

collect a = runReader (runContT a) emptyThunks

As discussed in Section 5, we use a higher-rank type to restrict observable compu-

tations.

6.5.2 Fewer state manipulations

The function memo defined in Section 6.4 performs two state updates for each shared

value that is demanded: one to insert the unevaluated shared computation and one

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 451

to insert the evaluated result. We can save half of these manipulations by inserting

only evaluated head-normal forms and using lexical scope to access unevaluated

computations. We use a slightly different interface to stores now, again abstracting

away the details of how to implement this interface in a type-safe manner.

emptyStore :: Store

getFreshKey :: MonadState Store m => m Key

lookupHNF :: MonadState Store m => Key -> m (Maybe a)

insertHNF :: MonadState Store m => Key -> a -> m ()

The result of lookupHNF is undefined if the given key is not present in the store, and

the result of insertHNF is undefined if it is. Both functions now operate on values

rather than thunks and the HNF suffix (for head normal form) is meant to signify

that.

Based on this interface, we can define a variant of memo that only stores evaluated

head normal forms.

memo :: MonadState Store m => m a -> m (m a)

memo a = do key <- getFreshKey

return (do hnf <- lookupHNF key

case hnf of

Just x -> return x

Nothing -> do x <- a

insertHNF key x

return x)

This definition of memo does not store the unevaluated argument a directly after

generating a fresh key. Therefore, it is crucial that the store interface allows to

generate keys independently of manipulating the stored values.

Instead of retrieving a thunk from the store on demand if it is not yet evaluated,

we can use the action a directly because it is in scope. As a consequence, a cannot be

garbage collected as long as the computation returned by share is reachable, which

is a possible memory leak. The original implementation had a possible memory leak

too: a is first placed into the threaded store and—if its result is not required—

remains in the store throughout the computation. Fixing this leak would seem to

require support from the garbage collector. We did not experience memory problems

during our experiments, however.

6.5.3 Mechanical simplifications

The final optimization is to

1. expand the types in ContT n (Reader State),

2. inline all definitions of monadic operations,

3. simplify them according to monad laws, and

4. provide a specialized version of memo that is not overloaded.

This optimization, like the previous ones, affects only our library code and not its

clients; for instance, we did not inline any definitions into our benchmark code. We

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

452 S. Fischer et al.

believe our final optimizations should really be performed by the compiler, but did

not find a way to achieve this.

Surprisingly, our still high-level and very modular implementation (it works with

arbitrary Nondet instances and arbitrary types for nested, nondeterministic data) is

as efficient as the fastest available Curry compiler. Like the program used for our

benchmarks, an equivalent Curry program for permutation sort runs for about 15 s

when compiled with MCC and -O2 optimizations.

We have also compared our performance on deterministic monadic computations

against corresponding nonmonadic programs in Haskell and Curry. Our benchmark

is to call the naive reverse function on long lists (10,000 elements), which involves

a lot of deterministic pattern-matching. In this benchmark, the monadic code is

roughly five times slower than the corresponding Curry code in MCC, which is as

fast as a deterministic version in Haskell.

Our library does not directly support narrowing and unification of logic variables

but can emulate it by means of lazy nondeterminism. We have measured the overhead

of such emulation using a functional logic implementation of the last function:

last l | l =:= xs ++ [x] = x where x,xs free

This Curry function uses narrowing to bind xs to the spine of the init of l and

unification to bind x and the elements of xs to the elements of l. We can translate it to

Haskell by replacing x and xs with nondeterministic generators and implementing

the unification operator =:= as equality check. When applying last to a list of

determined values, the monadic Haskell code is about twice as fast as the Curry

version in MCC. The advantage of unification shows up when last is applied to a

list of logic variables: in Curry, =:= can unify two logic variables deterministically,

while an equality check on nondeterministic generators is nondeterministic and leads

to search-space explosion.

All programs used for benchmarking are available online.12

7 Characteristics of explicit sharing

In this section, we discuss subtleties such as sharing across nondeterminism (Sec-

tion 7.1) and repeated sharing of already explicitly shared computations (Section 7.2).

The two issues do not affect the correctness of programs that use explicit sharing,

but they may significantly affect the performance of some classes of these programs.

We describe causes of and workarounds for these performance problems.

7.1 Sharing across nondeterminism

Our implementation of nondeterminism with sharing does not provide what Braßel

& Huch (2007) call sharing across nondeterminism. Although shared results are

reused if accessed more than once in one branch of the computation, shared

computations are executed independently in different nondeterministic branches

12 http://github.com/sebfisch/explicit-sharing/tree/0.9

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 453

of the computation. This is not a problem with respect to correctness because

different nondeterministic branches are independent. It is, however, a performance

penalty, when shared computations are deterministic but recomputed in independent

nondeterministic branches of the computation.

We demonstrate this penalty using the function shareND that shares the compu-

tation count n in n nondeterministic branches:

shareND :: Sharing m => Int -> m Int

shareND n = do x <- share (count n)

foldr mplus mzero (replicate n x)

The function count is a placeholder for an expensive monadic computation—its

run time is linear in the given argument.

count :: Monad m => Int -> m Int

count 0 = return 0

count n = do m <- count (n-1)

return (m+n)

When observing the result of shareND n as a set, the computation count n is

executed n times—once in each nondeterministic branch—which leads to quadratic

run time in total.

However, the computation count n is deterministic and, hence, it is not necessary

to share its result explicitly using the share combinator. Therefore, we can define a

variant shareND’ of shareND that does not use share and can be executed directly

using an arbitrary instance of MonadPlus:

shareND’ :: MonadPlus m => Int -> m Int

shareND’ n = foldr mplus mzero (replicate n (count n))

We can now execute shareND’ n in the list monad without first using a monad

with explicit sharing and then observing the results. The result of the computation

count n is then shared by Haskell’s built-in sharing because count n is a data term

of type [Int]. As a consequence, it is only computed once and not recomputed in

every nondeterministic branch. Thus, the total run time of executing shareND’ n in

the list monad is linear, not quadratic, in n.

The reason that the list monad supports sharing across nondeterminism but our

monad with explicit sharing does not is that monadic computations in the list monad

are represented as data, namely lists, but monadic computations in our monad with

explicit sharing are represented as functions. When executing count n in the list

monad, Haskell’s built-in sharing has the effect that the result of count n, a singleton

list, is only computed once and shared in the list generated by replicate. In our

monad with explicit sharing, the result of count n is a function. This function is

shared in the list generated by replicate and applied repeatedly when observing

the results.

Although sharing across nondeterminism reduces the run time of certain lazy

nondeterministic programs, it also increases the memory usage of others. Using

Haskell’s built-in sharing to memoize nondeterministic computations—not only

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

454 S. Fischer et al.

their results—can lead to prohibitive memory requirements of programs that share

computations that require expensive search. The Curry compiler KiCS implements

sharing across nondeterminism and Braßel & Huch (2007) discuss its benefit using

more practical examples than we present here. On the other hand, KiCS suffers from

the described memory problems: when executing our running example of sorting by

testing if a shared permutation is sorted, the program generated by KiCS uses an

exponential amount of memory. Our implementation uses constant memory because

only the result of the expensive search is shared, not the corresponding search space.

It is unclear which execution model is preferable or how the advantages of both can

be combined in a single, purely functional, implementation.

7.2 Repeated sharing

Our library does not prevent users from writing code that shares nondeterministic

computations repeatedly. Consider, for example, the following code, where the result

of a computation a is shared three times:

do b <- share a

c <- share b

d <- share c

d

Such code wastes space in the threaded store: by the first application of share a

reference, say rb, is reserved and b is a computation that, when performed, stores its

result using the reference rb or retrieves an already stored value using rb. Similarly,

c is a computation that, when performed, stores or retrieves its result using another

reference, say rc. In the end, when d is performed, the store contains three entries,

stored under rb, rc, and rd, which all point to the result of a.

The share function cannot inspect its argument to detect whether it is already

shared because of the (Ignore) law: if the result of a call to share is not used

later, the call to share must not have any effect—especially, it must not diverge if

the given argument diverges. By inspecting the argument given to share, we would

destroy the nonstrictness property that we expect from share.

Although it seems useless to write programs, such as the above, that share the

same computation repeatedly, it is not always easy to avoid, as we now demonstrate.

Repeated sharing may lead to prohibitive memory requirements because a single

entry is copied an exponential number of times. The following example first

demonstrates such exponential store blowup and then shows how to avoid it using

a custom Shareable instance.

We define a data type for binary trees and automatically derive its monadic

version.

data Bin = Tip | Bin Bin Bin

$(derive monadic ’’Bin)

Our benchmark is to create a complete monadic binary tree and compute its size

afterward. Here is the size function:

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 455

size :: Monad m => m (MBin m) -> m Int

size t = matchMBin t (return 1)

(\l r -> do m <- size l

n <- size r

return (m+n+1))

It uses the derived function matchMBin to pattern match on the given tree t,

recursively computes the sizes of the left and right subtrees of branch nodes, and

increments their sum to return the total size. We apply size to a complete binary

tree generated as follows:

complete :: Sharing m => Int -> m (MBin m)

complete 0 = mTip

complete (n+1) = do t <- share (complete n)

mBin t t

The argument of complete determines the height of the generated tree. If it is zero,

complete generates a leaf using mTip. If the argument is positive then the result of

the recursive call is shared and used as left and right subtree of a new branch node.

Since our tree is monadic, both arguments of the constructed branch node mBin are

the monadic computation t that yields an MBin m value. Because of explicit sharing,

this computation is executed only once and its result is reused.

Remember that explicit sharing is performed deeply, i.e., monadic components

of an argument of share are shared recursively. The result of complete is a

branch node with already shared components. When calling share on the result

of a recursive call to complete, the already shared components are shared again.

Especially, the number of calls to share on the single shared leaf of the created tree

is exponential in the height of the generated tree and, hence, the leaf is inserted into

the threaded store exponentially often.

We have instrumented our library code to output the number of used references

after observing a computation that computes the size of a complete binary tree

with the run function. As expected, this number is exponential in the height of the

generated tree and we also noticed that the program uses a lot of memory due to

the large threaded store.

The situation can be improved significantly by using a custom monadic data type

for monadic binary trees instead of the automatically derived one. We also write

a corresponding custom Shareable instance that avoids sharing components of an

already shared value. Our new MBin is similar to the one that would be derived

automatically but uses an additional flag in branch nodes to tell whether this node

has already been shared:

data MBin m = MTip | MBin Bool (m (MBin m)) (m (MBin m))

When creating a branch node using mBin, the flag is set to False.

mBin :: Monad m => m (MBin m) -> m (MBin m) -> m (MBin m)

mBin l r = return (MBin False l r)

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

456 S. Fischer et al.

We omit the definition of mTip because leaves do not have nondeterministic

components and do not need an extra flag. We also omit the matchMBin function

and the Convertible instances, which ignore the additional argument of type Bool.

The crucial change is in the Shareable instance of the modified MBin type:

instance MonadPlus m => Shareable m (MBin m) where

shareArgs _ MTip = return MTip

shareArgs f (MBin isShared l r)

| isShared = return (MBin True l r)

| otherwise = do x <- f l; y <- f r

return (MBin True x y)

The flag is set to True in the results of the shareArgs function and if it is already

set on an argument of shareArgs then the argument is just returned unchanged

instead of passing the nondeterministic components to the function f. Note that

the components of a value with a set flag are always results of the share function

and that processing them again would only blow up the store without leading to

additional sharing. This intuition is formalized by the (Repeat) law presented in

Figure 2.

When executing our benchmark using the modified MBin type and custom

Shareable instance, we observe that the number of used references in the store

is now linear, not exponential, in the height of the generated tree. As a consequence,

the performance of the program improves significantly although the run time is, of

course, still exponential because the size of the generated tree is.

The shown technique of marking shared values avoids that components of already

shared nondeterministic data structures are shared repeatedly. It can be implemented

without changing our library code and only requires custom declarations for the

nondeterministic data types with corresponding instances. This technique does

not, however, avoid repeated sharing like in the example at the beginning of

this subsection: although nondeterministic components of a would not be shared

repeatedly, the top-level constructor of a would still be added to the store three

times. Avoiding repeated sharing also of top-level constructors is difficult, if not

impossible, without sacrificing nonstrictness of the share combinator.

8 Related work

In this section, we compare our work to foundational and practical work in various

communities. We refer to other approaches to implementing monads for logic

programming. We also point out similarities to the problems solved for hardware

description languages.

8.1 Functional logic programming

The interaction of nonstrict and nondeterministic evaluation has been studied in

the FLP community, leading to different semantic frameworks and implementations.

They all establish call-time choice, which ensures that computed results correspond

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 457

to strict evaluation. An alternative interpretation of call-time choice is that variables

denote values rather than (possibly nondeterministic) computations. As call-time

choice has turned out to be the most intuitive model for lazy nondeterminism, we

also adopt it.

Unlike approaches discussed below, however, we do not define a new programming

language but implement our approach in Haskell. In fact, functional logic programs

in Curry or Toy can be compiled to Haskell programs that use our library.

Semantic frameworks. There are different approaches to formalizing the semantics of

FLP. CRWL (González-Moreno et al., 1999) is a proof calculus with a denotational

flavor that allows to reason about functional logic programs using inference rules

and to prove program equivalence. Let Rewriting (López-Fraguas et al., 2007,

2008) defines rewrite rules that are shown to be equivalent to CRWL. It is more

operational than CRWL but does not define a constructive strategy to evaluate

programs. Deterministic procedures to run functional logic programs are described

by Albert et al. (2005) in the form of operational big-step and small-step semantics.

We define equational laws for monadic, lazy, nondeterministic computations that

resemble let rewriting in that they do not fix an evaluation strategy. However,

we provide an efficient implementation of our equational specification that can be

executed using an arbitrary Nondet instance. Hence, our approach is a step toward

closing the gap between let rewriting and the operational semantics, as it can be seen

as a monadic let calculus that can be executed but does not fix a search strategy.

Unlike what is common practice in FLP formalizations, our monadic approach

distinguishes finite failure, represented as mzero, from diverging computations, and

preserves the tree structure of answers.

Implementations. There are different compilers for FLP languages that are partly

based on the semantic frameworks discussed above. Moreover, the operational

semantics by Albert et al. (2005) has been implemented as Haskell interpreters by

Tolmach & Antoy (2003) and Tolmach et al. (2004). We do not define a compiler

that translates an FLP language; nor do we define an interpreter in Haskell. We

rather define a monadic language for lazy FLP within Haskell. Instead of defining

data types for every language construct as the interpreters do, we only need to define

new types for data with nondeterministic components. Instead of using an untyped

representation for nondeterministic data, our approach is typed.

This tight integration with Haskell lets us be much more efficient than is possible

using an interpreter. The KiCS compiler from Curry to Haskell (Braßel & Huch,

2009) also aims to exploit the fact that many functional logic programs contain large

deterministic parts. Unlike our approach, KiCS does not use monads to implement

sharing but generates unique identifiers using impure features that prevent compiler

optimizations on the generated Haskell code.

Naylor et al. (2007) implement a library for FLP in Haskell that handles logic

variables explicitly and can hence implement a more efficient version of unification. It

does not support data types with nondeterministic components or user-defined search

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

458 S. Fischer et al.

strategies. The authors discuss the conflict between laziness and nondeterminism in

Section 5.4 without resolving it.

Monad transformers. Hinze (2000) derived monad transformers for backtracking

from equational specifications. Spivey (2000) and Kiselyov et al. (2005) improved

the search strategy in monadic computations to avoid the deficiencies of depth-

first search. However, we are the first to introduce laziness in nondeterministic

computations modeled using monads in Haskell.

8.2 Call-by-need calculi

The combination of sharing and nonstrictness—known as call-by-need or lazy

evaluation—has been extensively investigated theoretically. The first two “natural”

semantics for call-by-need evaluation (Launchbury, 1993; Seaman, 1993) both rely

on heaps, which store either evaluated or unevaluated bindings of variables. Later,

Ariola et al. (1995), Ariola & Felleisen (1997), and Maraist et al. (1998) proposed

call-by-need calculi to avoid the explicit heap: Maraist et al.’s sequence of let-

bindings and Ariola & Felleisen’s binding context play the role of a heap but use

bindings present in the original program instead of creating fresh heap references.

The calculi developed equational theories to reason about call-by-need programs.

However, the laws presented in these calculi are quite different from ours (Figure 2).

Although Ariola et al. add constructors as an extension of their calculus, constructed

values cannot have nonvalue components. To construct data lazily, one must

explicitly let-bind computations of all components, no matter how deeply nested.

They do not have an analogue of our (HNF) law. Maraist et al. briefly discuss

an extension for constructed values with nonvalue components; their law VK

corresponds to our law (HNF). Our laws (Choice) and (Fail) are not reflected

in any call-by-need calculus. Ariola et al. mention our law (Ignore) as a potential

addition (adopted by Maraist et al. later). Unlike these call-by-need calculi, we do

not need a special syntactic category of answers, since we introduce the notion of

observation (Figure 3). Ariola et al. obtain equational laws as the congruence closure

of (context-compatible) reductions.

Our share combinator resembles the pruning operation in Kitchin et al.’s Orc

language (2009) for orchestrating concurrent processes. In particular, Launchbury &

Elliott’s embedding of Orc into Haskell (2010) provides pruning in the form of

an eagerly combinator, which even has the same type signature as our share.

Launchbury & Elliott propose some equational laws for eagerly, as we do for

share. We do not purport to have come up with the definitive set of laws, and

neither do they.

First-class stores. Since our implementations are based on store passing, they closely

correspond to Launchbury’s natural semantics (1993). Executing memo a returns a

computation that behaves like a variable reference in Launchbury’s semantics.

Executing the variable reference for the first time evaluates the associated result

and updates the store by binding the variable to this result. The main difference of

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 459

our evaluator is nondeterminism. We cannot get by with a single global heap—we

need first-class stores (Morrisett, 1993), one for each branch of the nondeterministic

computation.

Garcia et al. (2009) recently reduced call-by-need (again, without nondeterminism)

to stylized uses of delimited continuations. In particular, they simulate call-by-need

in a call-by-value calculus with delimited control. We have similarly (Kiselyov &

Shan, 2009) embedded lazy probabilistic programs (Koller et al., 1997) in OCaml, a

call-by-value language with delimited control. Like Garcia et al., we use first-class

control delimiters to represent shared variables on the heap. A useful (Goodman

et al., 2008) and straightforward generalization is to memoize probabilistic functions.

The correspondence of our ThunkStore (Section 6.4) to first-class stores is not

perfect. Once the result of a memoized computation is recorded in our store, it

can never be removed (unless the whole store is disposed). That creates a possible

memory leak (although we did not encounter problems in our experiments). We

cannot remove items from our store, unless we can prove that the corresponding

memoized computations are no longer used. Doing so would require cooperation

with garbage collection.

8.3 Hardware description languages

The problem of explicit sharing has also been addressed in the context of hardware

description languages (Bjesse et al., 1998; Acosta-Gómez, 2007). In order to model

a circuit as an algebraic data type in a purely functional language, one needs to

be able to identify shared nodes. The survey by Acosta-Gómez (2007, Section 2.4.1)

discusses four different solutions to this problem:

Explicit labels. Explicit labels clutter the code with identifiers that are—apart from

expressing sharing—unrelated to the design of a circuit. Moreover, the programmer

is responsible for passing unique labels in order to correctly model the nodes of

a circuit.

State monads. State monads can be used to automate the creation of unique labels.

However, writing monadic code is considered such a major paradigm shift in the

context of circuit description that, for example, Lava (Bjesse et al., 1998) resorts

to the next solution.

Observable sharing. Observable sharing is the preferred solution because it maintains

the usual recursive structure of the circuit description, but it requires impure

features that often make it extremely complicated to reason about or debug

programs (de Vries, 2009).

Source transformations. Source transformations can also label the nodes of a circuit

automatically. For example, Template Haskell can be used to add unique labels

at compile time to unlabeled circuit descriptions.

Observable sharing is very similar to the approach used currently in KiCS (Braßel &

Huch, 2009). The problem of impure features—especially their hindering compiler

optimizations—seems much more severe in FLP than in hardware description. As

nondeterministic computations are usually expressed monadically in Haskell anyway,

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

460 S. Fischer et al.

there is no paradigm shift necessary to use our monadic approach to sharing. It

integrates smoothly by introducing a new operation to share the results of monadic

computations.

9 Conclusions

We have presented an equational specification and an efficient implementation of

nonstrictness, sharing, and nondeterminism embedded in a pure functional language.

Our specification (Figure 2) formalizes call-time choice, a combination of these

three features that has been developed in the FLP community. This combination

is intuitive and predictable because the results of computations resemble results of

corresponding eager computations and shared variables represent fully determined

values as opposed to possibly nondeterministic computations. Our equational laws

for lazy nondeterminism can be used to reason about the meaning of nondetermin-

istic programs on a high level. They differ from previous formalizations of call-time

choice, which use proof calculi, rewriting, or operational semantics. We describe

intuitively our laws as well as why our implementation satisfies them. A more

formal treatment is left as future work.

Our implementation is novel in working with custom monadic data and search

types, in expressing the sharing of nondeterministic choices explicitly, and in

implementing the sharing using first-class stores of typed data.

Our high-level monadic interface was crucial in order to optimize our imple-

mentation as described in Section 6.5. Initial comparisons of monadic computations

with corresponding computations in Curry that use nondeterminism, narrowing, and

unification are very promising. We achieve the performance of the currently fastest

Curry compiler (MCC) on the highly nondeterministic permutation sort algorithm.

In our deterministic benchmark, we incur acceptable overhead compared to pure

Haskell. Simulated narrowing turned out competitive while simulated unification

can lead to search space explosion. Our results suggest that our work can be used

as a simple, high-level, and efficient implementation target for FLP languages.

Appendix. Complete example of using our library

In this Appendix, we discuss the pragmatics of using our implementation by showing

the complete implementation of lazy monadic permutation sort in one place.

Figure A1 contains the definition of sort and the required auxiliary functions.

Figure A2 contains the implementation of the monadic list data type along with

auxiliary functions and necessary type-class instances. The definitions in Figure A2

can be imported from the module Data.Monadic.List but we include them here to

guide the definition of other monadic data types and corresponding instances. Users

who are satisfied with the default definitions of monadic data types, constructor

functions, and type-class instances can derive them as described in Section 6.3.

Based on definitions in Figure A1, we can use the convert function (Section 6.2)

to create computations that can be observed as follows.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 461

import Control.Monad.Sharing

sort :: Sharing m => m (List m Int) -> m (List m Int)

sort xs = do ys <- share (perm xs)

True <- isSorted ys

ys

perm :: MonadPlus m => m (List m a) -> m (List m a)

perm xs = do l <- xs; case l of

Nil -> nil

Cons y ys -> insert y (perm ys)

insert :: MonadPlus m => m a -> m (List m a) -> m (List m a)

insert x xs = cons x xs ‘mplus‘ do Cons y ys <- xs

cons y (insert x ys)

isSorted :: Monad m => m (List m Int) -> m Bool

isSorted ml =

do l <- ml

case l of

Nil -> return True

Cons mx mxs ->

do xs <- mxs

case xs of

Nil -> return True

Cons my mys ->

do x <- mx; y <- my

if x <= y

then isSorted (cons (return y) mys)

else return False

Fig. A1. The lazy monadic permutation sort function.

data List m a = Nil | Cons (m a) (m (List m a))

nil :: Monad m => m (List m a)

nil = return Nil

cons :: Monad m => m a -> m (List m a) -> m (List m a)

cons x xs = return (Cons x xs)

instance Shareable m a => Shareable m (List m a) where

shareArgs Nil = return Nil

shareArgs (Cons x xs) = do y <- share x

ys <- share xs

return (Cons y ys)

instance Convertible m a b => Convertible m [a] (List m b) where

convert [] = nil

convert (x:xs) = cons (convert x) (convert xs)

instance Convertible m a b => Convertible m (List m a) [b] where

convert Nil = return []

convert (Cons x xs) = do y <- x >>= convert

ys <- xs >>= convert

return (y:ys)

Fig. A2. Implementation of lists with monadic components.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

462 S. Fischer et al.

printResults :: Show a => [a] -> IO ()

printResults [] = putStrLn "No results"

printResults (x:xs) = printNext x xs

printNext :: Show a => a -> [a] -> IO ()

printNext x xs = print x >> printMore xs

printMore :: Show a => [a] -> IO ()

printMore [] = return ()

printMore (x:xs) =

do putStr "more? [(Y)es, (n)o, (a)ll]: "

s <- getLine

if null s then printNext x xs

else case toLower (head s) of

’y’ -> printNext x xs

’n’ -> return ()

’a’ -> mapM_ print (x:xs)

_ -> printMore (x:xs)

Fig. A3. Printing a list of results interactively.

permComp :: forall s . Sharing s => s [Int]

permComp = perm (convert [1..(3::Int)] :: s (List s Int)) >>= convert

permSortComp :: Sharing s => s [Int]

permSortComp = sort (convert [10,9..(1::Int)]) >>= convert

permComp is a computation that computes a permutation of the list [1,2,3]

nondeterministically.13 permSortComp sorts the list [10,9..1] using the lazy non-

deterministic permutation sort function.

As both computations are polymorphic over the used sharing monad, we can

pass them to the function results to produce a set of results. Below, we use the

observation function resultList (Section 5.1) which returns, in the IO monad, a

list of (possibly duplicated, unordered) results that can be processed interactively

using printResults (Figure A3). A session in the interactive Haskell Environment

GHCi that uses this function may look as follows.

ghci> resultList permComp >>= printResults

[1,2,3]

more? [(Y)es, (n)o, (a)ll]: yes

[1,3,2]

more? [(Y)es, (n)o, (a)ll]: all

[2,1,3]

[2,3,1]

[3,1,2]

[3,2,1]

ghci> resultList permSortComp >>= printResults

13 This definition of permComp uses the language extension ScopedTypeVariables to restrict the result
type of the inner call of the convert function.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 463

[1,2,3,4,5,6,7,8,9,10]

ghci>

Acknowledgments

We thank Greg Morrisett for pointing us to first-class stores, Bernd Braßel and

Michael Hanus for examining drafts of this paper, and our reviewers for insightful

suggestions that helped improve this work.

References

Acosta-Gómez, A. (2007) Hardware Synthesis in ForSyDe. Master’s thesis, Stockholm,

Sweden: Department of Microelectronics and Information Technology, Royal Institute

of Technology.

Albert, E., Hanus, M., Huch, F., Oliver, J. & Vidal, G. (2005) Operational semantics for

declarative multi-paradigm languages. J. Symb. Comput. 40(1), 795–829.

Antoy, S. & Hanus, M. (2002) Functional logic design patterns. In Proceedings of Symposium

on Functional and Logic Programming (FLOPS), pp. 67–87.

Antoy, S. & Hanus, M. (2006) Overlapping rules and logic variables in functional logic

programs. In Proceedings of International Conference on Logic Programming, pp. 87–101.

Ariola, Z. M. & Felleisen, M. (1997) The call-by-need lambda calculus. J. Funct. Program.

7(3), 265–301.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. & Wadler, P. (1995) The call-by-need

lambda calculus. In Proceedings of Symposium on Principles of Programming Languages

(POPL), pp. 233–246.

Bird, R., Jones, G. & de Moor, O. (1997) More haste, less speed: Lazy versus eager evaluation.

J. Funct. Program. 7(5), 541–547.

Bjesse, P., Claessen, K., Sheeran, M. & Singh, S. (1998) Lava: Hardware design in Haskell. In

Proceedings of International Conference on Functional Programming (ICFP), pp. 174–184.

Braßel, B. & Huch, F. (2007) On a tighter integration of functional and logic programming. In

Proceedings of Asian Symposium on Programming Languages and Systems (APLAS), Shao,

Z. (ed), LNCS, vol. 4807, Berlin: Springer, pp. 122–138.

Braßel, B. & Huch, F. (2009) The Kiel Curry System KiCS. In Proceedings of Workshop on

Logic Programming (WLP), 195–205.

Christiansen, J. & Fischer, S. (2008) EasyCheck—Test data for free. In Proceedings of

Symposium on Functional and Logic Programming (FLOPS), pp. 322–336.

Claessen, K. (2004) Parallel parsing processes. J. Funct. Program. 14(6), 741–757.

Claessen, K. & Hughes, J. (2000). QuickCheck: A lightweight tool for random testing of

Haskell programs. In Proceedings of International Conference on Functional Programming

(ICFP), pp. 268–279.

Escardó, M. H. (2007) Infinite sets that admit fast exhaustive search. In Proceedings of IEEE

Symposium on Logic in Computer Science (LICS), pp. 443–452.

Felleisen, M. (1985) Transliterating Prolog into Scheme. Technical Report 182. Computer

Science Department, Indiana University.

Filinski, A. (1999) Representing layered monads. In Proceedings of Symposium on Principles

of Programming Languages (POPL), pp. 175–188.

Fischer, S. & Kuchen, H. (2007) Systematic generation of glass-box test cases for functional

logic programs. In Proceedings of Principles and Practice of Declarative Programming

(PPDP), pp. 63–74.

Garcia, R., Lumsdaine, A. & Sabry, A. (2009) Lazy evaluation & delimited control. In

Proceedings of Symposium on Principles of Programming Languages (POPL), pp. 153–164.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

464 S. Fischer et al.

González-Moreno, J. C., Hortalá-González, M. T., López-Fraguas, F. J. & Rodrı́guez-Artalejo,

M. (1999) An approach to declarative programming based on a rewriting logic. J. Log.

Program. 40(1), 47–87.
Goodman, N., Mansinghka, V. K., Roy, D., Bonawitz, K. & Tenenbaum, J. B. (2008). Church:

A language for generative models. In Proceedings of Conference on Uncertainty in Artificial

Intelligence, pp. 220–229.
Haynes, C. T. (1987) Logic continuations. J. Log. Prog. 4(2), 157–176.
Hinze, R. (2000) Deriving backtracking monad transformers (functional pearl). In Proceedings

of International Conference on Functional Programming (ICFP), pp. 186–197.
Hudak, P. (1996) Building domain-specific embedded languages. ACM Comput. Surv. 28(4es):

196.
Hughes, J. (1989) Why functional programming matters. Comput. J. 32(2), 98–107.
Kiselyov, O. & Shan, C. (2009) Embedded probabilistic programming. In Proceedings of the

Working Conference on Domain-Specific Languages, pp. 360–384.
Kiselyov, O., Shan, C., Friedman, D. P. & Sabry, A. (2005) Backtracking, interleaving,

and terminating monad transformers (functional pearl). In Proceedings of International

Conference on Functional Programming (ICFP), pp. 192–203.
Kitchin, D., Quark, A., Cook, W. R. & Misra, J. (2009) The Orc programming language.

In Proceedings of FMOODS 2009 and FORTE 2009 (Formal Techniques for Distributed

Systems), Lee, D., Lopes, A. & Poetzsch-Heffter, A. (eds), LNCS 5522. Berlin: Springer,

pp. 1–25.
Koller, D., McAllester, D. & Pfeffer, A. (1997) Effective Bayesian inference for stochastic

programs. In Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 740–

747.
Launchbury, J. (1993) A natural semantics for lazy evaluation. In Proceedings of Symposium

on Principles of Programming Languages (POPL), pp. 144–154.
Launchbury, J. & Elliott, T. (2010) Concurrent orchestration in Haskell. In Haskell Symposium,

Gibbons, J. (ed). ACM Press, pp. 79–90.
Launchbury, J. & Peyton Jones, S. L. (1994) Lazy functional state threads. In Proceedings

of Conference on Programming Language Design and Implementation (PLDI). ACM Press,

pp. 24–35.
López-Fraguas, F. J., Rodrı́guez-Hortalá, J. & Sánchez-Hernández, J. (2007) A simple

rewrite notion for call-time choice semantics. In Proceedings of Principles and Practice

of Declarative Programming (PPDP), pp. 197–208.
López-Fraguas, F. J., Rodrı́guez-Hortalá, J. & Sánchez-Hernández, J. (2008) Rewriting and

call-time choice: The HO case. In Proceedings of Symposium on Functional and Logic

Programming (FLOPS), pp. 147–162.
Maraist, J., Odersky, M. & Wadler, P. (1998) The call-by-need lambda calculus. J. Funct.

Program. 8(3), 275–317.
McCarthy, J. (1963) A basis for a mathematical theory of computation. In Proceedings of

Computer Programming and Formal Systems. North-Holland, pp. 33–70.
Michie, D. (1968) “Memo” functions and machine learning. Nature 218, 19–22.
Moggi, E. (1989) Computational lambda-calculus and monads. In Proceedings of Logic in

Computer Science (LICS). Piscataway, NJ, USA: IEEE Press, pp. 14–23.
MonadPlus. (2008) MonadPlus. http://www.haskell.org/haskellwiki/MonadPlus.
Morrisett, J. G. (1993) Refining first-class stores. In Proceedings of the Workshop on State in

Programming Languages, pp. 73–87.
Naylor, M., Axelsson, E. & Runciman, C. (2007) A functional-logic library for Wired. In

Proceedings of Haskell Workshop, pp. 37–48.
Nicollet, V., Minsky, Y. & Leroy, X. (2009) Lazy and threads. http://caml.inria.fr/pub/

ml-archives/caml-list/2009/02/9fc4e4a897ce7a356674660c8cfa5ac0.fr.html.
Peyton Jones, S. L., Reid, A., Hoare, T., Marlow, S. & Henderson, F. (1999) A semantics for

imprecise exceptions. In Proceedings of Conference on Programming Language Design and

Implementation (PLDI). ACM Press, pp. 25–36.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

Purely functional lazy nondeterministic programming 465

Rabin, M. O. & Scott, D. (1959) Finite automata and their decision problems. IBM J. Res.

Dev. 3, 114–125.

Runciman, C., Naylor, M. & Lindblad, F. (2008) SmallCheck and Lazy SmallCheck:

Automatic exhaustive testing for small values. In Proceedings of Haskell Symposium, pp. 37–

48.

Seaman, J. M. (1993) An Operational Semantics of Lazy Evaluation for Analysis. PhD. thesis.

Pennsylvania State University.

Spivey, J. M. (2000) Combinators for breadth-first search. J. Funct. Program. 10(4), 397–408.

Tolmach, A. & Antoy, S. (2003) A monadic semantics for core Curry. In Proceedings of

Workshop on Functional and Logic Programming (WFLP), Valencia, Spain, pp. 33–46.

Tolmach, A., Antoy, S. & Nita, M. (2004) Implementing functional logic languages using

multiple threads and stores. In Proceedings of International Conference on Functional

Programming (ICFP), pp. 90–102.

de Vries, E. (2009) Just how unsafe is unsafe. http://www.haskell.org/pipermail/

haskell-cafe/2009-February/055201.html.

Wadler, P. L. (1985) How to replace failure by a list of successes: A method for exception

handling, backtracking, and pattern matching in lazy functional languages. In Proceedings

of Functional Programming Languages and Computer Architecture, pp. 113–128.

Wadler, P. L. (1992) The essence of functional programming. In Proceedings of Symposium on

Principles of Programming Languages (POPL). ACM Press, pp. 1–14.

https://doi.org/10.1017/S0956796811000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000189

