
Appendix K
Vortices in nuclei

In this appendix we follow the argument presented in Bertsch et al. (1988).

K.1 Simple estimates

Nuclei in their ground state can be viewed, in general, as a condensate of pairs of nucleons
coupled to angular momentum zero. Evidence for the existence of multipole (non-zero
J ) pairing has also been found in a variety of nuclear properties (see Section 5.3).
Empirically, d-state pairing correlation of a single pair is about half that of a monopole
pair. The reduction is due to the decrease in phase space for valence pairs with higher J .
This is shown schematically in Fig. K.1.

This situation may be rather different for rapidly rotating nuclei. In this case, large
values of the angular momentum can be built by using a coupling scheme where both
valence and core particles couple pairwise to angular momentum J . The lowest multi-
polarity different from zero to which pairs of particles can couple is J = 1. Under these
circumstances, Galilean invariance allows one to redefine the phase space where dipole
pairing acts, so that the resulting phase space is nearly the same as for J = 0 pairing. To
be able to carry out analytically the different estimates we shall approximate the nucleus
by a cylinder of the same radius as that of the nucleus, and a height such that the volume
is conserved (see Fig. K.2). That is,

v = 4π

3
R3 = πR2 H, (K.1)

leading to

H = 4
3 R. (K.2)

In this way we also conserve density,

ρ0 = m A

v
= M

v
, (K.3)

where m is the nucleon mass and M the total mass of the system.
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(a) (b)

Figure K.1. Phase space for particles in paired wavefunctions. The available momenta for
valence particles in a Fermi system are shown in (a). All momenta are allowed for a particle
in a pair with total momentum zero. When the pair momentum is non-zero, the valence phase
space is reduced as indicated in (b) (after Bertsch et al. (1988)). Copyright ©Società italiana
di Fisica.
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Figure K.2. Approximation used to describe vortex motion. The height H is defined such
that πR2 H = (4/3)πR3.

Because of J �= 0 superfluidity, a vortex forms with a cylindrical hole along the axis
of rotation. The velocity field of the fluid in the vortex can be written as

V0 = g

r
, (K.4)

where

g = �

2m
, (K.5)

for J = 1 vorticity (i.e. each Cooper pair carries angular momentum J = 1). In this case
the total angular momentum of the system is

I ≈ A

2
. (K.6)

The energy of the vortex consists of a rotational part and a part associated with the
surface created to generate the hole compatible with the velocity field given in equation
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Figure K.3. Atomic nucleus with a vortex, i.e. in a condensed phase of pairs a+j,ma+j,−m+1,
and Iz = A/2.

(K.4). The rotational energy is estimated as

Evortex =
∫

dτ
ρ0V 2

0

2
= ρ0

2

∫ 2π

0
dφ

∫ H

0
dz

∫ R

a
V 2

0 rdr

= ρ0

2
2πHg2

∫ R

a
d ln r = 1

R2 M
L2 ln

R

a
, (K.7)

where

L =
∫

dτρ0r V0 = ρ0

∫ 2π

0
dφ

∫ H

0
dz

∫ R

a
V0r2dr

≈ ρ02πHg
∫ R

a
rdr ≈ ρ0πHgR2 (K.8)

is the angular momentum of the system.
Note that the above relation implies (see Fig. K.3) that

L = M

ν
πR2 H

�

2m
= �

A

2
, (K.9)

as assumed. The extra energy needed to create the hole of radius a is

Esurf = 2πaHσ, (K.10)

where σ is the surface tension (cf. equation (7.32)).
To determine a we minimize the total energy

∂

∂a
(Evortex + Esurf) = − 1

R2 M
L2 1

a
+ 2πHσ = 0, (K.11)
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Figure K.4. Stability against fission for a rotating nucleus. The critical angular momentum
I for which the nucleus becomes unstable against fission has been calculated in the liquid-
drop model as a function of the mass number of the nucleus, and the corresponding curve is
labelled B f = 0. The curve labelled B f = 8 MeV shows the angular momentum for which
the fission barrier is found at an energy of 8 MeV above the ground state corresponding to the
average neutron separation energy. The figure is based on Cohen et al. (1974) (see also Bohr
and Mottelson (1974)). Reprinted from Annals of Physics, Vol. 82, Cohen et al., ‘Equilibrium
configurations of rotating charged or gravitating liquid masses, II’, page 557, Copyright 1974,
with permission from Elsevier.

thus obtaining

a = 1

2πHσ

L2

R2 M

= 1

8σ

A

v

�
2

m
. (K.12)

This now poses the following questions.

1. Does the nucleus allows spins as high as I ∼ A/2?
2. How does the energy cost in forming a vortex compare with the energy gain of pairing?

Making use of the liquid-drop model with a surface tension σ (= 1 MeV fm−1), one
obtains the curves given in Fig. K.4. Thus, a nucleus of A ≈ 150 can, in principle, sustain
about 80 units of angular momentum, i.e. of the order of A/2 ≈ 75 as required to make
a vortex.
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Figure K.5. Schematic representation of rotational bands with superfluid moment of inertia
(Js , dotted curve) and rigid moment of inertia (Jr , continuous curve) as well as roton min-
imum (dashed curve). Also shown is the summed pairing correlation energy (protons plus
neutrons) ≈ �2/d (see Section 3.5).

The answer to question 2 is schematically given in Fig. K.5, where

E1 = Erigid(L = 75)+ |Ecorr|, (K.13)

and

E2 = Evortex + Esurf. (K.14)

The quantity Ecorr is the pairing correlation energy. In other words, question 2 is equiv-
alent to asking whether E1 is smaller or larger than E2.

The pairing correlation energy is given by (see equation (3.60))

Ecorr = −
�2

n +�2
p

2d
, (K.15)

with

�n ≈ �p ≈ 12√
A

MeV (K.16)

and

d ≈ 0.4 MeV. (K.17)

Thus

Ecorr ≈ −�
2

d
≈ −360

A
MeV . (K.18)
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Making use of the fact that

Erigid = L2

M R2
, (K.19)

one obtains for the energy of the vortex measured with respect to Erigid + Ecorr

δE = E2 − E1 = L2

M R2

(
ln

R

a
− 1

)
+ 2πHσa − 360 MeV

A
. (K.20)

Assuming A = 150 and making use of the parameters

R = 1.2A1/3 fm = 6.4 fm, (K.21)

H = 4
3 R ≈ 8.5 fm, (K.22)

a = 1

8× 1 MeV
fm2

× 150

π (6.4 fm)28.5 fm
40 MeV fm2 ≈ 0.7 fm (K.23)

and

L2

M R2
=

(
A

2

)2
�

2

Am

1

R2
= (75)2 × 40 MeV fm2

150× (6.4 fm)2

= 36.6 MeV, (K.24)

δE = 36.6 MeV

(
ln

6.4

0.7
− 1

)
+ 2π8.5 fm

1 MeV

fm2 0.7 fm− 360

150
MeV

= 36.6 MeV× 1.2+ 37.4 MeV− 2.4 MeV

≈ 79 MeV. (K.25)

Thus

E2 > E1 . (K.26)

Consequently, a vortex can, in principle, exist in an atomic nucleus. However, its statis-
tical weight is likely to be too small to be observed, because of its high excitation energy
above the yrast state with the same angular momentum (see, however Section 3.10.1).
One reason for this is that the vortex kinetic energy is about twice the kinetic energy
of rigid rotation (Evortex ≈ 2.2Erigid). The other is the large surface energy of the vortex
core (Esurf ≈ 37 MeV).

K.2 Critical velocity for the excitation of rotons

From the value of the vortex angular momentum

L = p0 R = �k0 R = �I, (K.27)

I ≈ A

2
, (K.28)
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one can determine the associated momentum

k0 = A

2R
≈ A2/3

2.4× fm
, (K.29)

k0 ≈ 0.4× A2/3fm−1. (K.30)

Making use of the excitation energy of the roton (see equations (1.6), (K.25) as well
as Figs. 1.6 and K.5)

� = δE ≈ 79 MeV, (K.31)

(Vcr)vortex = �

�k0
= 79 MeV

(�c)× 0.4A2/3 fm−1 c (K.32)

≈ 79 MeV

200 MeV fm× 0.4A2/3 fm−1 c ≈ c

A2/3
, (K.33)

consequently,

(Vcr)vortex ≈ c

A2/3
≈ c

25
≈ 12× 106 m s−1 . (K.34)

which is the lowest velocity needed to excite a vortex, i.e. one of the elementary modes
of excitation of the system.

K.3 Critical velocity for superfluidity

(Vcr)sup ≈ �

�kF
= 12√

A
MeV×

(
1

200 MeV fm× 1.36 fm−1

)
c

≈ 4× 10−2

√
A

c , (K.35)

where c is the velocity of light. Thus, when A = 150,

(Vc)sup ≈ 1.1× 106 ms−1 , (K.36)

which is the critical velocity to excite quasiparticles, in other words, the lowest velocity
needed to excite one of the elementary modes of the system.

As already stated above, we note that in equation (K.32) � is the gap at the roton
minimum (= δE , equation (K.31)) while in equation (K.35) it is the BCS superfluid
pairing gap of a nucleus (see equation (1.17) as well as (1.21)) (see also the last paragraph
of Section 1.5).

While one does not expect supercurrents to take place in nuclei, the phenomenon
may be realized in neutron stars (see Sections 1.10 and 10.5). In any case, the estimates
given in equations (K.34) and (K.36) can be viewed as an excercise concerning orders
of magnitude within the framework of the discussion carried out in Sections 1.4 and 1.5.
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