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ABSTRACT

When insurance claims are governed by fat-tailed distributions considerable
uncertainty about the value of the tail-index is often inescapable. In this paper,
using the theory of risk aversion, a new premium principle (the power princi-
ple – analogous to the exponential principle for thin-tailed claims) is estab-
lished and its properties investigated. Applied to claims arising from general-
ized Pareto distributions, the resultant premium is shown to be the ratio of the
two largest expected claims, for which the ratio of the actual claims is an unbi-
ased as well as a consistent estimator. Whereas thin-tailed claim premiums are
determined largely by the first two moments of the claims distribution, fat-tailed
claim premiums are determined by the first two extremes. The context of risk-
aversion leads to a natural model for incorporating tail-index uncertainty into
premiums, which nevertheless leaves the basic ratio structure unaltered. To
illustrate the theory, possible ‘premiums’ for US hurricane data are examined,
which utilize the consistent pattern of observed extremes.
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1. INTRODUCTION

1.1. Ambit and structure of the paper

A new premium principle (the power principle) for fat-tailed risk is described
and its properties discussed. While for this type of risk the precise value of the
tail index is of first importance in determination of claim severity, its value is
very difficult to estimate precisely, particularly with the sorts of sample sizes
likely to be available to insurers in practice, (see e.g. De Haan (1994), Beirlant
et al. (1994), Coles (2001), Hsieh (2004), Huisman et al. (2001)).

The power principle can be used to provide a coherent framework in which
to determine premiums when uncertainty in the tail-index is suitably modelled.
The ‘uncertainty premiums’ – risk-averse premiums which take account of tail-
index imprecision – have a transparent and suggestive structure which may in
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itself assist in the tail-index estimation problem. Uncertainty premiums can be
regarded either as weighted mean values of risk-averse premiums derived from
the power principle, or as Bayesian posterior means.

In their review of Bayesian methods in extreme value modelling, Coles and
Powell (1996) write “extreme value problems are characterized by scarcity of
data and the requirement of modelling where the data are most sparse. This
presents a dilemma when considering a Bayesian approach to inference: the
value of additional prior information is likely to be substantial, but the plau-
sibility of formulating such prior knowledge is questionable”.

In consideration of a problem (not unrelated to that of this paper) – fore-
casting the next record catastrophic loss – Hsieh (2004) incorporates prior
knowledge by employing the input of an expert, using prior gamma densities
Hsieh (2001a, 2001b) to estimate key predictive parameters. Hill (1994) first pro-
posed a forecasting model linking extreme value and Bayesian methods.

Coles and Tawn (1996) have demonstrated how, within a Bayesian frame-
work, estimates supplemented by expert information lead to an improved analy-
sis of extreme rainfall data. For other applications of Bayesian methods inte-
grated with extreme value theory see Pickands (1994), Smith (2000) and Smith
and Goodman (2000).

In this paper, transformed beta densities are used as priors for the tail-index.
They are shown to arise naturally in the context of constant relative risk-aver-
sion, under which fat-tailed premiums are determined. Plausibility issues can
arise if priors are made ‘too informative’ (Appendix, Note 3, and for example
issues raised in Pickands (1994), Yuan and Clarke (1999)).

The structure of the remainder of the paper is as follows. The exponential
principle for thin-tailed risk is described; the power principle is introduced as
the analogous principle for fat-tailed risk, and its properties discussed.

When applied to the generalised Pareto distribution (inclusive of a broad
range of fat-tailed laws for ‘exceedances’ over a sufficiently high threshold)
risk-neutral premiums for claims are shown to be ratios of expected values of
the two largest order statistics or first two extremes. The premiums are thus
linked to a basic idea in extreme value statistics that the ‘distance’ between two
subsequent extreme order statistics can be used to characterise tail heaviness
(an idea which can be traced back at least to Hill, (1975)).

This ratio structure of premiums remains when uncertainty in the tail-index
is appropriately modelled.

An example employing U.S. hurricane data with a characteristic pattern of
extremes is used to illustrate ideas, with a tail-index estimate derived from rela-
tions between extremes being preferred to the maximum likelihood estimate.

1.2. Thin-tailed risk and the exponential principle

When general insurance claims are thin-tailed, i.e. possess moments of all
orders, the exponential principle (see Rolski et al. (1999), p. 80) with foundations
in absolute risk aversion (Pratt (1964), and Arrow (1971), Appendix, Note 1)
applies.
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Under the exponential principle, premium P for claim X is set as

P = ln{MX (s)}/ s, (s > 0) (1.1)

and

P ≈ m + 2
1 ss2 + o(s) (1.2)

where MX(·), m,s2 are respectively the moment generating function, the mean
and variance of X. Parameter s measures the constant absolute risk aversion of
the insurer. Bowers et al. (1986, p. 7) infer that insurers are risk-neutral or only
mildly risk-averse. Thus s is small and approximation (1.2), in terms of the
first two moments of the distribution follows; the notation “o(s)” of (1.2) means
that {P – (m + 2

1 ss2}/s → 0 as s → 0.
Rolski et al. (1999) p. 80 refer to (1.2) as the variance principle and catalogue

some standard variants.

Indeed, the exponential principle (1.1) applies to annual aggregate claims SN where

SN = X1 + X2 + ··· XN (1.3)

the {Xi} are identically and independently distributed (i.i.d), and N is the claim
number independent of {Xi}, (frequently assumed to be a Poisson or negative
binomial random variable), since

(MSN
(s) = MN [ln{MX(s)}] (1.4)

(dropping the subscript on the i.i.d. {Xi}, i ≥ 1; X is any representative claim)
so that

P = E [X ] ≈ E [N] + 2
1 s{Var(X)E [N] + E [X]2 Var(N)} + o(s) (1.5)

In this sense a fairly complete theory exists for thin-tailed risk, simple and ele-
gant results for the aggregate premium deriving from particular distributional
choices of X and N, including results for stop-loss insurance.

The exponential principle is conveniently established using the pricing function

mq(x) = exp(qx) (1.6)

with ‘risk parameter’ q = s, and the pricing rule

mq(P) = E [mq(X)] (1.7)

The pricing mechanism can be related to, but is more general than, the expected
utility principle, Appendix; Note 1, and Gay (2004a)).

Use of the pricing rule (1.7) in conjunction with a pricing function mq(x)
allows for some unification of premium principles:
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(i) m(x) = x leads to the risk-neutral premium P = E [X ]
(ii) ms(x) = exp(sx) leads to the exponential principle and the variants deriv-

ing from it.
(iii) For any claim X > 0 with absolutely continuous distribution function F(x),

choosing

mq(x) = {F (x)}q, (q > 0) (1.8)

in conjunction with (1.7) leads to the quantile principle (Rolski et al., (1999),
p. 82). Under the quantile principle P is chosen as a suitable quantile of
the claim distribution by the rule

F(P) = q(q) = (q + 1)–1/q (1.9)

Note that q(q) is strictly increasing with q, and e–1 < q(q) < 1. See Gay (2004a)

(iv) The ‘power principle’ for fat-tailed claims derived below has ma(x) = xa+1

(a > 0).

1.3. Fat-tailed risk and the power principle

Individual claims {Xi} of (1.3) are governed by fat-tailed distribution F(x) when

1 – F(x) = x–dL(x), (for large x > 0, d > 0) (1.10)

L(x) is ‘slowly varying at ∞’; i.e. for any a > 0 and x sufficiently large, i.e.

lim
x " 3

L(ax) / L(x) = 1

See for instance Feller, (1971, p. 278), Embrechts et al. (1997, p. 131).

Thus the claim random variable X has moments E [Xk] only of order k < d.

Pareto and Generalized Pareto
Our principal concern is with Pareto claims from distribution

F(v) = 1 – (1 + v /l)–d, (v > 0, d > 0) (1.11)

Formula (1.11) describes virtually the simplest form of pure tail distribution.
But its role in extreme value theory is much more important. For a large enough
threshold u, function (1.11) approximates for a broad class of random variables,
to the distribution of exceedances above u, i.e is the generalized Pareto distri-
bution for fat tails (see for instance, Balkema and de Haan (1974), Pickands
(1975), Embrechts et al. (1997, Chapter 3), Drees et al. (2004) for precise state-
ment of convergence results). In these circumstances, d is independent of u,
while l is not (although Leadbetter (1991) provides conditions under which l
also is independent of u).
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If the claim V in (1.11) is measured in terms of scale parameter l; i.e. V =
Xl the simplified distribution for X

F(x) = 1 – (1 + x)– d, (x > 0, d > 0) (1.12)

ensues. Fat-tailed claims with limited moments have no moment generating
functions and hence no constant absolute risk-averse premiums under (1.1).

Type I extreme value (Frechet) distribution
Another distribution used to model fat-tailed claims in its own right, but more
importantly, is inclusive of a broad class of fat-tailed distributions F(·) of type
(1.10) is the Frechet distribution.

The density of the kth extreme X *
(k), the limiting value of the normalized

order statistic X(n – k + 1) /vn from distribution F(·) for large n, denoted by fk(x) is

fk(x) = dx–kd –1exp{–x –d}/ G(k) (k ≥ 1, x > 0, d > 0) (1.13)

The sequence of normalizing constants {vn} – ‘the tail-quantile function –
derives from n{1 – F(vn)} = 1 for all k (Kendall and Stewart, (1969), p. 331, David
and Nagaraja, (2003), p. 306).

The tail-quantile function plays a prominent role in extreme value theory,
determining among other things membership of F(·) within the domain of
attraction of (1.13). Thus vn = vn(r), r = 1/d is distribution-specific. For example,
vn = lnr for Pareto (1.11). Further examples of vn are to be found in Embrechts
et al. (1997), Section 3.4, Teugels and Vanroelen (2004), Beirlant et al. (1996)

Relation between Generalized Pareto and Frechet Premiums
Our focus in this paper is on large claims from fat-tailed distributions. Use of
Pareto distribution (1.11) will enable premium determination provided the
claims exceed a sufficiently large threshold. The Frechet densities describe
behaviour of the limiting values of ranked claims.

The class of fat-tailed distributions from (1.10) which have generalized Pareto
distributions when exceedances are above a sufficiently high level, is precisely the
class within the domain of attraction of the Frechet distribution Pickands (1975),
Embrechts et al. (1997, p. 131), (Drees, Ferreira and De Haan (2004), Nagaraja,
(2004))

The Power Principle
For fat-tailed risk, premium P can be set using the power principle. Deriving
from the theory of risk-aversion it is the insurance premium implied by con-
stant relative risk-aversion measured by parameter a via the pricing function

m(x) = xa+1 (x > 0, a ≥ 0) (1.14)

and pricing rule (1.7); (see Appendix: Note 1).
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For any claims random variable X the power principle leads to a premium P
determined by the risk-aversion coefficient a as

P(a) = ma 1

a 1

1

+

+

�' 1 (1.15)

where m�k is the kth raw moment of X; (m1� = m = E[X ])

Properties of Power Principle premiums

Premiums determined by (1.15) have certain desirable properties of a ‘good’
premium (Rolski, et al. 1999, p. 79). In obvious notation:

(i) P(0) = m; P(a) is increasing in a + 1 ≥ 0 (see for instance Puri and Sen
(1971, p. 12), reflecting risk-aversion increasing with a.

(ii) For any a ≥ 0, P is subadditive: PX+Y(a) ≤ PX (a) + PY (a) (from Minkow-
ski’s inequality) ‘splitting risks won’t reduce premiums’

(iii) Stochastic dominance:
For any a ≥ 0, X (Y & PX (a) > PY (a)
(follows from the fact that for X > 0, E [Xa+1] = XF x dx1

0

a 1

1

-
3

+# `` j j

(iv) For any a ≥ 0, Pa(a) = a for all constants a > 0
‘no unjustified premium loading’

(v) Proportionality: For any a ≥ 0, PaX(a) = aPX(a)

(The integral 
0

xa 1
3

+# f (x)dx implicit in (1.15) is the Mellin transform of f (x) for
which extensive tables are available, e.g. Oberhettinger (1974)).

1.4. Risk-averse premiums

Premiums for large fat-tailed claims

When claim X has distribution F(·) from (1.10) its conditional distribution above
sufficient level u is Pareto (1.11) with the parameter l reflective of the level.

To suit our further objectives, it will be helpful to incorporate l in the claim.
Thus applying (1.15) to Pareto (1.11) we have for claim (1 + X /l) premium P
is given by

a 1+
/ /

a

P x x dxl l d l

d d

1 1

1

a d1 1 1

0

1

= + +

= - +

3

+ - - -

-

# ] ]

]

g g

g" ,

whence

P(a) = a
d1

1 / a1 1

-
+ - +] g

& 0 (1.16)
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We re-parameterise (1.16) as

Pb = (1 – r /b)–b (1.17)

where b = (a + 1)–1 determines the fee the insurer charges for bearing risk of
claims generated from a distribution with tail index r = 1/d.

Example: If r = 0.75, b = 0.95, P0.95 = 4.39, compared with P1.0 = m = 4.00. Thus
an insurer’s b of 0.95 implies a charge of about 10% above the risk-neutral pre-
mium for bearing risk when r = 0.75.

Remarks:
(i) Maximum tail-fatness
Formula (1.17) shows that the insurer’s level of constant relative risk-aversion
a determines the maximum tail-index b = (a + 1)–1 = rmax = 1/dmin with which the
insurer will deal for a particular class of fat-tailed insurance claims.

(ii) When there is no mean claim E [X ]
Formula (1.17) assumes d > 1 (r < 1) and existence of E [X ]. If d ≤ 1 (r ≥ 1) then
cover can be offered on part of Pareto claim (1 + X /l)f, (fr < 1).

Application of (1.15) results in premiums

Pb = (1 – rf /b )–b (1.18)

for the Pareto partial claims.

(iii) Risk-neutral premiums
(The insurer is risk-neutral or only mildly risk-averse). For Pareto (1.11) direct
integration shows that E [1+X/l] = (1 – r)–1 confirming premium formula (1.17)
with b = 1.

However, in Appendix: Note 2 it is shown that

(1 – r) –1 =
/

/

E X

E X

l

l

1

1

n

n

1+

+

-]

]

g

g

7

7

A

A
(1.19)

where X(k) is the kth Pareto order statistic, the ratio being independent of sample
size n.

This limit for the ratio of the two largest extremes is true for all fat-tailed dis-
tributions in the Frechet domain of attraction, i.e. as n → ∞

1-
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Similar results hold for ratios of other expected order statistics and extremes.
More generally as n → ∞
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(1.20)

where B (a,b) = G(a) G(b) / G(a + b), a > 0, b > 0, see Appendix, Note 2).

As r ↑ 1 the ratio (1.19) becomes large. ‘The expected value of the second
largest claim is small compared with the expected value of the largest’.

Total expected claims and largest expected claims
From (1.20) we obtain relationship

/
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In this sense annual aggregate claims SN of (1.3) for classes of insurance with
re [ 2

1 ,1) can be expected to be mainly attributable to the largest or largest few
claims. From these relationships, numerical values of the series:

(i) for r = 2
1 gives ratios 2

1 , 8
3 , 16

5 , ··· relating ‘descending order’ expected large
claims to the largest expected claim,

(ii) for r = 4
3 the series is 4

1 , 32
5 , 128

15 , ···).

(iv) Existence of an unbiased estimator
More remarkably, for Pareto claims, the risk-neutral premium for claim (1 + X /l)
admits an unbiased estimator. We set l = 1 for convenience. Then

,
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and
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(1.21)

(The proof appears in Appendix Note 2, B6).

A consistent and unbiased estimator P for Pareto (1.11) claims in the form (1 +
X /l) is

P =
X

X

2

1

*

*

]

]

g

g

Hence the following general proposition:

‘Premiums for thin-tailed claims are determined largely by the first two moments
of the distribution; for fat-tailed claims they are determined largely by the first two
extremes’

(v) Representation of premiums applicable under different conditions involves
a number of notational changes. A glossary of premium notation appears at
the end of the Appendix.

2. RISK-AVERSE PREMIUMS WHEN THE TAIL-FATNESS INDEX IS UNCERTAIN

2.1. Fat-tail claims models: large claims

A principal application of fat-tailed distributions is to model classes of insurance
with potentially a few very large individual claims. We have in mind catastrophe,
natural disaster, public liability, professional indemnity, industrial fire and the
like. For (1.3) to provide a useful model for very large claims, the variance of
individual claims must be infinite; otherwise aggregate claims will be governed
by central limit theorems. This means that tail-fatness index d of (1.10), (1.11)
and (1.12) cannot exceed 2 (or r ≥ 2

1 ). The largest sample order statistic (extreme)
has no second moment; all other order statistics (extremes) do have.

Various authors have remarked (e.g. Mikosch, (1997), Embrechts et al.,
(1997) that the principal cost of annual aggregate claims in the classes of insur-
ance involving fat-tailed claims above a high level (i.e. reinsurance claims) is
usually attributable to a few of the largest claims. Embrechts et al. (1997), Sec-
tion 8.2 mention the ’20-80’ rule-of-thumb used by actuaries, i.e. that in many
large claim portfolios, 20% of claims account for 80% of total claim amount.
Feller (1971), p. 288 and Mikosch (1997) provide probabilistic justification for
this. Remark (iii) of Section 1.4 above provides more precise evidence from a
different perspective.

Tail-fatness index estimation has been and is extensively studied, usually
assuming large sample sizes are available. Some benchmark papers are Hill
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(1975), Smith, (1987), Grimshaw (1990), Dekkers and De Haan (1993), Pickands
(1994), Drees and Kaufmann (1998), Dekkers et al. (1999), Feuerverger and
Hall (1999), Danielsson et al. (2001) and references therein). The index r is
difficult to estimate, particularly in this range [ 2

1 ,1) in which claim X is with-
out a second moment (Smith (1985, 1987)), and when sample sizes available
to an insurer, even with pooled data across an entire national industry are
likely to be small. The difficulty remains when parametric or semi-parametric
assumptions are made.

Many familiar principles used to set premiums for thin-tailed claims (the
exponential principle, the variance principle and its variants) cannot be applied
to claims without a second moment.

Furthermore, for claims X from Pareto (1.11) the mean m = E [1 + X /l] =
(1 – r)–1 is ‘a rare event’ as r ↑ 1 in the sense that Pr(X > m) → 0. The mean is
larger than any quantile of the distribution as r approaches 1. Since r (and so m)
is never known precisely, it can be hazardous to use the quantile principle (1.9)
to set premiums employing an estimate of r when r is supposed to be in the
range [ 2

1 ,1). Premium P must be chosen as a quantile q(a) with a > am where
F (m) = q(am), but m is unknown, see Gay (2004a). In practical terms this
difficulty can be managed by modeling tail-index uncertainty. In the sequel it
is assumed that the claims mean E [X ] exists so that r < 1.

2.2. A model for tail-fatness uncertainty

“Statistical analyses of large claim data are based on extreme value theory and
related methods. These are known to be very sensitive with respect to the tails of
the distributions, and therefore the existence of one very large claim may justify
the fit of a Pareto instead of a lognormal distribution, say.” (Mikosch, 1997).

The functional form (1.17) of the premium Pb = (1 – r /b)–b with r bounded by
b = rmax suggests the family of transformed beta variates

fr(x) = ux u –1/bu, (0 ≤ x < b, u ≥ 1) (2.1)

as a natural model for uncertainty in r.

Allowance for uncertainty in r can be made by calculation of ‘uncertainty pre-
miums’ as mean values of risk-averse premiums Pb weighted by (2.1)

Alternatively, distribution (2.1) can be regarded as a Bayesian prior for r
with premium P(n,b) = E [Pb] the resultant posterior mean for specified n.

2.3. The nature of the uncertainty premiums

Fat-tailed premiums. The premium P(n,b) for claim [1+X /l] is obtained as
the mean value or posterior mean of a Pareto premium, i.e. the expected value
of the risk-averse premium Pb using density (2.1).
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Thus
P(n,b ) = E [Pb ]

i.e.

P(n,b ) =
b-

/x x dxnb b1n n
b

1

0
---# ^ h (2.2)

Substitution u = x /b in the integral leads immediately to

P(n,b ) = nB (q,1 – b) (2.3)

Also by inspection of the integral (2.2), (replacing exponent b by 2b);

E [Pb
2] = uB (u,1 – 2b); for x ∈ [0,b)

There is no posterior second moment (and no posterior variance) of the pre-
mium Pb = (1 – r /b)–b for any b > 2

1 , the claims themselves having no variance
for these values. We call P(n,b ) the uncertainty premium.

2.4. On a pragmatic measure taken by insurers

In particular, when u = 1 (‘law of equal ignorance’ for r on [0,b))
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(2.4)

– the ratio of the expected value (or expected value of the ratio) of the two
largest Pareto order statistics/extremes.

However the extremes are now based on tail-index b = rmax.

Thus (2.4) provides a theoretical endorsement of the pragmatic measure insurers
will almost certainly take; i.e. choose a prudently large value b of the tail-index
to allow for imprecise knowledge of r.

The implication of this measure is now made explicit. It is equivalent to an
assumption of a uniform (i.e. the least informative) prior distribution of r on [0,b).

Also implicit in this assumption is that the insurer is not ruling out the pos-
sibility of claims arising partly from a mixture of thin-tailed risks (r = 0). Issues
of plausibility of the prior distribution can arise if one tries for instance to
restrict the range of r values to [ 2

1 ,1). See Appendix Note 3.
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2.5. Ratio structure of the uncertainty premium P (n,b )

For Pareto claims, if k is an integer P(k,b ) = kB(k,1 – b) where

kB(k,1 – b) =
E X

E X
E

X

X

1

1

n k

n

k1

1

+

+
=

- +
*

*

]

]

]

]

g

g

g

g

R

T

S
SS7

7
V

X

W
WWA

A
(2.5)

independently of n (see Appendix: Note 2), the order statistics being based on
tail-index b = rmax.

The ratio structure of premiums is preserved in the uncertainty premiums.

However premiums P(n,b) which utilise only integer values of n will have large gaps.
If n is not an integer, the notional structure of P(n,b) as a ratio of extremes

can be preserved by defining fractional order statistics and fractional extremes
via their densities.

For a sample from distribution F(·) (density f (·)), define the nth fractional
order statistic X (n)

(k,n) interpolating between X(k) and X(k+1) where k = [n] (‘the inte-
ger part of n’) for any value u such that 1 ≤ k ≤ u < k + 1 ≤ n via its density fu(x)
where

fu(x) = {F(x)}u –1{1 – F(x)}n–u f (x) /B(u, n+1 – u) (2.6)

where B(u, n+1 – u) = G(u)G(n+1 – u) / G(n+1).

Fractional extremes can be similarly defined. See Appendix Note 2.

Then the ratio structure is preserved and provides continuously changing uncer-
tainty premiums in the form

, ,
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/

P B
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+

+

=
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(2.7)

Gay (2004b) provides a numerical illustration.

We now investigate how the relationships embodied in (1.21) and (2.7) can
assist in tail-index estimation and premium determination when a consistent pat-
tern exists among the few largest extremes. Conventional estimation methods
generally require large sample sizes for consistency and error analysis (e.g.
Embrechts et al. (1997), Section 6.4, Drees et al., (2004)).
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The usual assumptions require that:

(i) the number of extremes k → ∞,
(ii) compared with sample size n, k/n → 0.

Under these conditions X
X P

,

,

k n

k n

1+]

]

g

g 1 (Embrechts et al. (1997), Example 4.1.11)

compared with our Equation (2.5).

The methodology is applicable for instance if the mechanism generating the
largest extremes possibly differs from that producing ‘ordinary’ large claims.

Beirlant et al. (2004) report fitting a three-parameter extension of General-
ized Pareto to a well-known large data set which provides a good fit for all but
the largest claims.

3. APPLICATION: THE FEW LARGEST EXTREMES HAVE CLASSIC PATTERN

‘Let the tail speak for itself ’

(Embrechts et al. (1997), Section 6.4.1)

As an example of the risk-averse method, we examine possible ‘premiums’ for
the US hurricane data in Table 1.

The data exhibits a classic pattern of extremes. The data set is treated as
“this year’s 10 largest claims”. Our objective is to set premiums for next year’s
10 largest claims on the basis of this data alone (in this year’s dollars).

A validation of the Pareto assumption for natural disaster data of this sort
is provided in Hsieh (2004).
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TABLE 1

US HURRICANE DATA; THE 10 MOST COSTLY LOSSES (1970-2002) ADJUSTED TO 2002 US DOLLARS.

Source: Insurance Information Institute, Feb. 2002

Rank Date Country Event Insured loss

1 Aug. 23,1992 FL, LA, MS Hurricane Andrew 19,875
2 Sept. 15, 1989 Peurto Rico, U.S. et al. Hugo 6,087
3 Sept. 21, 1998 PR, U.S. Virgin Is. FL, LA, MS George 3,201
4 Oct. 4 1995 FL, AL, GA, NC, SC, TN Opal 2,479
5 Sept. 14, 1999 NC, NJ, VA, MD, WV, PA, Floyd 2,117

OH 10 other states
6 Sept. 11, 1992 Kauai, Oahu, HI. Iniki 2,052
7 Sept. 12, 1979 MS, AL, FL, LA, TN, KY, WV, Frederic 1,865

OH, PA, NY
8 Sept. 5, 1996 NC, SC, VA, MD, WV, PA, OH Fran 1,835
9 Aug. 17, 1983 TX Alicia 1,220

10 Sept. 15, 1995 PR, U.S. Virgin Is. Marilyn 1,033
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FIGURE 1: The 10 most costly US hurricanes in 2002 dollars.

The consistent pattern of the extremes (Figure 1) could be expected to assist
the insurer in choosing a value of rmax = b for premium determination.

3.1. Estimates of the tail index from extreme ratios

The relations between expected values of ratios of the largest extremes, from
equation (1.21) can assist in deciding on a maximum value b of tail-fatness r with
which to set premiums. We have:

E [vnX *
(1) /vnX *

(2) ] = (1 – r) –1

E [vnX *
(1) /vnX *

(3) ] = (1 – r/2)–1 (1 – r) –1

E [vnX *
(1) /vnX *

(4) ] = (1 – r/3)–1 (1 – r/2)–1 (1 – r) –1

· · ·

E [vnX *
(1) /vnX *

(1+9) ] = 9B (9,1 – r)

These nine relationships (all of which involve the important X *
(1)) provide esti-

mates for r̂ for r; i.e.

(0.6937, 0.7436, 0.7379, 0.7292, 0.7053, 0.6997, 0.6830, 0.7389, 0.7517)

(c.f. the L-moment methodology of Pandey et al. (2001)).
The mean of these estimates is r̂ = 0.7203, their mean absolute deviation

(MAD) is 0.0221.
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3.2. Maximum likelihood based on the k largest extremes

Our assumptions are as follows:

(i) the k largest claims arise from a Pareto distribution with fixed tail-index d ,
(r = 1/d).

(ii) The total number n of claims is large; (we do not assume n is known). So
that the distribution of the kth largest claim is approximately Frechet (1.13).

(iii) Other claims in the set may arise from different distributions.

Drees et al. (2004) outline use and discuss properties of conditional maximum
likelihood estimation in the sense of Cox and Hinkley (1974, p. 17) predicated
on exceedances above a sufficiently high level having a Generalized Pareto dis-
tribution.

The conditional likelihood function is of the form:

L1[X |X(n – k) = x(n – k)] = f y n j
j

k

0

1

-

=

-

% ]_ gi (3.1)

where X = [X(n), X(n –1) · · · X(n – k + 1)], y(n – j ) = x(n – j ) – x(n – k) and f (·) is the Pareto
density (1.11)

An alternative form of the conditional maximum likelihood which follows
from the Markovian character of the order statistics is

L2 [X(n),X(n –1) · · · X(n – k + 1) | X(n – k) = x(n – k)]

(3.2)
= f x n j

j

k

0

1

-

=

-

% ]_ gi / [1 – F (x(n – k)]k

where F (·) is Pareto (1.11) and f (·) is its density.

For application to the data set in Table 1, L1(·) is general in that it is applica-
ble to any distribution from (1.10). The second likelihood L2(·) presupposes
Pareto for the loss distribution.

Notwithstanding, both assumptions lead to the same Frechet extremes.

3.3. Results from Conditional Maximum Likelihood Estimation (CMLE)

Application of CMLE to the data of Table 1 produces:

(i) using L1: r̂ = 0.5553, l̂1 = 3052.3
Exceedances above x(10) = 1033 are assumed to follow Pareto (1.11).

(ii) using L2: r̂ = 0.5553, l̂2 = 2019.3
(Raw losses are assumed to follow Pareto (1.11)).
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FIGURE 2: Ratios of expected extremes with r = 0.5553 (CMLE) and moment estimators r = 0.72,
together with ratios of actual extremes.

The results are coherent in that l̂1 = l̂2 + x(10) is to be anticipated under assump-
tions; i.e. when comparing Pareto f (x) and f (x – k | X > k), the maximum of
f (x) is at x = 0 and is d /l, whereas that of f (x – k | X > k) = (d /l) (1 + x /l)– d –1 /
(1 + k /l)– d at x = k and is d / (l+ k).

3.4. Comparing ratio and MLE results

Figure 2 below depicts graphs of three sets of ratios for k = 1 to 9;

(i) Actual ratios ,
X

X

k1

1

+
*

*

]

]

g

g

(ii) Expected values of the ratios when r = 0.72, i.e. kB (k,1 – 0.72),

(iii) Expected values of the ratio when r = 0.5553, i.e. kB (k,1 – 0.5553).

The inadequate fit provided by the Conditional ML estimate (r = 0.5553) is quite
apparent.
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Smith, (1985), Smith and Naylor, (1987), Nagaraja, (2004) have cautioned
against difficulties which may arise in applying MLE to extremes, particularly
with r ∈ [ 2

1 ,1)
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FIGURE 3: Premiums for US Hurricanes set using tail-index values.

b = rmax = 0.70(0.01)0.74 and the actual value X *
(2) = 6087.

3.5. Premiums for extremes

Bearing in mind that the largest claims are the most dangerous, prudence in
choice of b should be particularly reflected in the premium for the largest claim
(increasing b decreases premiums for lesser extremes in relative terms). The
premium for the largest claim is set, the remainder of premiums following from
relations (2.5).

The premiums depicted in Figure 3 are calculated using b = 0.70(0.01)0.74
with the premium for the second extreme set at its actual value. Total premiums
are given in Table 2.

3.6. Confidence interval for the premium

Given X *
(2) confidence intervals for the premium for X *

(1) can be set once b is
specified, since {X *

(1) /X *
(2)}– d is B(1,1) i.e. uniformly distributed (Appendix, Note 2).
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TABLE 2

TOTAL PREMIUMS FOR US HURRICANES (2002 USD MILLIONS)

Actual b = 0.70 b = 0.71 b = 0.72 b = 0.73 b = 0.74

41764 44635 45054 45526 46054 46652
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Thus while the premium for the largest extreme is X *
(2) / (1 – b ) its one-sided

upper confidence limit is X *
(2) / (0.05) b. Values are given in Table 3.

The lower limit is the actual largest extreme X *
(1) (= 19875).

180 R. GAY

TABLE 3

PREMIUMS FOR LARGEST CLAIM GIVEN X *
(2) = 6087 WITH 95% CONFIDENCE INTERVAL

BASED ON DIFFERENT VALUES OF b = rmax.

Tail-index b b = 0.70 b = 0.71 b = 0.72 b = 0.73 b = 0.74

Premium 20290 20990 21739 22544 23412

95% upper confidence limit 49559 51066 52619 54219 55868

The confidence intervals provide additional information about the inherent
menace of tails as heavy as these.

Remark

There is considerable discretion available to the insurer in setting premiums. The
present methodology focuses insurer attention on the expected structure of
potential claims (fully determined in terms of relative sizes, once b is chosen),
challenging insurer judgement, experience and intuition.

Input of expert advice and ancillary information can be accommodated. In
the hurricane context, the changing nature of land usage, population concen-
tration, building codes and preferences are likely to influence the financial
impact of hurricane damage.

Hsieh (2004) points to a 1994 report by Insurance Services Office, Inc. sug-
gesting that population density on the storm-prone southwestern Atlantic coast
of the US increased nearly 75% from 1970 to 1990, a much greater increase than
the 20% countrywide figure. This trend could be to influence the structure of
expected value of future claims over time. Hall and Tajvidi (2000) discuss how
such trends in extreme values over time may be estimated.

SUMMARY AND CONCLUSIONS

A new premium principle with foundations in the theory of risk-aversion applic-
able to fat-tailed claims is described and its properties examined. Premiums for
generalized Pareto claims are expected values of ratios of the largest extremes,
so that an unbiased estimator exists for risk-neutral premiums.

The ratio structure of premiums is preserved when imprecision in the tail
index is modelled using transformed beta prior distributions.
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An example illustrating how insurers can use the presence of a strong pat-
tern in the structure of the largest claims to assist in choice of tail-index and
to set premiums is provided.
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APPENDIX

NOTE 1.
Pricing functions and a pricing rule deriving from constant risk aversion

The ‘no-arbitrage’ principle widely used in pricing risk is inappropriate for
pricing general insurance premiums. In economic terms, insurers are price-
setters (see Albrecht, 1992). Premiums can be set using the classic theory of risk-
aversion.

Arrow (1971) defined two measures of risk-aversion described below:

Absolute risk aversion RA where

RA = U x
U x

�
�

-
]

]

g

g (A.1)

and

Relative risk aversion RR where

RR = x U x
U x

�
�

-
]

]

g

g (A.2)

If RA = s (> 0, constant), the utility function

U (x) = – exp(– sx) (A.3)

obtains. The exponential principle which determines the risk-averse premium P
for claim X as

P = ln{MX(s)} /s (A.4)

(where MX(s) is the moment generating function of X ) follows by using a ver-
sion of the expected utility principle (see for instance Bowers et. al. 1986, p. 9);
i.e. a version of

PREMIUM CALCULATION FOR FAT-TAILED RISK 181

https://doi.org/10.2143/AST.35.1.583171 Published online by Cambridge University Press

https://doi.org/10.2143/AST.35.1.583171


U(P) = E [U(X )] (A.5)

For instance, the minimum acceptable premium P to an insurer with utility
function U and wealth W for insurance against random claim X is given as in
(A.4) by using utility function (A.3) and

U(W) = E [U(W + P – X )] (A.6)

Or it derives from the ‘zero utility principle’,

E [U(P – X )] = U(0) (A.7)

(see for instance, Rolski et al. 1999. p. 91), in conjunction with utility function
(A.3).

Equivalently, the exponential function m(x) = exp(sx) could be regarded as
the pricing function of an insurer with constant absolute risk-aversion (see Gay,
2004b) and the principle follows directly from a pricing rule.

m(P) = E [m(X )] (A.8)

analogous to (A.5).

The pricing rule and the pricing principle can be obtained by manipulation of
the expected utility principle and utility functions to apply directly to premium
determination rather than asset pricing. Think of the graph of U(x) = – exp(– sx)
in the third Cartesian quadrant (x < 0, U < 0). Now transfer the shape back to the
first quadrant (x > 0, U > 0) i.e. measure loss positively and negative utility posi-
tively (where –U(x) is “degree of discomfort” m(x), say). Then m(x) = exp(sx) is
used to price insurance premiums in the face of constant absolute risk aversion.

For constant relative risk aversion, the process requires amendment of the
definition of RR for pricing insurance premiums to

RR = x U x
U x

�
�
]

]

g

g (A.9)

resulting in pricing function

m(x) = xa+1 (A.10)

when RR is set to constant a.

Evidently a = 0 provides for risk-neutrality, a > 0 for positive risk-aversion.

However it is derived, the exponential principle:

• has its roots in constant absolute risk-aversion,
• is applicable to thin-tailed distributions of exponential order, and
• results in setting premiums set with particular regard to the first two moments

of the distribution
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The power principle derives from constant relative risk aversion, is applicable
to fat-tailed (power law) distributions. Premiums are determined by expected
values of the first two extreme claims.

NOTE 2.
Pareto order statistics, Frechet extremes and conditional distributions

For Pareto (1.12) and any value n such that 1 ≤ k ≤ n < k + 1 ≤ n, the nth frac-
tional order statistic X (n)

(k,n) interpolating from u = k up to u < k + 1 is defined via
its density on (0,∞) given by

fn(x) = d [1 – (x + 1)– d ]n–1(x + 1)–(n – n)d(x + 1)–d – 1 /B (n,n + 1– n) (B.1)

by analogy with the kth order statistic, where B(n, n +1 – n) = G(n)G(n +1 – n) /
G(n + 1).

Thus the nth order statistic is the kth order statistic when n = k an integer, but
interpolates from the kth up to but excluding the (k + 1)th order statistic (1 ≤
k ≤ n – 1) as implied by its density (B1) otherwise.

Using (B1) it is easy to show that
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For instance, when n = n – k + 1,

E [1 + X(n – k + 1)] = G(k – r)G(n + 1) / {G(n + 1 – r)G(k)} (B.2)

~ nrG(k – r) / G(k) (see for instance Feller (1968, p. 66) (B.3)

= E [X *
(1)]

and E [1 +X(n – 1)] = (1 – r) E [1 +X(n)]

We also have for Pareto
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which is independent of n. In particular, for u = 1, k = n – 1,
E X

E X

1

1

n

n

1+

+

-]

]

g

g

7

7

A

A
=

(1 – r) –1

Similarly, the uth Frechet extreme X(k)
*(n) interpolating between X(k)

* and X *
(1+k)

is defined via its density

fu(x) = dx–ud –1exp{–x– d}/G(u) (k ≥ 1, u ≥ 1, x > 0, d > 0)

from which it follows that

E [X(k)
*(n)] = G(u – r) / G(u) (B.4)

and that

E X

E X

n

n

n k

n

n

1
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g
g
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8

8

B

B
= G(1 – r) G(u + 1) / G(u + 1 – r)

(B.5)

= nB (1 – r,n)

The convergence of the expected values of normalised order statistics to the
corresponding expected value of extremes is established in Resnick (1987),
Chapter 2).

Conditional expectation

For Pareto (1.12) consider the conditional expectation:
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We have f (x(n) |x(n – k)) = B –1(k,1} ≈ {F(x(n)) – F(x(n – k))}k – 1 f (x(n)) /{1 – F(x(n – k)}k

(see for instance, Arnold, Balakrishnan and Nagaraja, (1993), p. 24)

Now put u =
F x

F x
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1
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gi for Pareto (1.12).

The integral in (B6) simplifies to u r

0

1
-# (1 – u)k–1du /B (k,1)

= B (k,1 – r) /B (k,1)

= kB (k,1 – r)

Note that this is also the value of
E X

E X
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.
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Furthermore since E X
X

X
1

1

n k

n
n k+

+

-
-

]

]

]
g

g

g= G is constant and independent of X(n – k)

it is also the unconditional expectation. (The result can also be obtained by direct
integration using the joint distribution of X(n),X(n – k)).
Thus we have:

E X
X

1

1

n k

n

+

+

-]

]

g

g
= G = kB (k,1 – r) (B.7)

Analogous results hold for fractional Pareto order statistics, and Pareto version
(1.11). The result (B7) is independent of n. Heuristically, this means it remains
unchanged if we put

(i) 1 + X(n) = nrX*
(1), (ii) 1 + X(n – k) = nrX*

(1+k), their limiting values in distribution.
Then

E
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= kB (k,1 – r) (B.8)

Alternatively this follows from the existence of sup E X
X

1

1
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n
e1
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g
= G (1 + e < 1/r),

and hence the uniform integrability of X
X

1

1

n k

n

+

+

-]

]

g

g
= G, and convergence of the expec-

tation in (B7) to the right side, using Billingsley (1995), Theorem 25.12 Corol-
lary, p. 338.

Risk-averse premium for the largest Frechet claim
For X*

(1), application of (1.15) to Frechet density (1.13) leads to

Pb = {G(1 – r/b)}–b = {G(2 – r/b)}–b (1 – r/b)–b

Then, weighting with (2.1) requires

P(n,b) =
b b-

/ /x x x dxnb b bG1 2n

b

n

0

1 - -- -# ^ ^^h hh

Now 0.8856 < G(2 – y) ≤ 1 for 0 ≤ y ≤ 1 (the minimum at 2 – y ≈ 1.46163, see
for instance Wrench, 1968); replacing the gamma function by its unit upper
bound we obtain

P(n,b) ≤ b-
/x x dxnb b1n

b

n

0

1 -- -# ^ h

i.e.
P(n,b) = K ≈ nB (1 – b,n)

In the example of Section 3, this bound is applied with n = 1, K = X*
(2).
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NOTE 3.
Implausible priors for r

No inherent technical difficulties arise if instead of family (2.1) tail-index uncer-
tainty is modeled by

fr(x) = n(x – a)n – 1 / (b – a)n (a ≤ x < b, n ≥ 1) (C.1)

The premium Pb of (1.17) is then replaced by

Pa,b = (1 – a /b )–b Pb (C.2)

As a ↑ b, (greater certainty about r is assumed) Pa,b >> Pb . However, such a
prior is essentially implausible in the light for instance of the empirical reali-
ties expressed in the Mikosch quote at the start of Section (2.1).
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GLOSSARY OF PREMIUMS

Notation Application; (page of first occurrence)

P (i) premium in general; (p. 165)
(ii) premium applicable to thin-tailed claims distributions; (p. 165)

P (a) Power principle premium (PPP) determined by constant relative risk aversion
a (≥ 0); (p. 168)

PX(a) PPP for claim X determined by constant relative risk aversion a; (p. 168)

Pb (i) PPP for Pareto claim (1 +X /l) for r < b = rmax = (1 + a) –1; (p. 169)
(ii) PPP for Pareto claim (1 +X /l)ƒ (r ≥ 1, rƒ < b < 1); (p. 169)

P (n,b ) Uncertainty premium. Expected value of Pb when tail-index r is weighted by 
fr(x) = nxn – 1 /bn, (0 ≤ x < b, n ≥ 1); (p. 173)

Pa,b Uncertainty premium. Expected value of Pb when tail-index r is weighted by 
fr(x) = n (x – a)n – 1 / (b – a)n, (a ≤ x < b, n ≥ 1); (p. 186)
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