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Abstract

This is a discussion of some numerical integration methods for surface integrals over the
unit sphere in R3. Product Gaussian quadrature and finite-element type methods are
considered. The paper concludes with a discussion of the evaluation of singular double
layer integrals arising in potential theory.

1. Introduction
This is a discussion of some numerical integration methods for the surface
integral

/ ( / ) = / AQ)do, (1.1)
Ju

with U the unit sphere in R3. The integration formulae will include product
Gaussian quadrature and some methods based on breaking U into smaller
triangular elements with various associated low order integration schemes.

The motivation for discussing such methods arises from the desire to solve
integral equations defined over simple smooth surfaces S in R3,

Xp(P) - f K{P, Q)p(Q) da(Q) = +(P), P e S. (1.2)

Such equations can arise in a variety of applications, although we are particu-
larly interested in those equations arising from solving potential theory problems
in R3. To deal with integrals over a general surface S, we assume there is a
smooth 1-1 mapping of U onto S; then an integral over S can be transformed
into one of the form (1.1).
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The product Gaussian quadrature formula is discussed and illustrated in
Section 2. Methods for triangulating the sphere and some associated integration
formulas are given in Section 3. Since most kernel functions K(P, Q), in (1.2),
are singular in potential theory applications, we discuss the evaluation of one
such integral in Section 4.

For a review of integration methods on the sphere, see Keast and Diaz [6],
Lebedev [7], and Stroud [13, Sections 2.6 and 8.4]. The methods discussed in the
present paper are not optimal, but they are well-suited to the solution of integral
equations. Moreover, the theory of optimal methods is far from complete, as has
been noted in [7]; consequently it would not be possible to carry out a complete
error analysis of the resulting numerical methods for solving (1.2).

2. Product Gaussian quadrature

Let / ( / ) be written using spherical coordinates

/ ( / ) = F' fW F{9, <j>) sin 0 dB d<f>, (2.1)
•'o •'o

with/(0, <J>) =f(x, y, z). The integral is approximated by
1m m

4(/) = ^ 2 2 " , M , <*>,)• (2.2)

The {0,} are chosen so that (cos(0,)} and {tv,} are the Gauss-Legendre nodes
and weights on [-1, 1]. The points ty are evenly spaced on [0, 2m\ with spacing
•n/m; usually

<t>j=jv/m or \j - ^ U/m. (2.3)

With this choice of node points and weights, Im{f) integrates exactly any
polynomial f(x, y, z) of degree less than 2m; see [13, page 40] for a proof. For an
integration formula, the degree of precision is n if the formula is exact for some
polynomial of degree n + 1. Hence Im(f) has degree of precision 2m — 1.

The formula Im(f) is less efficient than the optimal formulae of [7], but not
badly so. For methods of an increasing degree of precision, Lebedev introduces
the efficiency index

) , (2.4)

where n is the degree of precision and N(n) the number of associated node
points on if. The larger the index for a given n, the more efficient is the method.
The formulae developed by Lebedev satisfy ij(n) -» 1 as n -» oo. The above
Gaussian formula has index ij(2m — 1) = 2/3 for m > 1. Lebedev's formulae
use only 2/3 the number of node points used by Im(f). This is not a large
difference and it is offset somewhat by the ease with which Im(f) is constructed.
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Convergence results for Im(f) can be obtained from an approximation theo-
rem of Ragozin [11]. Using this, it is straightforward to show that, if f(x,y, z) is
k times continuously differentiable on U, then

|/(/) - Uf)\ < Cl ((2m - l)k) for m > 1. (2.5)

This bound shows the same rapid convergence associated with Gaussian quadra-
ture for one variable integration. A short proof of (2.5) is given in [1].

EXAMPLES. Four numerical examples will be given, and they will be referenced
by the four different surfaces 5, that are used. The first two examples are

f ex da, i = 1, 2, (2.6)

with S, the ellipsoidal surface (x/a)2 + (y/b)2 + (z/cf = 1, where 5, uses
(a, b, c) = (1, 1, 2) and S2 uses (1, 2, 5). The last two examples are to calculate
the surface area of 5,,

f da,Js,
i = 3, 4, (2.7)

with S, a 'peanut-shaped' region given by

(x,y, z) = R(6) (a cos <j> sin 9, b sin <f> sin 9, cos 9)

where

R(9) =[cos(20) +[c - sin2(20)]1/2]'/2.

Figure 1. Cross-section of the ellipsoid S2-
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Figure 2. Cross-section of the surface S3.

Figure 3. Cross-section of the surface St.

Surface 53 uses (a, b, c) = (1, 2, 2) and S4 uses (1, 2, 1.1). The cross-sections in
the x, z-plane of the surfaces S2, S3, and 54 are shown in Figures 1 to 3. Surfaces
5"2 and S4 are somewhat more ill-behaved than 5, and S3.

Table 1 contains the numerical results for the four integrals. The column n
gives the number of integration nodes. As expected, the convergence is rapid.
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TABLE 1

Errors for product Gaussian quadrature

[ s ]

m n

4 32
8 128

12 288
16 512
20 800

Relative error for the integration over 5,

i = 1

-3.0E-4
-1.3E-6
-9.0E-9

O.0E-12
<5.0E-12

/ = 2

-1.5E-3
-8.6F-5
-7.3E-6
-7.9E-7
-9.9E-8

i - 3

7.8E-3
1.4E-4

-3.3E-6
-3.7E-7
-1.2E-8

-3.4E-2
-2.2E-2
-5.9E-3
-1.4E-3
-3.7E-4

3. Finite element integration

Letting {A,, . . . , An} be a triangulation of U, we can write

/(/)=£ JAAQ)da. (3.1)

We will consider numerical approximations to / ( / ) based on approximating
each integral over Ay using a fixed low order integration rule. First, we discuss
how to triangulate U.

The usual manner of subdividing U is based on using a rectangular or
triangular grid on the rectangle {(0, <£)|0 < 9 < 7r, 0 < <|> < 2IT), and this is
mapped onto a triangulation of U using the standard spherical coordinates
formula. The advantage of this method is its simplicity, and usually it is rapid to
implement. The main disadvantage is that it results in a very nonuniform
distribution of nodes and elements on U; usually there are relatively more nodes
near the poles z = ± 1. The elements are also quite varied in shape and size, in
general. For these reasons, we consider another method of subdivision.

Create an initial triangulation of U by inscribing a tetrahedron, octahedron,
or icosahedron inside U, and then project it outward onto the surface U. This
gives a uniform subdivision of equilateral spherical triangles, with 4, 8, or 20
faces, respectively. To subdivide an existing triangulation {A,}, we divide each
face A, into four smaller triangles: find the midpoints of the sides of A,, and then
connect them by great circle paths. If A,- is not too large, then the four new
triangles created from A, will be almost congruent, and will be nearly similar to
A,. This triangulation method leads to a fairly uniform subdivision of U,
particularly when the initial subdivision is an icosahedron. Denote the three
triangulation schemes by T,n, Ton, and Tin, depending on whether the initial
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triangulation uses a tetrahedron, octahedron, or icosahedron, The subscript n
indicates the number of faces.

THE CENTROID RULE. The simplest method for estimating the integral over A,
is

(3.2)

where Qt is the centroid of A,. If t>,, v2 and u3 denote the vertices of A,, define

' Qi = («i + v2 + v3)/\vi + v2+ v3\. (3.3)

Using this in (3.1), we obtain

/(/) « £ /(ft) Area(A,) = Cn(f), (3.4)

and we shall call this the 'centroid rule'. This simple rule is surprisingly accurate,
especially when certain triangulations of U are being used.

If/((?) is twice continuously differentiate on U, then a bound on the rate of
convergence is given by

A proof is sketched later in this section. The numerical results given below
also seem to confirm the correctness of the order.

Nonetheless, the method has another interesting aspect. Table 2 gives the
degree of precision d of Cn(f) for the various polyhedral triangulation schemes.
These are somewhat surprising results for such a simple method. Clearly, this
triangulation method is important, as other nonuniform triangulations generally
have only degree of precision 0 or 1. The results of Table 2 can be proved in a
straightforward way, based on the results of [12].

TABLE 2

Degree of precision of the centroid rule

Triangulation

Degree of Precision

T T T
1 l,n A o,n * i,n

2 3 5

EXAMPLES. We use the integrals (2.6) and (2.7) that were used for the product
Gaussian quadrature. The triangulation method is Tin, and the results are given
in Tables 3 and 4.
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TABLE 3

Numerical examples 1 and 2 for the centroid rule

[71

n

80

320

1280

Surface S1,

Relative
error

— 1.Z.E.-J

1.1E-5

1.8E-6

3.6E-7

Ratio

-10

5.9

5.1

Surface S2

Relative
error

—4.7E-3

-7.0E-5

1.8E-5

3.8E-6

Ratio

66

-4.10

4.6

TABLE 4

Numerical examples 3 and 4 for the centroid rule

n

20

80

320

1280

Surface S3

Relative
error

-1.1E-2

-1.7E-3

-1.5E-5

-6.8E-6

Ratio

6.4

118

2.2

Surface SA

Relative
error

-2.8E-1

-3.8E-3

1.7E-3

-1.0E-4

Ratio

75

-2.2

-16

With most examples, including the ones shown here, the error first decreases
very rapidly and then settles down to a slower rate of decrease, usually one more
consistent with the theoretical bound of O(\/n). When the triangulations Ttn

and To „ are used, similar behaviour holds, but the errors are not as small as with

A N ISOPARAMETRIC METHOD. We use the isoparametric mapping approach of
the finite element method. Let a0 denote the unit simplex in R2, a0 = {(s, t)\0 <
s, t, s + t < 1}. Let A, be a spherical triangle with vertices vu v2 and v3. Define

p(s, t) = o, + t(v2 - u,) + s(v3 - c,)
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and

q(s, t) = p(s, t)/\p(s, 01, for (s, t) G a0. (3.6)

It is straightforward to show that p is a 1-1 mapping of 0O onto the planar
triangle determined by vu v2 and v3 and that q is a 1-1 mapping of a0 onto A,.

Using (3.6), we can write

f(Q) do = \ f{q{s, t))\qs X q,\ ds dt, (3.7)
J

with qs and q, denoting the partial derivatives of q(s, t). We now integrate this
numerically with an integration method of degree of precision 3:

g(s, t)dsdt^~[ g(0, 0) + g(l, 0) + g(0, 1)]
'0 W

+ T^

Under the mapping q, the points {(0, 0), (0, 1), (1, 0)} map into vx, v2 and v3, the
points {(j, 0), (0, \ ), ( j , j )} map into the centroid Qt of A,. We apply (3.8) to
the right side of (3.7) for each A, and call the sum of the resulting numerical
integrals Jn(f).

For the convergence of /„(/), we show later that, if f(x, y, z) is four times
continuously differentiable on U, then

|/(/) - JnU)\ < k2/n\ (3.9)

Thus this method should be an improvement on the centroid method. In actual
examples, however, the centroid method has almost always been much superior,
provided Tin was used with n < 1280, which was the bound on n in most
computations.

EXAMPLES. AS before, we evaluate the integrals (2.6) and (2.7), and use Tin.
The results are given in Tables 5 and 6, where 'Nodes' gives the number of
integration node points on U. The work with •/„(/) is about the same as for
Qn(/)>

 s m c e t n e triangulation 7],M is needed to obtain the nodes used in Jn(f).
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TABLE 5

Numerical examples 1 and 2 for the isoparametric method

[9]

n Nodes

20 62

80 242

320 962

Surface S,

Relative
error

-2.8E-2

-2.OE-3

-1.3E-4

Ratio

13.7

15.3

Surface S2

Relative
error

-3.0E-2

-2.1E-3

-1.3E-4

Ratio

14.3

16.0

TABLE 6

Numerical examples 3 and 4 for the isoparametric method

n Nodes

20 62

80 242

320 962

Surface S3

Relative
error

-3.2E-2

-2.9E-3

-1.3E-4

Ratio

11

12

Surface S4

Relative
error

-1.8E-1

-5.8E-3

8.4E-4

Ratio

31

-6.9

Based on our examples, the centroid rule should be used in preference to the
isoparametric method /„(/), provided n is not too large and Tin is used. With
other values of n or other triangulations, /„(/) is much more competitive, and
possibly superior. Comparing with the other examples for the product Gaussian
quadrature, the latter is generally superior in accuracy to Cn(/), especially at
moderate to high error tolerances.

ERROR BOUND DERIVATIONS. We will give only a sketch of the proof of (3.9);
the details are straightforward, but algebraically complicated. First, note that the
integration rule (3.8) is exact for all polynomials g(s, I) of degree < 3. For a
general differentiable function g(s, t), an error formula can be found in the
standard way: expand g(s, t) in a Taylor series through the third degree plus a
remainder term, and apply the error functional for (3.8) to this equation. The
error will be proportional to the fourth derivatives of g.
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I io 1 Numerical integration on the sphere 341

To apply this to deriving (3.9), first assume that f(x,y, z) is defined in a
neighborhood of U, with continuous and bounded fourth order derivatives.
Since (3.8) is applied to (3.7), consider the fourth derivative of the integrand in
(3.7). It can be shown that

34

, t))\q, X q,\] <Cmax{|t;1-t;2|6, |t>, - t>3|
6}. (3.10)

In addition, the following results can be shown for our triangulations Tt „, To „,
and Tun:

cjn < Area(A,) < c2/2, for i = 1, . . . , n, (3.12)

where c, and c2 > 0 and independent of n; furthermore,

c3 max{|c, - v2f, \v2 - v3\
2, \v3 - t>,|2} < Area(A,)

< c4 min{|t>i - v2\
2, \v2 - v3\

2,\v3 - u, |2}, (3.12)

with i = 1, . . . , n, u,, v2 and v3 the vertices of A,, and c3 and c4 > 0 indepen-
dent of n. Combining all of these results with the error formula for (3.8), derived
using a Taylor series, we obtain (3.9).

For functions f(Q) defined only on U, if they are four times differentiate
using a local parametrization on U, then they can be extended to a new function
on a neighborhood of U; and the extensions can be chosen to have the same
degree of differentiability. For a discussion of this, see [4, pages 13, 100].

The proof of (3.5) is quite similar. We write

>-/(&)Area(A,)

M*. 0)1* x q,\ as * - \j[q{\, I))|,,(I, I) x q,{\, I

2

= £/'> + E?>. (3.13)

The point ( \ , 3 ) is the centroid of o0, and Q, = q{ y , 3 ). The integration rule

/ g{s,t)dsdt~)rg(\,\) (3.14)

has degree of precision 1. Using the same kind of proof as that given for (3.9), it
follows that

P = O(l/n2). (3.15)
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For ZT/2), repeat the same argument, with g(s, i) = \qs X q,\ in (3.14). Using the
boundedness o f /on U, we obtain £,(2) = 0(1/n2). Thus Ei = O(l//i2), and the
sum of the errors over {A,} is O(\/n).

4. Evaluation of a singular integral

The use of integral equations in the solution of potential theory problems in
R3 leads to the evaluation of singular surface integrals; for example, see Jaswon
and Symm [5]. As an example of the treatment of such integrals, we will
consider the evaluation of

f d(B)
dv(A)

with S a smooth boundary surface for a simply connected region, v(A) the inner
normal to S at A, and d(B) a smooth density function (called the double layer
density). This integral arises from the representation of harmonic functions as
double layer potentials in R3; the singularity in (4.1) is of order \/\A — B\.
Unfortunately, there does not seem to be any way to remove the singularity
using a change of variables, and it must be treated directly. There is another
formulation in terms of solid angles: for example, see Mikhlin [10, page 349], but
that too has significant problems when trying to calculate the solid angles,
especially when B is near to A.

As before, assume there is a 1-1 mapping of U onto S and then use it to
change the integral in (4.1) to one over U. This leads to the integral operator

%p(P) = f K(P, Q)p(Q) da(Q), P&U. (4.2)
Ju

The kernel K includes the original kernel of (4.1) and the change of the surface
area differential.

A PRODUCT GAUSSIAN QUADRATURE FORMULA. Begin by applying the well-
known identity

to obtain

%p(P) = 2-np(P) + f K(P, Q)[P(Q) - p(P)] da. (4.3)

The new integrand is bounded at Q = P, although it will still be discontinuous.
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If we were now to change to spherical coordinates for Q, then the point P
would become a singular point internal to the integration region [0, w] X [0, 2m\.
Most numerical integration methods perform poorly in such a situation, and
that will be true here. To avoid this, we first rotate the coordinate system,

Q' = HQ, (4.5)

with H a Householder orthogonal matrix. It is to be chosen so that P' = HP is
(0, 0, 1) or (0, 0, -1). We use a spherical coordinates representation for Q', and
apply the product Gaussian quadrature with respect to this new representation.
The singularity in the integrand occurs along either 0 = 0 or 9 = n. This change
of variables results in much improved accuracy and, moreover, there is now a
regular behaviour to the error as the integration parameter m is increased.

EXAMPLE. (1) We choose S = U and, to have a test case, use the result that
%p = 2ir/(2k + l)p, for k > 0, for any spherical harmonic of degree k. (See [9,
page 69] for the definition of spherical harmonics). We choose the spherical
harmonics

pm(P) = z and p(2>(P) = z2 - (x2 + y2)/2. (4.6)

For P, we have

(-.30353, .93417, .18759). (4.7)

The index of integration is m, and the number of nodes is n = 2m2. The
numerical results are given in Table 7.

TABLE 7

Gaussian rule: example 1 for singular integral

m

4

8

16

32

n

32

128

512

2048

Error for %pw

1.4E-3

2.0E-4

2.7E-5

3.5E-6

Ratio

6.9

7.4

7.7

Error for SCp(2)

-1.0E-2

-1.4E-3

-1.9E-4

-2.5E-5

Ratio

7.1

7.4

7.7

(2) We use the surface S3 with the density functions of (4.6) and let P be
the point on 53 corresponding to the point of (4.7) on U, P =
(-.20036, 1.23330, .12383). The errors in Table 8 were calculated using a very
accurate value of %p(P), obtained with a much larger value of m.
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TABLE 8

Gaussian rule: example 2 for singular integral

m

4

8

16

32

n

32

128

512

2048

Error for 9Cp(1)

-5.2E-2

-5.7E-4

-5.4E-5

-7.2E-6

Ratio

92

11

7.4

Error in DCp<2)

5.6E-2

-6.0E-4

-3.0E-5

-4.0E-6

Ratio

-93

20

7.4

In these examples and with all other examples we calculated, the error has the
asymptotic form

c/ (m3) + O{\/m<). (4.8)

As the surface becomes more ill-behaved, the value of m must be larger before
the behaviour (4.8) becomes apparent. With surfaces S2 and S4, this happens
with m = 64, but the error is still quite small with smaller values of m. With an
error of the form (4.8), Richardson extrapolation can be used to accelerate the
convergence, and that should be an important tool with these singular problems.
A similar strategy is suggested by Lyness [8].

A FINITE ELEMENT INTEGRATION FORMULA. Most numerical methods for
evaluating (4.1) are based on first writing it as a sum of smaller integrals, based
on some triangulation of S,

£ / d{B)-
= 1 "'A,

1
dv(B) [\A-B\

da(B).

Usually each integral over A, is approximated by the central rule, and the
surface area of A, is approximated by the area of the planar triangle determined
by the vertices of Ay. For examples, see Jaswon and Symm [5, page 233], Birtles
et al. [3], and Wait [14, page 303]; the last paper also uses a quadratic
isoparametric method, with improved results. This is a very flexible approach to
the evaluation of integrals like (4.1), but it also leads to greater inaccuracy than
if the special nature of the kernel and surface were taken into account.

We approximate (4.2) using the centroid rule, with a crude modification to
avoid elements containing the singular point P, using
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, QJMQJ) Area(A,)

\ * - 2 K(P, Qj) Aica^j)]P(V), (4.9)
L ^ A , J

where Qj is the centroid of A,, and V is some centrally located point in the union
of all elements Ay containing P. The approximation uses (4.3). Empirically, the
behaviour of this method is best when P is a centroid of one of the triangles A,.

EXAMPLE. (1) We let S = U, and let p and P be given by (4.6) and (4.7). The
triangulation Tin is used, and P is a centroid of one of the faces of Ti20- The
results are given in Table 9.

TABLE 9

Centroid rule: example 1 for singular integral

n

20

80

320

1280

5120

Error in %pm

-5.7E-3

-9.4E-4

-1.4E-4

-1.9E-5

-2.9E-6

Ratio

6.1

7.0

7.1

6.7

Error in DCp(2>

4.2E-2

6.8E-e

9.8E-4

1.4E-4

2.1E-5

Ratio

6.2

7.0

7.1

6.6

(2) We use the same surface S3, density p, and point P as with example 2 for
product Gaussian quadrature. The results are given in Table 10.

TABLE 10

Centroid rule: example 2 for singular integral

n

20

80

320

1280

5120

Error in %pw

1.6E-1

-5.9E-2

1.6E-2

-4.1E-3

1.0E-3

Ratio

-2.7

-3.7

-3.8

-4.0

Error in 9Cp(2)

1.2

-1.4E-2

3.5E-3

-1.3E-4

1.9E-4

Ratio

-83

-4.0

-28

-.7
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As can be seen, the error is quite regular when S = U, but not otherwise. This
has been borne out with all other examples computed to date. Empirically, for
S = U, the error is about O(l/n15), which is equivalent to the result (4.8) for
product Gaussian quadrature. There seems to be a fortuitous cancellation of
errors taking place in this case. For all other surfaces, the uniform rate is mostly
lost.

To compare the two methods of evaluating (4.2), the product Gaussian
formula has proved much more regular in convergence than the centroid rule
and, usually, the Gaussian formula has been much more accurate as well. In our
programs, the Gaussian formula has required less memory storage, the programs
have been simpler, and generally it has performed much more efficiently.
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