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This paper deals with the following quasilinear chemotaxis system with consumption
of chemoattractant

{
ut = Δum −∇ · (u∇v), x ∈ Ω, t > 0,
vt = Δv − uv, x ∈ Ω, t > 0

in a bounded domain Ω ⊂ R
N (N = 3, 4, 5) with smooth boundary ∂Ω. It is shown

that if m > max{1, 3N−2
2N+2

}, for any reasonably smooth nonnegative initial data, the

corresponding no-flux type initial-boundary value problem possesses a globally
bounded weak solution. Furthermore, we prove that the solution converges to the
spatially homogeneous equilibrium (ū0, 0) in an appropriate sense as t → ∞, where
ū0 = 1

|Ω|
∫
Ω u0. This result not only partly extends the previous global boundedness

result in Fan and Jin (J. Math. Phys. 58 (2017), 011503) and Wang and Xiang (Z.
Angew. Math. Phys. 66 (2015), 3159–3179) to m > 3N−2

2N
in the case N � 3, but

also partly improves the global existence result in Zheng and Wang (Discrete
Contin. Dyn. Syst. Ser. B 22 (2017), 669–686) to m > 3N

2N+2
when N � 2.
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1. Introduction

Chemotaxis is one of the most important components in the process of reproduction
and migration, it describes the biased movement of biological species or cells towards
chemotaxis substances. In this paper, we study the following quasilinear chemotaxis
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system with consumption of chemoattractant⎧⎪⎪⎨⎪⎪⎩
ut = Δum −∇ · (u∇v), x ∈ Ω, t > 0,
vt = Δv − uv, x ∈ Ω, t > 0,
(∇um − u∇v) · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(1.1)

in a bounded domain Ω ⊂ R
N with smooth boundary ∂Ω, where m > 1 is a con-

stant, ν denotes the outer normal derivative on ∂Ω, u(x, t) and v(x, t) denote the
density of cells population and the concentration of oxygen, respectively. And the
initial data (u0, v0) satisfies{

u0 ∈W 1,∞(Ω) with u0 � 0 and u0 �≡ 0,
v0 ∈W 1,∞(Ω) with v0 � 0 in Ω̄. (1.2)

To better understand the chemotaxis model (1.1), we recall several previous
works. Firstly, we recall the following system that has been studied for more than
ten years, {

ut = ∇ · (D(u)∇u) −∇ · (u∇v), x ∈ Ω, t > 0,
vt = Δv − uv, x ∈ Ω, t > 0, (1.3)

where the function D(u) denotes the diffusive function of cells, and the effect of
D(u) on the global solvability of solutions has attracted widespread attention. Note
that for the corresponding no-flux type initial-boundary value problem (1.3), for
the case of D(u) = 1 and N � 2, Tao [12] proved that system (1.3) possesses a
unique global bounded classical solution under the assumption that ‖v0‖L∞(Ω) is
small. Especially, the domain is convex when N = 3, Tao and Winkler [14] removed
the smallness condition of initial data and proved that the system admits at least
one global weak solution for arbitrarily large initial data; moreover, they showed
that this solution is eventually smooth and converges to the constant equilibria in
the large time limit.

Considering the quasilinear diffusion function D(u) � D0(u+ 1)m−1 with some
constant D0 > 0, if N � 2 and the domain is convex, Wang et al. [20] established
the globally bounded classical solution when m > 2 − 2

N . Subsequently, Wang et
al. [19] removed the convexity assumption and showed that the global solution is
locally bounded if m > 2 − 6

N+4 with N � 3. In addition, Zheng and Wang [41]
improved the global existence result for the case m > 3N

2N+2 .
Furthermore, taking account of the degenerate diffusion functionD(u) � D0u

m−1

with some constant D0 > 0, under the assumption m > 3N−2
2N , N � 3, the globally

bounded weak solution was obtained in [5, 24], and the asymptotic behaviour of
solution was obtained in [5]. And for the convex domain case, the global existence
result of the weak solution was further raised to the case m > 3N

2N+2 (N � 2) in [41].
Since then, no further research was conducted.

Besides, chemotaxis processes with signal absorption coupling to the fluid motion
are often considered, such as the following chemotaxis system which describes the
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movement of bacterial cells to oxygen in incompressible fluids [18]⎧⎨⎩
ut + V · ∇u = ∇ · (D(u)∇u) −∇ · (uS∇v), x ∈ Ω, t > 0,
vt + V · ∇v = Δv − uv, x ∈ Ω, t > 0,
Vt + κ(V · ∇)V = ΔV −∇P + u∇φ, ∇ · V = 0, x ∈ Ω, t > 0,

(1.4)

where S is a given chemotactic sensitivity function, κ ∈ R is a constant, P is the
pressure, φ is the gravitational force, and V is the velocity of the fluid. Note that
if the effect of fluids is absent (i.e. V = 0), system (1.4) is reduced to system (1.3).
Readers who are interested in the study of (1.4) could refer to [1–3, 6, 10, 15,
16, 21–23, 26–33, 36–40]. Particularly, we point out that when D(u) = mum−1,
there is a long process of how far m can ensure the solvability of system (1.4) with
κ = 0 in Ω ⊂ R

3. When S is a scalar function, Francesco et al. [3] proved global
bounded weak solutions for m ∈ ( 7+

√
217

12 , 2], Tao and Winkler [16] established the
existence of global weak solutions for m > 8

7 , Winkler [31] and Jin [6] enhanced the
boundedness result to m > 9

8 and m > 1, respectively. When S is a given parameter
matrix, Winkler [28] presented the boundedness of solutions in convex domains for
m > 7

6 . Additionally, this result was extended to the case m > 10
9 [37], m > 65

63 [17],
and m > 11

4 −√
3 [39]. Recently, Winkler [34, corollary 1.4] has shown that the

system admits a globally bounded weak solution for m > 1 in the convex domain.
Comparing the results of systems (1.3) and (1.4) in three dimensions, we see that

the conditions of parameter m > 7
6 [5, 24] and m > 9

8 [41] are worse than m > 1
[6, 34] from the point of ensuring the solvability of the solution. Therefore, it is
a natural question whether the range of m of system (1.1) in higher dimensions is
wider than that in [5, 24, 41]. If the range of m can be extended, what is the large
time behaviour of the corresponding solution? Indeed, those questions are partially
answered by the main results of this paper.

Main idea: As aforementioned, under the assumption m > 3N−2
2N , the global

boundedness weak solution of system (1.1) has been obtained in [5, 24], thus we
focus on the case m � 3N−2

2N . Without loss of generality, we shall assume that 2 >
m > 1 in the sequel. Note that the term

∫
Ω
(uε + ε)p−m+1|∇vε|2 was decoupled into

two parts in [5, 24], namely the integrals containing only uε and ∇vε separately.
In this paper, inspired by [34], we choose p = m+ 1 to be the dissipative part of
the inequality describing the evolution of

∫
Ω
(uε + ε)|∇vε|2. Unfortunately, there

are additional bad terms that must be addressed. Therefore, we construct a new
functional

y(t) = C̃1

∫
Ω

(uε + ε)m+1 + C̃2

∫
Ω

(uε + ε)3−m +
∫

Ω

(uε + ε)|∇vε|2 + C̃3

∫
Ω

|∇vε|4

to obtain the boundedness of ‖uε + ε‖Lm+1(Ω) for 2 > m > 1, which is the most
critical step. Next, under the assumption of 2 > m > max{1, 3N−2

2N+2} (where N =
3, 4, 5), the boundedness of functional

∫
Ω
(uε + ε)p +

∫
Ω
|∇vε|2q for large p and large

q can be obtained. And then by the iteration procedure in [13, theorem A.1], we
get the uniform bounds for ‖uε‖L∞(Ω) and ‖∇vε‖L∞(Ω).

At first, we introduce the following definition of weak solutions.
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Definition 1.1. For a global weak solution of (1.1), we mean a pair of nonnegative
functions (u, v) satisfying

u ∈ L∞((0,∞);L∞(Ω)), ∇um ∈ L2
loc([0,∞);L2(Ω)), v ∈ L∞((0,∞);L∞(Ω)),

and for any ϕ ∈ C∞
0 (Ω̄ × [0, ∞)),

−
∫ ∞

0

∫
Ω

uϕt −
∫

Ω

u0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇um · ∇ϕ+
∫ ∞

0

∫
Ω

u∇v · ∇ϕ,

−
∫ ∞

0

∫
Ω

vϕt −
∫

Ω

v0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇ϕ−
∫ ∞

0

∫
Ω

vu · ϕ.

The main results are stated as follows.

Theorem 1.2. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth

boundary, assume that

m > max

{
1,

3N − 2
2N + 2

}
,

then system (1.1) with (1.2) at least has one globally bounded weak solution.

Remark 1.3. For the case 3 � N � 5, our theorem 1.2 extends the previous results
in [5, 24, 41]. In addition, our result is consistent with the associated fluid-free
system [6, 34] for N = 3.

Remark 1.4. In this paper, our method is motivated by Winkler [34], but we can
only solve the case for N = 3, 4, 5, whether it can be further solved for the case
N > 5 is uncertain. Fortunately, we have removed the convexity assumption on the
domain in [34].

Remark 1.5. In the case N = 3, 4, we can find that if m = 1 the system must
be imposed on the smallness condition of the initial data [12]. As we all know, the
condition m > 1 means that the diffusion is stronger than m = 1. From these points
of view, our result is optimal. But in the case N = 5, it is not clear whether the
assumptions of m > 13

12 is optimal to ensure global boundedness of the solution.

As a byproduct of theorem 1.2, large time behaviour of the solution to system
(1.1) can be achieved.

Theorem 1.6. Under the assumptions of theorem 1.2, the global weak solution
constructed in theorem 1.2 satisfies

u(·, t) ∗
⇀ ū0 in L

∞(Ω), v(·, t) → 0 in L∞(Ω) (1.5)

as t→ ∞, where ū0 := 1
|Ω|
∫
Ω
u0.

The rest of this paper is organized as follows. In § 2, we introduce the approx-
imated system (2.1) and provide the local existence of the approximated solution
and some crucial properties. In § 3, we present some important estimates, and
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obtain the global bounded classical solution to the approximate system (2.1). In
§ 4, we deduce some convergence properties and complete the proof of theorem 1.2
by an approximation procedure. Finally, in § 5, we establish the convergence of the
solution.

2. Approximate problems and crucial properties

In this section, in order to construct a weak solution of (1.1), we consider the
following approximate problems⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uε)t = Δ(uε + ε)m −∇ · (uε∇vε), x ∈ Ω, t > 0,
(vε)t = Δvε − uεvε, x ∈ Ω, t > 0,
∂uε
∂ν

=
∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω

(2.1)

for ε ∈ (0, 1).
For each ε ∈ (0, 1), the regularized problem (2.1) is locally solvable in the classical

sense.

Lemma 2.1. Suppose that Ω ⊂ R
N (N � 3) is a bounded domain with smooth bound-

ary. Assume that the initial data (u0, v0) fulfils (1.2). Then problem (2.1) has a
unique classical solution{

uε ∈ C0(Ω̄ × [0, Tmax,ε)) ∩ C2,1(Ω̄ × (0, Tmax,ε)) ∩ L∞
loc([0, Tmax,ε);W 1,∞(Ω)),

vε ∈ C0(Ω̄ × [0, Tmax,ε)) ∩ C2,1(Ω̄ × (0, Tmax,ε)) ∩ L∞
loc([0, Tmax,ε);W 1,∞(Ω)),

(2.2)

where Tmax,ε denotes the maximal existence time. Moreover, if Tmax,ε <∞, then

‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,∞(Ω) → ∞ as t→ Tmax,ε. (2.3)

Proof. The local existence, extensibility criterion, and regularity of (2.1) are well-
established (see [20]), the uniqueness can be achieved by the same procedure as in
[7, 25], so we omit the details of the proof for the sake of brevity. �

Lemma 2.2. The solution (uε, vε) of (2.1) satisfies

‖uε(·, t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax,ε), (2.4)

‖vε(·, t)‖L∞(Ω) � ‖v0‖L∞(Ω) for all t ∈ (0, Tmax,ε). (2.5)

Proof. A direct integration in the first equation in (2.1) yields (2.4). Equation (2.5)
follows from an application of the maximum principle to the second equation in
(2.1). �

In order to prove the main result, we state two basic lemmas which will be used
later. The first is Gagliardo–Nirenberg inequality.
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Lemma 2.3. Let Ω ⊂ R
N (N � 3) be a bounded smooth domain

1 � r < q <
N(p+m− 1)

N − 2
, (2.6)

then there exists C > 0 such that

∫
Ω

ϕq � C

⎧⎨⎩
(∫

Ω

ϕp+m−3|∇ϕ|2
) q

2r
− 1

2
p+m−1

2r
+ 1

N
− 1

2 ‖ϕ‖
p+m−1

2 + q
N

− q
2

p+m−1
2r

+ 1
N

− 1
2

Lr(Ω) + ‖ϕ‖qLr(Ω)

⎫⎬⎭
(2.7)

for all ϕ ∈ C1(Ω) ∩ Lr(Ω).
Particularly, if q = p+m− 1 + 2r

N , then there exists C > 0 such that

∫
Ω

ϕq � C

⎧⎨⎩
(∫

Ω

ϕp+m−3|∇ϕ|2
)
‖ϕ‖

p+m−1
2 + q

N
− q

2
p+m−1

2r
+ 1

N
− 1

2
Lr(Ω) + ‖ϕ‖qLr(Ω)

⎫⎬⎭ (2.8)

for all ϕ ∈ C1(Ω) ∩ Lr(Ω).

Proof. Condition (2.6) entails that

a =
p+m−1

2r − p+m−1
2q

p+m−1
2r + 1

N − 1
2

∈ (0, 1),

and hence the Gagliardo–Nirenberg inequality provides C1 > 0 satisfying∫
Ω

ϕq = ‖ϕ p+m−1
2 ‖

2q
p+m−1

L
2q

p+m−1 (Ω)

� C1‖∇ϕ
p+m−1

2 ‖
2qa

p+m−1

L2(Ω) · ‖ϕ p+m−1
2 ‖

2q(1−a)
p+m−1

L
2r

p+m−1 (Ω)
+ C1‖ϕ

p+m−1
2 ‖

2q
p+m−1

L
2r

p+m−1 (Ω)

= C2

{(∫
Ω

ϕp+m−3|∇ϕ|2
) qa

p+m−1

· ‖ϕ‖q(1−a)Lr(Ω) + ‖ϕ‖qLr(Ω)

}

for all ϕ ∈ C1(Ω) ∩ Lr(Ω) with C2 = C1 max{1, (p+m−1)2

4 }. Note that

qa

p+m− 1
=

q
2r − 1

2
p+m−1

2r + 1
N − 1

2

and q(1 − a) =
p+m−1

2 + q
N − q

2
p+m−1

2r + 1
N − 1

2

.

Thus, (2.7) is proved. Moreover, since qa
p+m−1 =

q
2r − 1

2
p+m−1

2r + 1
N − 1

2
= 1 with the addi-

tional assumption q = p+m− 1 + 2r
N , (2.8) results from (2.7). �

The next is interpolation inequality.
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Lemma 2.4 (Lemma 3.3 of [24]). Suppose that q > max{1, N−2
2 } and

Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary. Moreover, assume

that

λ ∈
[
2q + 2,

N(2q + 1) − 2(q + 1)
N − 2

]
, (2.9)

then there exists C > 0 such that for all ϕ ∈ C2(Ω̄) fulfilling ϕ · ∂ϕ∂ν = 0 on ∂Ω, we
have

‖∇ϕ‖Lλ(Ω) � C‖|∇ϕ|q−1D2ϕ‖
2(λ−N)

(2q−N+2)λ

L2(Ω) ‖ϕ‖
2qN−(N−2)λ
(2q−N+2)λ

L∞(Ω) + C‖ϕ‖L∞(Ω). (2.10)

3. Uniform estimates for (uε, vε) and global boundedness of
approximate solutions

In this section, we establish some priori estimates for solutions and get the global
boundedness of approximate solutions (2.1). Firstly, we apply standard testing
procedures to establish a differential inequality for the first equation in (2.1).

Lemma 3.1. Let p > 1 and Ω ⊂ R
N be a bounded domain with smooth boundary.

Assume (uε, vε) is a classical solution to system (2.1) on [0, Tmax,ε). Then for all
t ∈ (0, Tmax,ε) and ε ∈ (0, 1), we can see that

1
p

d
dt

∫
Ω

(uε + ε)p +
m(p− 1)

2

∫
Ω

(uε + ε)p+m−3|∇uε|2

� p− 1
2m

∫
Ω

(uε + ε)p−m+1|∇vε|2. (3.1)

Proof. We multiply the first equation of (2.1) by (uε + ε)p−1 integrating by parts
and together with Young’s inequality to obtain

1
p

d
dt

‖uε + ε‖pLp(Ω) +m(p− 1)
∫

Ω

(uε + ε)m+p−3|∇uε|2

� (p− 1)
∫

Ω

(uε + ε)p−2uε∇vε · ∇uε

� m(p− 1)
2

∫
Ω

(uε + ε)m+p−3|∇uε|2 +
p− 1
2m

∫
Ω

(uε + ε)p−m+1|∇vε|2

(3.2)

for all t ∈ (0, Tmax,ε), which results in (3.1). �

Lemma 3.2. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume 2 > m > 1, then for all ε ∈ (0, 1), there exists C > 0 independent of ε such
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that the solution of (2.1) satisfies∫
Ω

(uε + ε)m+1 � C for all t ∈ (0, Tmax,ε), (3.3)∫ t+τ

t

∫
Ω

(uε + ε)2m−2|∇uε|2 � C for all t ∈ (0, Tmax,ε − τ), (3.4)∫ t+τ

t

∫
Ω

|∇uε|2 � C for all t ∈ (0, Tmax,ε − τ) (3.5)

with τ := min{1, Tmax,ε

2 }.

Proof. The proof is divided into five steps.
Step 1. Using (3.1) to uε with p := m+ 1, for all t ∈ (0, Tmax,ε) we get

1
m+ 1

d
dt

∫
Ω

(uε + ε)m+1 +
m2

2

∫
Ω

(uε + ε)2m−2|∇uε|2 � 1
2

∫
Ω

(uε + ε)2|∇vε|2.
(3.6)

Step 2. For any η1 > 0, one can find four positive constants C1, C2(η1), C3, and
C̃ such that

d
dt

∫
Ω

(uε + ε)|∇vε|2 +
∫

Ω

(uε + ε)2|∇vε|2 + 2
∫

Ω

(uε + ε)|D2vε|2

� η1

∫
Ω

(uε + ε)2m−2|∇uε|2 + C1

∫
Ω

|∇uε|2

+ C2(η1)
∫

Ω

|∇vε|2|D2vε|2 + C3

∫
Ω

|∇vε|2 + C̃ for all t ∈ (0, Tmax,ε). (3.7)

Indeed, on the basis of (2.5) and the identities ∇vε · ∇Δvε = 1
2Δ|∇vε|2 − |D2vε|2

and ∇|∇vε|2 = 2D2vε · ∇vε, upon integrating by parts, for all t ∈ (0, Tmax,ε), we
compute

d
dt

∫
Ω

(uε + ε)|∇vε|2

=
∫

Ω

(uε)t · |∇vε|2 + 2
∫

Ω

(uε + ε)∇vε · ∇(vε)t

=
∫

Ω

|∇v|2{Δ(uε + ε)m −∇ · (uε∇vε)}

+ 2
∫

Ω

(uε + ε)∇vε · {∇Δvε −∇(uεvε)}

= −2m
∫

Ω

(uε + ε)m−1∇uε ·D2vε · ∇vε + 2
∫

Ω

uε∇vε ·D2vε · ∇vε
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+
∫

Ω

(uε + ε)Δ|∇vε|2 − 2
∫

Ω

(uε + ε)|D2vε|2

− 2
∫

Ω

(uε + ε)vε∇uε · ∇vε − 2
∫

Ω

(uε + ε)uε|∇vε|2

= −2m
∫

Ω

(uε + ε)m−1∇uε ·D2vε · ∇vε + 2
∫

Ω

uε∇vε ·D2vε · ∇vε

− 2
∫

Ω

∇uε(D2vε · ∇vε) +
∫
∂Ω

uε · ∂|∇vε|
2

∂ν
− 2

∫
Ω

(uε + ε)|D2vε|2

− 2
∫

Ω

(uε + ε)vε∇uε · ∇vε − 2
∫

Ω

(uε + ε)uε|∇vε|2. (3.8)

Now, we will estimate the right-hand side of (3.8). To this end, given any η1 > 0,
utilize Young’s inequality to see that for all t ∈ (0, Tmax,ε) satisfies

− 2m
∫

Ω

(uε + ε)m−1∇uε ·D2vε · ∇vε

� η1

∫
Ω

(uε + ε)2m−2|∇uε|2 +
m2

η1

∫
Ω

|∇vε|2|D2vε|2, (3.9)

2
∫

Ω

uε∇vε ·D2vε · ∇vε

� 1
2

∫
Ω

u2
ε|∇vε|2 + 2

∫
Ω

|∇vε|2|D2vε|2

� 1
2

∫
Ω

(uε + ε)2|∇vε|2 + 2
∫

Ω

|∇vε|2|D2vε|2, (3.10)

and

− 2
∫

Ω

∇uε(D2vε · ∇vε) �
∫

Ω

|∇uε|2 +
∫

Ω

|∇vε|2|D2vε|2. (3.11)

Next, we will estimate the boundary integral in (3.8). According to [11], there exists
c2 > 0 such that ∂ν |∇ϕ|2 � c2|∇ϕ|2 on ∂Ω for all ϕ ∈ C2(Ω̄) with ∂νϕ|∂Ω = 0. And
notice the equivalent trace inequality [35, P.1186]: for all ε > 0, one has

‖w‖L2(∂Ω) � ε‖∇w‖L2(Ω) + C(ε)‖w‖L1(Ω), ∀ w ∈ H1(Ω).

Now, for any ε > 0, it follows that for all t ∈ (0, Tmax,ε),∫
∂Ω

uε · ∂|∇vε|
2

∂ν
� c2

∫
∂Ω

uε|∇vε|2 � c2

∫
∂Ω

|∇vε|4 +
c2
4

∫
∂Ω

u2
ε

� c2

∫
∂Ω

|∇vε|4 + ε

∫
Ω

|∇uε|2 + C(ε)

(∫
Ω

uε

)2

. (3.12)

Moreover, let c3 denote the embedding constant for trace embedding W 1,1(Ω) ↪→
L1(∂Ω) [4]. Using lemma 2.4 for vε with q := 2, λ := 6, 3 � N � 5, and (2.5), one
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has ∫
Ω

|∇vε|6 � C

∫
Ω

|∇vε|2|D2vε|2 + C for all t ∈ (0, Tmax,ε). (3.13)

This combined with Young’s inequality yields

c2

∫
∂Ω

|∇vε|4 � 2c2c3
∫

Ω

|∇vε|2∇|∇vε|2 + c2c3

∫
Ω

|∇vε|4

� 1
32

∫
Ω

|∇|∇vε|2|2 + (c2c3 + 32c22c
2
3)
∫

Ω

|∇vε|4

=
1
8

∫
Ω

|∇vε|2|D2vε|2 + (c2c3 + 32c22c
2
3)
∫

Ω

|∇vε|4

� 1
4

∫
Ω

|∇vε|2|D2vε|2 + c4 for all t ∈ (0, Tmax,ε). (3.14)

Therefore, combining (3.12), (3.14) and (2.4) by letting ε = 1, the boundary integral
in (3.8) can be simplified to∫

∂Ω

uε
∂|∇vε|2
∂ν

� 1
4

∫
Ω

|∇vε|2|D2vε|2 +
∫

Ω

|∇uε|2 + C for all t ∈ (0, Tmax,ε).

Next, using (2.5) and Young’s inequality, it is obvious that for all t ∈ (0, Tmax,ε),

−2
∫

Ω

(uε + ε)vε∇uε · ∇vε � 1
4

∫
Ω

(uε + ε)2|∇vε|2 + 4
∫

Ω

v2
ε |∇uε|2

� 1
4

∫
Ω

(uε + ε)2|∇vε|2 + 4‖v0‖2
L∞(Ω)

∫
Ω

|∇uε|2.
(3.15)

Since ε ∈ (0, 1), and using Young’s inequality, it follows that for all t ∈ (0, Tmax,ε),

−2
∫

Ω

(uε + ε)uε|∇vε|2 � −2
∫

Ω

(uε + ε)(uε + ε− 1)|∇vε|2

= −2
∫

Ω

(uε + ε)2|∇vε|2 + 2
∫

Ω

(uε + ε)|∇vε|2

� −7
4

∫
Ω

(uε + ε)2|∇vε|2 + 4
∫

Ω

|∇vε|2.

(3.16)

From (3.9)–(3.16), we obtain (3.7) upon letting C1 := 2 + 4‖v0‖L∞(Ω), C2(η1) :=
m2

η1
+ 13

4 and C3 = 4.
Step 3. In order to absorb the third term on the right-hand side of (3.7), our

goal is to show that the integral
∫
Ω
|∇vε|4 satisfies

d
dt

∫
Ω

|∇vε|4 +
∫

Ω

|∇vε|2|D2vε|2 � C4

∫
Ω

|∇uε|2 + C5 for all t ∈ (0, Tmax,ε).

(3.17)

In fact, using the second equation in (2.1) along with the pointwise identities
∇vε · ∇Δvε = 1

2Δ|∇vε|2 − |D2vε|2 and ∇|∇vε|2 = 2D2vε · ∇vε, we differentiate
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Global boundedness and large time behaviour 11∫
Ω
|∇vε|4 directly and integrate by parts to yield

1
4

d
dt

∫
Ω

|∇vε|4 =
∫

Ω

|∇vε|2∇vε · ∇(Δvε − uεvε)

=
1
2

∫
Ω

|∇vε|2Δ|∇vε|2 −
∫

Ω

|∇vε|2|D2vε|2

−
∫

Ω

vε|∇vε|2∇vε∇uε −
∫

Ω

uε|∇vε|4

= −1
2

∫
Ω

∣∣∇|∇vε|2
∣∣2 +

1
2

∫
∂Ω

|∇vε|2 ∂|∇vε|
2

∂νε
−
∫

Ω

|∇vε|2|D2vε|2

−
∫

Ω

vε|∇vε|2∇vε∇uε −
∫

Ω

uε|∇vε|4

� −
∫

Ω

|∇vε|2|D2vε|2 +
1
2

∫
∂Ω

|∇vε|2 ∂|∇vε|
2

∂νε

−
∫

Ω

vε|∇vε|2∇vε∇uε −
∫

Ω

uε|∇vε|4 for all t ∈ (0, Tmax,ε).

(3.18)
Applying Young’s inequality, for all δ > 0, we obtain

−
∫
Ω
vε|∇vε|2∇vε∇uε �

‖vε‖2
L∞(Ω)

4δ

∫
Ω
|∇uε|2 + δ

∫
Ω
|∇vε|6 for all t ∈ (0, Tmax,ε).

(3.19)

In light of (3.13), we can choose a suitable δ such that exists a constant c1 > 0
satisfying

δ

∫
Ω

|∇vε|6 � 1
2

∫
Ω

|∇vε|2|D2vε|2 + c1 for all t ∈ (0, Tmax,ε). (3.20)

Similar to (3.14), the boundary integral in (3.18) fulfils

∫
∂Ω

∂|∇vε|2
∂ν

|∇vε|2 � c2

∫
∂Ω

|∇vε|4

� 1
4

∫
Ω

|∇vε|2|D2vε|2 + c4 for all t ∈ (0, Tmax,ε).
(3.21)

From (3.18)–(3.21), we obtain (3.17) upon an obvious choice of C4 :=
‖v0‖2

L∞(Ω)

δ and
C5 := 4c1 + 4c4.

Step 4. Let the term
∫
Ω
|∇uε|2 of both (3.7) and (3.17) appears on the left-hand

side of an inequality. Namely, for all t ∈ (0, Tmax,ε) and for any η2 > 0, there exists
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C6(η2) := η
m−1
m−2
2 · ( 2−m

2m )
1

2−m such that

1
3 −m

d
dt

∫
Ω

(uε + ε)3−m +
(2 −m)m

2

∫
Ω

|∇uε|2

� 2 −m

2m

∫
Ω

(uε + ε)4−2m|∇vε|2

� η2

∫
Ω

(uε + ε)2|∇vε|2 + C6(η2)
∫

Ω

|∇vε|2.

(3.22)

Actually, due to 2 > m > 1, using (3.1) to uε with p := 3 −m, and upon Young’s
inequality the result is obtained.

Step 5. Subtly combining (3.6), (3.7), (3.17) and (3.22), let

y(t) :=
1

2m2(m+ 1)

∫
Ω

(uε + ε)m+1 +
4C1 + 8C2(η1)C4

m(2 −m)(3 −m)

∫
Ω

(uε + ε)3−m

+
∫

Ω

(uε + ε)|∇vε|2 + 2C2(η1)
∫

Ω

|∇vε|4 for all t ∈ (0, Tmax,ε).
(3.23)

Due to 2 > m > 1, we can see that

y′(t) + y(t) +
1
4

∫
Ω

(uε + ε)2m−2|∇uε|2 +
(
C1 + 2C2(η1)C4

)∫
Ω

|∇uε|2

+
3
4

∫
Ω

(uε + ε)2|∇vε|2 + C2(η1)
∫

Ω

|∇vε|2|D2vε|2

� η2
4C1 + 8C2(η1)C4

2 −m

∫
Ω

(uε + ε)2|∇vε|2

+

((
4C1 + 8C2(η1)C4

)
C6(η2)

m(2 −m)
+ C3

)∫
Ω

|∇vε|2

+ η1

∫
Ω

(uε + ε)2m−2|∇uε|2 + 2C2(η1)C5

+
1

2m2(m+ 1)

∫
Ω

(uε + ε)m+1 +
4C1 + 8C2(η1)C4

m(2 −m)(3 −m)

∫
Ω

(uε + ε)3−m

+
∫

Ω

(uε + ε)|∇vε|2 + 2C2(η1)
∫

Ω

|∇vε|4 + C̃ for all t ∈ (0, Tmax,ε).

(3.24)

Choose suitable η1 and η2 such that η1 = 1
16 and η2

4C1+8C2(η1)C4
2−m = 1

2 . In view of
lemma 2.3, Young’s inequality, and (2.4), there exists c1 > 0 such that

1
2m2(m+ 1)

∫
Ω

(uε + ε)m+1 +
4C1 + 8C2(η1)C4

m(2 −m)(3 −m)

∫
Ω

(uε + ε)3−m

� 1
8

∫
Ω

(uε + ε)2m−2|∇uε|2 + c1 for all t ∈ (0, Tmax,ε).
(3.25)
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Global boundedness and large time behaviour 13

Using Young’s inequality, we have∫
Ω

(uε + ε)|∇vε|2 � 1
4

∫
Ω

(uε + ε)2|∇vε|2 +
∫

Ω

|∇vε|2 for all t ∈ (0, Tmax,ε).

(3.26)

Upon Young’s inequality and (3.20), there exist c2 and c3 > 0 such that

∫
Ω

|∇vε|2 +

((
4C1 + 8C2(η1)C4

)
C6(η2)

m(2 −m)
+ C3

)∫
Ω

|∇vε|2 + 2C4

∫
Ω

|∇vε|4

� 2δC2(η1)
∫

Ω

|∇vε|6 + c2

� C2(η1)
∫

Ω

|∇vε|2|D2vε|2 + c3 for all t ∈ (0, Tmax,ε).

(3.27)
It follows from (3.24)–(3.27) that

y′(t) + y(t) + h(t) � Ĉ for all t ∈ (0, Tmax,ε), (3.28)

where h(t) := 1
16

∫
Ω
(uε + ε)2m−2|∇uε|2 + (C1 + 2C2(η1)C4)

∫
Ω
|∇uε|2 and Ĉ :=

2C2(η1)C5 + c1 + c3 + C̃. By an ordinary differential equations (ODE) comparison
argument, it yields

y(t) � max{Ĉ, y(0)} for all t ∈ (0, Tmax,ε),

which implies (3.3). Finally, integration of (3.28) shows that (3.4)–(3.5) hold. �

According to lemma 3.2, the boundedness of ‖uε + ε‖Lm+1(Ω) can be obtained
without any restriction on m except for the condition 2 > m > 1. Next, we use the
boundedness of ‖uε + ε‖Lm+1(Ω) to establish a further estimate for solutions to the
approximated system (2.1). As in [13], we provide an estimate on ∇vε. The proof
of the following lemma is the same as that in lemma 3.2 of [24], so we omit it.

Lemma 3.3. Let q > 1, then for all ε ∈ (0, 1), we have

d
dt

∫
Ω

|∇vε|2q +
2(q − 1)

q

∫
Ω

|∇|∇vε|q|2 + q

∫
Ω

|∇vε|2(q−1)|D2vε|2

� q(2q − 2 +
√
N)2‖v0‖2

L∞(Ω)

∫
Ω

u2
ε|∇vε|2q−2 + C7

(3.29)

for all t ∈ (0, Tmax,ε) with a positive constant C7.

Next, we will estimate the combination of
∫
Ω
(uε + ε)p +

∫
Ω
|∇vε|2q.
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Lemma 3.4. Assume that 2 > m > 1, then for all p > 2 and any q > 1, one can
find three constants C8, C9, C10 > 0 such that

F ′
ε(t) + Fε(t) +

p(p− 1)
2

∫
Ω

(uε + ε)p+m−3|∇uε|2

� C8

∫
Ω

(uε + ε)
(p−m+1)(2q+2)

2q + C9

∫
Ω

(uε + ε)q+1

+
∫

Ω

(uε + ε)p + C10 for all t ∈ (0, Tmax,ε),

(3.30)

where the function Fε(t) is defined as

Fε(t) :=
∫

Ω

(uε + ε)p +
∫

Ω

|∇vε|2q for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1). (3.31)

Proof. Combining lemma 3.1 with lemma 3.3 and using m > 1, we obtain

F ′
ε(t) + Fε(t) +

p(p− 1)

2

∫
Ω

(uε + ε)p+m−3|∇uε|2

+
2(q − 1)

q

∫
Ω
|∇|∇vε|q|2 + q

∫
Ω
|∇vε|2(q−1)|D2vε|2

� p(p− 1)

2m

∫
Ω

(uε + ε)p−m+1|∇vε|2 + q(2q − 2 +
√
N)2‖v0‖2

L∞(Ω)

∫
Ω
u2
ε|∇vε|2q−2

+ C7 +

∫
Ω

(uε + ε)p +

∫
Ω
|∇vε|2q for all t ∈ (0, Tmax,ε).

(3.32)
Next, by Young’s inequality for any η3 > 0, we have

p(p− 1)
2m

∫
Ω

(uε + ε)p−m+1|∇vε|2 � η3

∫
Ω

|∇vε|2q+2 + C(η3)
∫

Ω

(uε + ε)
(p−m+1)(2q+2)

2q ,

and

q(2q − 2 +
√
N)2‖v0‖2

L∞(Ω)

∫
Ω
u2
ε|∇vε|2q−2 � η3

∫
Ω
|∇vε|2q+2 + C(η3)

∫
Ω

(uε + ε)q+1.

Using interpolation inequality (2.10) and Young’s inequality, we can choose a
suitably η3 such that

2η3

∫
Ω
|∇cε|2q+2 +

∫
Ω
|∇vε|2q � q

∫
Ω
|∇vε|2(q−1)|D2vε|2 + c1 for all t ∈ (0, Tmax,ε).

It follows from (3.32) that (3.30) holds. �

Therefore, we obtain the boundedness of
∫
Ω
(uε + ε)p +

∫
Ω
|∇vε|2q with p > 2 and

q > 1.
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Lemma 3.5. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume 2 > m > max{1, 3N−2
2N+2}, whenever p > 2 and q > 1 are such that

p−m+ 1
m− 1 + m+1

N

< 2q < 2p+ 2m− 4 +
4(m+ 1)

N
, (3.33)

then for all ε ∈ (0, 1), we can find a constant C = C(p, q) > 0 satisfying∫
Ω

(uε + ε)p +
∫

Ω

|∇vε|2q � C for all t ∈ (0, Tmax,ε). (3.34)

Proof. Using the boundedness of ‖uε + ε‖Lm+1(Ω) to (2.8) with r := m+ 1, there
exists C11 > 0 such that for all ε ∈ (0, 1) satisfies∫

Ω
(uε + ε)p+m−1+ 2(m+1)

N � C11

∫
Ω

(uε + ε)p+m−3|∇uε|2 + C11 for all t ∈ (0, Tmax,ε).

(3.35)

Moreover, m > max{1, 3N−2
2N+2} ensures that hypothesis (3.33) holds. (3.33) asserts

that q + 1 < p+m− 1 + 2(m+1)
N and

0 <
(p−m+ 1)(2q + 2)

2q
= p−m+ 1 +

2(p−m+ 1)
2q

< p−m+ 1 + 2

(
m− 1 +

m+ 1
N

)
= p+m− 1 +

2(m+ 1)
N

.

Consequently, utilizing Young’s inequality, we obtain∫
Ω

(uε + ε)
(p−m+1)(2q+2)

2q <
p(p − 1)

6C8C11

∫
Ω

(uε + ε)p+m−1+
2(m+1)

N + c1 for all t ∈ (0, Tmax,ε),

(3.36)
and∫

Ω

(uε + ε)q+1 <
p(p− 1)
6C9C11

∫
Ω

(uε + ε)p+m−1+
2(m+1)

N + c2 for all t ∈ (0, Tmax,ε).

(3.37)

Since p < p+m− 1 + 2(m+1)
N , it is similar to deduce∫

Ω

(uε + ε)p <
p(p− 1)

6C11

∫
Ω

(uε + ε)p+m−1+
2(m+1)

N + c3 for all t ∈ (0, Tmax,ε).

(3.38)

Collecting (3.35)–(3.38) and (3.30), it follows that

F ′
ε(t) + Fε(t) � c4 for all t ∈ (0, Tmax,ε)

with c4 > 0. It is obvious to obtain (3.34) by a comparison argument. �

By means of Moser–Alikakos iteration procedure, an application of the above to
suitably large but fixed p and q yields bounds in L∞(Ω) ×W 1,∞(Ω).
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Lemma 3.6. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume that 2 > m > max{1, 3N−2
2N+2}. Then there exists C > 0 such that for all

ε ∈ (0, 1) the solution of (2.1) satisfies

‖uε‖L∞(Ω) � C for all t > 0, (3.39)

and

‖vε‖W 1,∞(Ω) � C for all t > 0. (3.40)

Proof. In light of using the result of lemma 3.5, lemma A.1 in [13], and (2.5), we
derive

‖uε‖L∞(Ω) + ‖vε‖W 1,∞(Ω) � C for all t ∈ (0, Tmax,ε)

where C > 0 is independent of ε ∈ (0, 1). From this and the extensibility criterion
(2.3), it is evident that Tmax,ε = ∞, which finishes the proof. �

4. Global bounded weak solutions to system (1.1)

In order to finish the proof of theorem 1.2, we will give some regularity properties
with (uε, vε) in this section.

Lemma 4.1. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume that m > max{1, 3N−2
2N+2}, then we get∫ ∞

0

∫
Ω

uεvε �
∫

Ω

v0 for all ε ∈ (0, 1), (4.1)

and ∫ ∞

0

∫
Ω

|∇vε|2 � 1
2

∫
Ω

v2
0 for all ε ∈ (0, 1). (4.2)

Proof. Multiplying the second equation of (2.1) by 1 and vε separately, upon
integrating by parts, and integrating with respect to t, we obtain∫

Ω

vε(·, t) +
∫ t

0

∫
Ω

uεvε =
∫

Ω

v0

and

1
2

∫
Ω

v2
ε +

∫ t

0

∫
Ω

|∇vε|2 +
∫ t

0

∫
Ω

uεv
2
ε =

1
2

∫
Ω

v2
0

for all ε ∈ (0, 1). As a result, we immediately obtain (4.1) and (4.2). �

Lemma 4.2. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume that 2 > m > max{1, 3N−2
2N+2}, then for any T > 0 there exists C(T ) > 0
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such that ∫ T

0

‖∂t(uε + ε)m(·, t)‖(WN,2
0 (Ω))∗dt � C(T ) for all ε ∈ (0, 1), (4.3)

and ∫ T

0

∫
Ω

|∇(uε + ε)m|2 � C(T ) for all ε ∈ (0, 1). (4.4)

Proof. Due to lemma 3.2, for any T > 0, we have∫ T

0

∫
Ω

|∇uε|2 � C(T ), (4.5)

and ∫ T

0

∫
Ω

(uε + ε)2m−2|∇uε|2 � C(T ), (4.6)

which indicates (4.4) is valid. Due to lemma 3.6, there exists a positive constant
c1 > 0 such that 0 < uε < c1 in Ω × (0, ∞) for all ε ∈ (0, 1). Multiplying the first
equation of (2.1) by (uε + ε)m−1, one has

1
m

d
dt

∫
Ω

(uε + ε)m +
m(m− 1)

2

∫
Ω

(uε + ε)2m−3|∇uε|2 � m− 1
2m

(c1 + 1)
∫

Ω

|∇vε|2,

integrating with respect to t and using (4.2), which indicates∫ t

0

∫
Ω

(uε + ε)2m−3|∇uε|2 � C. (4.7)

Next, multiplying the first equation of (2.1) by (uε + ε)mψ with ψ ∈ C∞
0 (Ω), and

integrating over Ω, for all ε ∈ (0, 1), we obtain

1
m

∫
Ω

∂t(uε + ε)m · ψ = −m
∫

Ω

(uε + ε)2m−2∇uε · ∇ψ

−m(m− 1)
∫

Ω

(uε + ε)2m−3|∇uε|2ψ

+
∫

Ω

uε(uε + ε)m−1∇vε · ∇ψ

+ (m− 1)
∫

Ω

uε(uε + ε)m−2∇uε · ∇vεψ.

(4.8)

Using the boundedness of ‖uε‖L∞(Ω) and Young’s inequality, it yields

−m
∫

Ω

(uε + ε)2m−2∇uε · ∇ψ � m(c1 + 1)2m−2‖∇ψ‖L∞(Ω) ·
∫

Ω

|∇uε|

� C

(∫
Ω

|∇uε|2 + 4|Ω|
)

· ‖∇ψ‖L∞(Ω),

(4.9)
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and

−m

∫
Ω

(uε + ε)2m−3|∇uε|2ψ � m‖ψ‖L∞(Ω) ·
(∫

Ω

(uε + ε)2m−3|∇uε|2
)
. (4.10)

Moreover, by the boundedness of ‖uε‖L∞(Ω) and ‖∇vε‖L∞(Ω), we get∫
Ω

uε(uε + ε)m−1∇vε · ∇ψ � C‖∇ψ‖L∞(Ω), (4.11)

and

m

∫
Ω

uε(uε + ε)m−2∇uε · ∇vεψ � C‖ψ‖L∞(Ω)

(∫
Ω

(uε + ε)2m−3|∇uε|2
)
. (4.12)

According to (4.6)–(4.12) and the continuity of the embedding WN,2
0 (Ω) ↪→

W 1,∞(Ω), there exists C(T ) > 0 such that∫ T

0

‖∂tuε(·, t)m‖(WN,2
0 (Ω))∗ � C(T ) for all ε ∈ (0, 1).

The proof of this lemma is completed. �

Lemma 4.3. Let 2 > m > max{1, 3N−2
2N+2}, then for any T > 0 there exists C(T ) > 0

such that

‖∂vε
∂t

‖L2(0,T ;(W 1,2(Ω))∗) � C(T ) for all ε ∈ (0, 1). (4.13)

Proof. Multiplying ψ(x) on both sides of the second equation with ψ(x) ∈W 1,2(Ω),
and integrating over Ω and using the Hölder inequality, we have∫
Ω

∂vε
∂t

ψ = −
∫
Ω
∇vε · ∇ψ −

∫
Ω
uεvεψ � ‖∇vε‖L2(Ω)‖∇ψ‖L2(Ω) + ‖uεvε‖L2(Ω)‖ψ‖L2(Ω).

By the boundedness of ‖uε‖L∞(Ω) and ‖vε‖L∞(Ω), it shows that

‖∂vε
∂t

‖(W 1,2(Ω))∗ � ‖∇vε‖L2(Ω) + ‖uεvε‖L2(Ω) � C + ‖∇vε‖L2(Ω). (4.14)

Combining (4.2) and (4.14), it follows that

‖∂vε
∂t

‖2
L2(0,T ;(W 1,2(Ω))∗) �

∫ T

0

∫
Ω

|∇vε|2 +
∫ T

0

∫
Ω

|uεvε|2 � C(T ).

�

The proof of throrem 1.2. Lemma 3.6 shows that there exists (εj)j∈N ⊂
(0, 1) such that εj → 0 as j → ∞ and that uεj

∗
⇀ u in L∞(Ω × (0, ∞)) and

∇vεj

∗
⇀ ∇v in L∞(Ω × (0, ∞)) hold. Lemma 4.2 implies that (umε )ε∈(0,1) is

bounded in L2([0, T ];W 1,2(Ω)). Hence, ∇umεj
⇀ ∇um in L2

loc([0, ∞);L2(Ω)).
Furthermore, using the Aubin–Lions lemma and (∂tumε )ε∈(0,1) is bounded in
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L1([0, T ]; (WN,2
0 (Ω))∗), it yields umεj

→ um in L2([0, T ];L2(Ω)). By the Riesz lemma
and m > 1, we have uεj

→ u a.e. in Ω × (0, ∞). Likewise, by lemmas 3.6 and 4.3,
it follows that vεj

→ v in L2([0, T ];L2(Ω)) and a.e. in Ω × (0, ∞). Because of these
convergence properties, one may readily prove that (u, v) is a global weak solution
of (1.1) in the sense of definition 1.1. Consequently, (u, v) is a global bounded weak
solution of (1.1) by lemma 3.6. The proof is completed. �

5. Large time behaviour

This section discusses the asymptotic behaviour of the system for large time.
Motivated by [5, 28], the required properties of the solutions are first presented.

Lemma 5.1. Let m > max{1, 3N−2
2N+2}, then there exists θ ∈ (0, 1) such that for some

C > 0, we obtain

‖vε(·, t)‖
Cθ, θ

2 (Ω̄×[t,t+1])
� C for all t � 0, (5.1)

and for all τ > 0, we can find C(τ) > 0 such that

‖∇vε(·, t)‖
Cθ, θ

2 (Ω̄×[t,t+1])
� C for all t � τ. (5.2)

Proof. In view of lemma 3.6, −uεvε is bounded in L∞(Ω × (0, ∞)) for all ε ∈ (0, 1).
Therefore, applying the standard parabolic regularity theory [8, Chapter III], both
estimates (5.1) and (5.2) are obtained. �

Lemma 5.2. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume that m > max{1, 3N−2
2N+2} and p > max{1, m− 1}, then there exists C > 0

such that ∫ ∞

0

∫
Ω

|∇(uε + ε)
p+m−1

2 | � C for all ε ∈ (0, 1). (5.3)

Proof. By virtue of lemma 3.6, there exists a positive constant c1 > 0 such that 0 <
uε < c1 in Ω × (0, ∞) for all ε ∈ (0, 1). From lemma 3.1 and p > max{1, m− 1},
it follows that∫

Ω

(uε + ε)p−m+1|∇vε|2 � (c1 + 1)p−m+1

∫
Ω

|∇vε|2 for all t > 0 and ε ∈ (0, 1).

Therefore, an integration of (3.1) shows that

2m(p− 1)
(p+m− 1)2

∫ t

0

∫
Ω

|∇(uε + ε)
p+m−1

2 |

� 1
p

∫
Ω

(u0 + ε)p +
p− 1
2m

(c1 + 1)p−m+1

∫ t

0

∫
Ω

|∇vε|2

for all ε ∈ (0, 1), which together with (4.2) indicate that (5.3) is valid. �
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Lemma 5.3. Let Ω ⊂ R
N (N = 3, 4, 5) be a bounded domain with smooth boundary.

Assume that m > max{1, 3N−2
2N+2}, then there exist C > 0 such that

‖∂tuε(·, t)‖(W 2,2
0 (Ω))∗ � C, for all t > 0 and ε ∈ (0, 1). (5.4)

Particularly,

‖uε(·, t) − uε(·, s)‖(W 2,2
0 (Ω))∗ � C|t− s|, for all t � 0, s � 0 and ε ∈ (0, 1). (5.5)

Proof. Multiplying the first equation of (2.1) by ψ with ψ ∈ C∞
0 (Ω), and integrating

over Ω, one has∫
Ω

∂tuε · ψ = −
∫

Ω

∇(uε + ε)m · ∇ψ +
∫

Ω

uε∇vε · ∇ψ

=
∫

Ω

(uε + ε)mΔψ +
∫

Ω

uε∇vε · ∇ψ for all t > 0.
(5.6)

According to lemma 3.6, there exist two positive constants c1, c2 > 0 such that
0 < uε < c1 and |∇vε| � c2 in Ω × (0, ∞) for all ε ∈ (0, 1). Then (5.6) implies∣∣∣∣∣
∫

Ω

∂tuε(·, t) · ψ
∣∣∣∣∣ � (c1 + 1)m

∫
Ω

|Δψ| + c1c2

∫
Ω

|∇ψ| for all t > 0 and ε ∈ (0, 1),

and

‖∂tuε(·, t)‖2
(W 2,2

0 (Ω))∗ = sup
ψ∈W 2,2

0 (Ω),‖ψ‖
W

2,2
0 (Ω)

=1

∣∣∣∣∣
∫

Ω

∂tuε(·, t) · ψ
∣∣∣∣∣
2

� C.

This indicates that (5.4) and (5.5) are valid. �

With the above information on solutions, the convergence of u is shown as follows.

Lemma 5.4. Let m > max{1, 3N−2
2N+2} (where N = 3, 4, 5) and (u, v) as given by

theorem 1.2, we can see that

u(·, t) ∗
⇀ ū0 in L∞(Ω) as t→ ∞. (5.7)

Proof. Similar to lemma 5.1 of [28] and lemma 3.16 of [5], the proof of this lemma
can be completed. In fact, assuming the lemma is false, then there exists a sequence
(tj)j⊂N ⊂ (0, ∞) such that tj → ∞ as j → ∞, and such that for some ψ̃ ∈ L1(Ω)
one has ∫

Ω

u(x, tj)ψ̃(x)dx−
∫

Ω

ū0ψ̃(x)dx � c1 for all j ⊂ N (5.8)

with c1 > 0. Note that theorem 1.2 implies that there exists a positive constant
c2 > 0 such that 0 < u < c2 for a.e. (x, t) ∈ Ω × (0, ∞). And then using the density

https://doi.org/10.1017/prm.2024.54 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.54


Global boundedness and large time behaviour 21

of C∞
0 (Ω) in L1(Ω) in choosing ψ ∈ C∞

0 (Ω) such that ‖ψ − ψ̃‖L1(Ω) � c1
4c2

, (5.8)
yields∫

Ω

u(x, tj)ψ(x)dx−
∫

Ω

ū0ψ(x)dx �
∫

Ω

u(x, tj)ψ̃(x)dx−
∫

Ω

ū0ψ̃(x)dx

− {‖u(x, tj)‖L∞(Ω) + ū0}‖ψ − ψ̃‖L1(Ω)

� c1
2

for all j ⊂ N.

(5.9)

Due to L∞(Ω) ↪→ (W 2,2
0 (Ω))∗ is compact, using Arzelà–Ascoli theorem, the equicon-

tinuity properties (5.5) and the boundedness of (uε)ε∈(0,1) in C0([0,∞);L∞(Ω))
ensure that uε → u in C0

loc([0, ∞); (W 2,2
0 (Ω))∗) holds. According to (5.5), there

exists a positive constant c3 > 0 such that

‖uε(·, t) − uε(·, s)‖(W 2,2
0 (Ω))∗ � c3|t− s|, for all t � 0, s � 0 and ε ∈ (0, 1).

Then, taking limits to get

‖u(·, t) − u(·, s)‖(W 2,2
0 (Ω))∗ � c3|t− s|, for all t � 0, s � 0.

If let τ ∈ (0, 1) such that τ � c1
4c3‖ψ‖

W
2,2
0 (Ω)

, then for all j ⊂ N and each

t ∈ (tj , tj + τ) one has∣∣∣∣∣
∫

Ω

u(x, tj)ψ(x)dx−
∫

Ω

u(x, t)ψ(x)dx

∣∣∣∣∣ � ‖u(x, tj) − u(x, t)‖(W 2,2
0 (Ω))∗‖ψ‖W 2,2

0 (Ω)

� c3|tj − t| · ‖ψ‖W 2,2
0 (Ω)

� c1
4
,

which together with (5.9) implies that∫
Ω

u(x, t)ψ(x)dx−
∫

Ω

ū0ψ(x)dx � c1
4

for all t ∈ (tj , tj + τ) and each j ⊂ N.

(5.10)

Next, we will prove (5.10) contradicts lemma 5.2. Taking the Poincaré constant
c4 > 0 such that∫

Ω

∣∣∣∣ϕ(x) − 1
|Ω|
∫

Ω

ϕ(x)
∣∣∣∣2dx � c4

∫
Ω

|∇ϕ|2 for all ϕ ∈W 1,2(Ω).

Fix any p > 1 such that p � max{1, m− 1, 3 −m}, and using lemma 5.2, it is
obvious that∫ ∞

0

∫
Ω

∣∣∣∣u p+m−1
2

ε (x, t) − a
p+m−1

2
ε (t)

∣∣∣∣2dxdt � c4

∫
Ω

∣∣∣∣∇u p+m−1
2

ε

∣∣∣∣2
� c4

∫
Ω

∣∣∣∣∇(uε + ε)
p+m−1

2

∣∣∣∣2
� c5

(5.11)
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for all ε ∈ (0, 1), where aε(t) := ( 1
|Ω|
∫
Ω
u

p+m−1
2

ε )
2

p+m−1 and c5 > 0. Using the conver-
gence property uε → u a.e. in Ω × (0, ∞) as ε→ 0, the boundedness of (uε)ε∈(0,1)

in L∞(Ω × (0, ∞)) and the dominated convergence theorem, one obtains

aε(t) → a(t) for a.e. t > 0, as ε→ 0, (5.12)

where a(t) := ( 1
|Ω|
∫
Ω
u

p+m−1
2 )

2
p+m−1 . Again using uε → u a.e. in Ω × (0, ∞) as ε→

0 and Fatou’s lemma, (5.11) and (5.12) imply that∫ ∞

0

∫
Ω

|u
p+m−1

2
ε (x, t) − a

p+m−1
2 (t)|2dxdt � c5. (5.13)

Review the following inequality: If μ > 1, then ξμ−ημ

ξ−η � ημ−1 for all ξ, η � 0 with
ξ �= η. And since by the Hölder inequality, and the L1(Ω) conservation of u means
that

ū0 =
1
|Ω|
∫

Ω

u � 1
|Ω|
(∫

Ω

u
p+m−1

2

) 2
p+m−1

· |Ω| p+m−3
p+m−1 = a(t).

Thus, on the left-hand side of (5.13) indicates∫
Ω

|u p+m−1
2 (x, t) − a

p+m−1
2 (t)|2dx � ap+m−3(t)

∫
Ω

|u(x, t) − a(t)|2dx

� ūp+m−3
0 ·

∫
Ω

|u(x, t) − a(t)|2dx,

and ∫ ∞

0

∫
Ω

|u(x, t) − a(t)|2dxdt � c6 :=
c5

ūp+m−3
0

. (5.14)

Now, we introduce

uj(x, s) := u(x, tj + s), (x, s) ∈ Ω × (0, τ) for all j ⊂ N,

and

aj(s) := a(tj + s), s ∈ (0, τ), for all j ⊂ N.

Therefore, (5.14) implies that∫ τ

0

∫
Ω

|uj(x, s) − aj(s)|2dxdt =
∫ tj+τ

tj

∫
Ω

|u(x, t) − a(t)|2dxdt→ 0 as j → ∞,

which means

uj(x, s) − aj(s) → 0 in L2(Ω × (0, τ)) as j → ∞. (5.15)

By the definition of a(t) and the boundedness of u(x, t), (aj)j⊂N is bounded in
L2((0, τ)). Then, for some nonnegative a∞ ∈ L2((0, τ)) satisfying

aj ⇀ a∞ in L2((0, τ)) as j → ∞. (5.16)
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By utilizing the L1(Ω) conservation of u, we have

∫ τ

0

∫
Ω

(uj(x, s) − aj(s))dxds = τ ū0|Ω| − |Ω|
∫ τ

0

aj(s)ds

→ τ ū0|Ω| − |Ω|
∫ τ

0

a∞(s)ds as j → ∞,

which combined with (5.15), one has

∫ τ

0

a∞(s)ds = τ ū0. (5.17)

On the other hand, (5.10) and (5.17) show that

c1
4

�
∫ τ

0

∫
Ω

uj(x, s)ψ(x)dxds−
∫ τ

0

∫
Ω

ū0ψ(x)dxds

=
∫ τ

0

∫
Ω

(uj(x, s) − aj(s))dxds+
∫ τ

0

∫
Ω

aj(s)ψ(x)dxds− τ ū0

∫
Ω

ψ(x)dx

=
∫ τ

0

∫
Ω

(uj(x, s) − aj(s))dxds+
∫ τ

0

aj(s)ds ·
∫

Ω

ψ(x)dx

→
∫ τ

0

a∞(s)ds ·
∫

Ω

ψ(x)dx− τ ū0

∫
Ω

ψ(x)dx = 0 as j → ∞.

This is a contradiction and then the proof of this lemma is completed. �

Finally, the convergence of v can be obtained.

Lemma 5.5. Let m > max{1, 3N−2
2N+2} (where N = 3, 4, 5) and (u, v) as given by

theorem 1.2, we obtain

v(·, t) → 0 in L∞(Ω) as t→ ∞. (5.18)

Proof. Similar to lemma 5.2 of [28] and lemma 3.17 of [5], the proof of this
lemma can be completed. Similarly, assume the lemma is false, then there exist two
sequences (xj)j⊂N ⊂ Ω and (tj)j⊂N ⊂ (0, ∞) such that tj → ∞ as j → ∞ satisfies

v(xj , tj) � c1 for all j ⊂ N (5.19)

with c1 > 0, where passing to subsequences we may assume that there exists x0 ∈ Ω̄
such that xj → x0 as j → ∞. Due to lemma 5.1, v is uniformly continuous in
∪j∈N(Ω̄ × [tj , tj + 1]), which entails that there exist δ > 0, τ ∈ (0, 1) and B :=
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Bδ(x0) ∩ Ω such that

v(x, t) � c1
2

for all x ∈ B, t ∈ (tj , tj + τ) and j ∈ N. (5.20)

Now, let uj(x, s) := u(x, tj + s) and vj(x, s) := v(x, tj + s) for x ∈ Ω, s ∈ (0, τ)
and j ∈ N, then from (4.1), we noticed that∫ τ

0

∫
B

uj(x, s)vj(x, s)dxds =
∫ tj+τ

tj

∫
B

u(x, t)v(x, t)dxdt

�
∫ ∞

tj

∫
B

u(x, t)v(x, t)dxdt

→ 0 as j → ∞.

(5.21)

On the other hand, let ψ(x) := χB(x) for x ∈ Ω, then in light of lemma 5.4, it
follows that∣∣∣∣∣

∫ tj+τ

tj

∫
Ω

u(x, t)χB(x)dxdt− ū0τ |B|
∣∣∣∣∣

=

∣∣∣∣∣
∫ tj+τ

tj

{∫
Ω

u(x, t)χB(x)dx−
∫

Ω

ū0χB(x)dx

}
dt

∣∣∣∣∣
� τ sup

t∈(tj ,tj+τ)

∣∣∣∣∣
{∫

Ω

u(x, t)χB(x)dxdt−
∫

Ω

ū0χB(x)dx

}∣∣∣∣∣
→ 0 as j → ∞,

and that hence ∫ τ

0

∫
Ω

uj(x, s)dxds→ ū0τ |B| as j → ∞. (5.22)

In summary, the combination of (5.20) and (5.21) indicates that

c1
2
ū0τ |B| = lim inf

j→∞

{
c1
2

∫ τ

0

∫
Ω

u(x, s)dxds
}

�
∫ τ

0

∫
B

uj(x, s)vj(x, s)dxds,

which contradicts (5.21), then the proof of this lemma is completed. �

The proof of theorem 1.6. The claimed convergence properties are precisely
asserted by lemmas 5.4 and 5.5. �
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