
Bull. Aust. Math. Soc. 108 (2023), 449–458
doi:10.1017/S0004972723000126

FINITE GROUPS WITH INDEPENDENT GENERATING SETS
OF ONLY TWO SIZES

ANDREA LUCCHINI and PABLO SPIGA �

(Received 8 December 2022; accepted 5 January 2023; first published online 23 February 2023)

Abstract

A generating set S for a group G is independent if the subgroup generated by S \ {s} is properly contained
in G for all s ∈ S. We describe the structure of finite groups G such that there are precisely two numbers
appearing as the cardinalities of independent generating sets for G.
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1. Introduction

The minimal number of generators of a finite group G is denoted by d(G). A generating
set S for a group G is independent (sometimes called irredundant) if

〈S \ {s}〉 < G for all s ∈ S.

Let m(G) denote the maximal size of an independent generating set for G.
The finite groups with m(G) = d(G) are classified by Apisa and Klopsch.

THEOREM 1.1 (Apisa–Klopsch, [1, Theorem 1.6]). If d(G) = m(G), then G is soluble.
Moreover, either

• G/ Frat(G) is an elementary abelian p-group for some prime p; or
• G/ Frat(G) = PQ, where P is an elementary abelian p-group and Q is a nontrivial

cyclic q-group for distinct primes p and q, such that Q acts by conjugation faithfully
on P and P (viewed as a module for Q) is a direct sum of m(G) − 1 isomorphic copies
of one simple Q-module.

In view of this result, Apisa and Klopsch suggest a natural ‘classification problem’:
given a nonnegative integer c, characterise all finite groups G which satisfy
m(G) − d(G) ≤ c. The particular case c = 1 has been recently highlighted by Glasby
(see [7, Problem 2.3]).
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A nice result in universal algebra, due to Tarski and known as the Tarski irredundant
basis theorem (see for example [3, Theorem 4.4]), implies that, for every positive inte-
ger k with d(G) ≤ k ≤ m(G), G contains an independent generating set of cardinality k.
So the condition m(G) − d(G) = 1 is equivalent to the fact that there are only two
possible cardinalities for an independent generating set of G.

Let G be a finite group. We recall that the socle of G, denoted soc(G), is the
subgroup generated by the minimal normal subgroups of G; moreover, G is said to
be monolithic primitive if G has a unique minimal normal subgroup and the Frattini
subgroup Frat(G) of G is the identity.

In this paper, we prove the following two main results.

THEOREM 1.2. Let G be a finite group with Frat(G) = 1 and m(G) = d(G) + 1. If G is
not soluble, then d(G) = 2, G is a monolithic primitive group and G/ soc(G) is cyclic
of prime power order.

It was proved by Whiston and Saxl [15] that m(PSL(2, p)) = 3 for any prime p
with p not congruent to ±1 modulo 8 or 10. In particular, as d(S) = 2 for every
nonabelian simple group, we deduce that there are infinitely many nonabelian simple
groups G with m(G) = d(G) + 1. We also give examples of nonsimple groups G having
m(G) = d(G) + 1 in Section 4.

THEOREM 1.3. Let G be a finite group with Frat(G) = 1 and m(G) = d(G) + 1. If G is
soluble, then one of the following occurs:

(1) G � V � P, where P is a finite noncyclic p-group and V is an irreducible
P-module, which is not a p-group; in this case, d(G) = d(P);

(2) G � Vt � H, where V is a faithful irreducible H-module, m(H) = 2 and either
t = 1 or H is abelian; in this case, d(G) = t + 1;

(3) there exist two normal subgroups N1, N2 such that 1 � N1 ≤ N2, N1 is an abelian
minimal normal subgroup of G, N2/N1 ≤ Frat(G/N1) and G/N2 � Vt � H, where
V is an irreducible H-module and H is a nontrivial cyclic group of prime power
order; in this case, d(G) = t + 1.

In Section 4, we give examples of finite soluble groups G with m(G) = d(G) + 1 for
each of the three possibilities arising in Theorem 1.3.

2. Preliminary results

Let L be a monolithic primitive group and let A be its unique minimal normal
subgroup. For each positive integer k, let Lk be the k-fold direct product of L. The
crown-based power of L of size k is the subgroup Lk of Lk defined by

Lk := {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk mod A}.

In [4], it is proved that for every finite group G, there exists a monolithic group L
and a homomorphic image Lk of G such that

https://doi.org/10.1017/S0004972723000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000126


[3] Independent generating sets 451

(1) d(L/ soc L) < d(G); and
(2) d(Lk) = d(G).

A group Lk with this property is called a generating crown-based power for G.
In [4], it is explained how d(Lk) can be explicitly computed in terms of k and

the structure of L. A key ingredient (when one wants to determine d(G) from the
behaviour of the crown-based power homomorphic images of G) is to evaluate, for
each monolithic group L, the maximal k such that Lk is a homomorphic image of G.
This integer k arises from an equivalence relation among the chief factors of G. In
what follows, we give some details.

Given groups G and A, we say that A is a G-group if G acts on A via automorphisms.
In addition, A is irreducible if G does not stabilise any nontrivial proper subgroups
of A. Two G-groups A and B are G-isomorphic if there exists a group isomorphism
φ : A→ B such that φ(g(a)) = g(φ(a)) for all a ∈ A and g ∈ G. Following [8], we say
that two irreducible G-groups A and B are G-equivalent, denoted A ∼G B, if there is an
isomorphism Φ : A � G→ B � G which restricts to a G-isomorphism φ : A→ B and
induces the identity G � AG/A→ BG/B � G, in other words, such that the following
diagram commutes:

1 −−−−−→ A −−−−−→ A � G −−−−−→ G −−−−−→ 1⏐⏐⏐⏐⏐�φ
⏐⏐⏐⏐⏐�Φ

∥∥∥∥
1 −−−−−→ B −−−−−→ B � G −−−−−→ G −−−−−→ 1

Observe that two G-isomorphic G-groups are G-equivalent, and the converse holds
if A and B are abelian.

Let A = X/Y be a chief factor of G. A complement U of A in G is a subgroup of G
such that

UX = G and U ∩ X = Y .

We say that A = X/Y is a Frattini chief factor if X/Y is contained in the Frattini
subgroup of G/Y; this is equivalent to saying that A is abelian and there is no
complement to A in G. The number δG(A) of non-Frattini chief factors that are
G-equivalent to A, in any chief series of G, does not depend on the particular choice
of such a series.

Now, we denote by LG(A) the monolithic primitive group associated to A, that is,

LG(A) :=

⎧⎪⎪⎨⎪⎪⎩
A � (G/CG(A)) if A is abelian,
G/CG(A) otherwise.

If A is a non-Frattini chief factor of G, then LG(A) is a homomorphic image of
G. More precisely, there exists a normal subgroup N such that G/N � LG(A) and
soc(G/N) ∼G A. We identify soc(LG(A)) with A, as G-groups.

Consider now all the normal subgroups N of G with the property that G/N � LG(A)
and soc(G/N) ∼G A. The intersection RG(A) of all these subgroups has the property
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that G/RG(A) is isomorphic to the crown-based power (LG(A))δG(A). The socle
IG(A)/RG(A) of G/RG(A) is called the A-crown of G and it is a direct product of
δG(A) minimal normal subgroups G-equivalent to A.

Note that if L is monolithic primitive and Lk is a homomorphic image of G for
some k ≥ 1, then L � LG(A) for some non-Frattini chief factor A of G and k ≤ δG(A).
Furthermore, if (LG(A))k is a generating crown-based power, then so is (LG(A))δG(A); in
this case, we say that A is a generating chief factor for G.

For an irreducible G-module M, set

rG(M) := dimEndG(M) M,

sG(M) := dimEndG(M) H1(G, M),

tG(M) := dimEndG(M) H1(G/CG(M), M).

It can be seen that

sG(M) = tG(M) + δG(M)

(see for example [10, 1.2]). Now, define

hG(M) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δG(M) if M is a trivial G-module,⌊sG(M) − 1

rG(M)

⌋
+ 2 =

⌊
δG(M) + tG(M) − 1

rG(M)

⌋
+ 2 otherwise.

By [2, Theorem A], tG(M) < rG(M) for any irreducible G-module M, and therefore

hG(M) ≤ δG(M) + 1. (2.1)

The importance of hG(M) is clarified by the following proposition.

PROPOSITION 2.1 [6, Proposition 2.1]. If there exists an abelian generating chief
factor A of G, then d(G) = hG(A).

When G admits a nonabelian generating chief factor A, a relation between δG(A)
and d(G) is provided by the following result.

PROPOSITION 2.2. If d(G) ≥ 3 and there exists a nonabelian generating chief factor
A of G, then

δG(A) >
|A|d(G)−1

2|CAut A(LG(A)/A)| ≥
|A|d(G)−2

2 log2 |A|
.

PROOF. Suppose that d(G) ≥ 3 and let A be a nonabelian generating chief factor of G.
For a finite group X, let φX(m) denote the number of ordered m-tuples (x1, . . . , xm)

of elements of X generating X. Define

L := LG(A),
γ := |CAut A(L/A)|,
δ := δG(A),
d := d(G).
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In [4], it is proved that if m ≥ d(L), then

d(Lk) ≤ m if and only if k ≤
φL/A(m)
φL(m)γ

. (2.2)

By the main result in [13], d(L) = max(2, d(L/A)). Since A is a generating chief
factor, from the definition, we have d(L/A) < d(LδG(A)) = d(G). As 2 < d(G), it follows
d(L) < d(G). Now, by applying (2.2) with k = δG(A) and m = d(G) − 1, we deduce that

δG(A) >
φL/A(d(G) − 1)
φL(d(G) − 1)γ

. (2.3)

By [6, Corollary 1.2],

φL/A(d(G) − 1)
φL(d(G) − 1)

≥ |A|
d(G)−1

2
. (2.4)

Moreover, A � Sn, where n is a positive integer and S is a nonabelian simple group.
In the proof of Lemma 1 in [5], it is shown that

γ ≤ n|S|n−1|Aut(S)|.

Now, [9] shows that |Out(S)| ≤ log2(|S|) and hence

γ ≤ n|S|n log2(|S|) ≤ |S|n log2(|S|n) = |A| log2(|A|). (2.5)

From (2.3), (2.4) and (2.5), we obtain

δG(A) >
φL/A(d(G) − 1)
φL(d(G) − 1)γ

≥ |A|d(G)−1

2|A| log2 |A|
=
|A|d(G)−2

2 log2 |A|
. �

Recall that m(G) is the largest cardinality of an independent generating set of G.

THEOREM 2.3 [14, Theorem 1.3]. Let G be a finite group. Then m(G) ≥ a + b, where
a and b are, respectively, the number of non-Frattini and nonabelian factors in a chief
series of G. Moreover, if G is soluble, then m(G) = a.

COROLLARY 2.4. Assume that G is a finite group with a unique minimal normal
subgroup A. If A is nonabelian, then m(G) ≥ 3.

PROOF. Suppose first that G is simple. Let l be an element of G of order 2. Since
G = 〈lx | x ∈ G〉, the set {lx | x ∈ G} contains a minimal generating set of G. Since G
cannot be generated by two involutions, this minimal generating set has cardinality at
least three. Thus, m(G) ≥ 3.

Suppose next that G is not simple. Let a and b be the number of non-Frattini and
nonabelian factors in a chief series of G. As G is not simple, there exists a maximal
normal subgroup N of G containing A and we have a chief series 1 � N1 � · · · �
Nt−1 � Nt = G with N1 = A and Nt−1 = N. Then, a ≥ 2, b ≥ 1 and m(G) ≥ a + b ≥ 3
by Theorem 2.3. �
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3. Proof of the main results

Let G be a finite group, let d := d(G) and let m := m(G). Suppose that m = d + 1.
Let A be a generating chief factor of G and let δ := δG(A), L := LG(A).

3.1. A is nonabelian. First, suppose that δ ≥ 2. By Theorem 2.3, m ≥ 2δ and
therefore d ≥ 2δ − 1 ≥ 3. By Proposition 2.2,

δ >
|A|d−2

2 log2 |A|
≥ |A|2δ−3

2 log2 |A|
≥ 602δ−3

2 log2 60
,

but this is never true.
Suppose now that δ = 1. In this case, by the main theorem in [13], d = d(L) =

max(2, d(L/A)) = 2 and therefore m = 3. Since L is an epimorphic image of G, we
must have m(L) ≤ 3. However, m(L) ≥ 3 by Corollary 2.4. Hence, m(L) = m = 3 and
therefore it follows from [11, Lemma 11] that G/ Frat(G) � L. Finally, by Theorem 2.3,
m(L) = 3 implies m(L/A) ≤ 1, and this is possible only if L/A is a cyclic p-group. This
concludes the proof of Theorem 1.2.

3.2. A is abelian. It follows from Proposition 2.1 and (2.1) that

δ − 1 ≤ m − 1 = d = hG(A) ≤ δ + 1.

If d = δ − 1, then m = δ and this is possible if G/ Frat(G) � Aδ. However, in this
case, A would be a trivial G-module and therefore d = hG(A) = δ = m, which is a
contradiction.

Now suppose that d = δ. By Theorem 2.3, G is soluble and contains only
one non-Frattini chief factor which is not G-isomorphic to A. If A is noncentral
in G, then G/ Frat(G) � Lδ and L/A is a cyclic p-group. However, this implies
rG(A)= 1, tG(A)= 0 and d = hG(A) = δ + 1, which is a contradiction. If A is central,
then G/ Frat(G) � V � P, where P is a finite p-group, V is an irreducible P-module
and d(P) = d. In particular, we obtain item (1) in Theorem 1.3.

Finally assume d = δ + 1. Notice that in this case, L = A � H, where A is a faithful,
nontrivial, irreducible H-module, and

m(H) ≤ m − δ = δ + 2 − δ = 2.

In particular, by Corollary 2.4, H is soluble.
If m(H) = 2, then G/ Frat(G) � Lδ. In particular, we obtain item (2) in Theorem 1.3.
If m(H) = 1, then there exist two normal subgroups N1 and N2 of G such that

1 � N1 ≤ N2, G/N2 � Lδ, N2/N1 ≤ Frat(G/N1) and N1/ Frat(G) is an abelian minimal
normal subgroup of G/ Frat(G). As m(H) = 1, H is cyclic of prime power order. In
particular, we obtain item (3) in Theorem 1.3.

4. Examples for Theorems 1.2 and 1.3

4.1. Monolithic groups: examples for Theorem 1.2. Let G be monolithic primitive
with nonabelian socle N = S1 × · · · × Sn, with S � Si for each 1 ≤ i ≤ n. The number
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μ(G) = m(G) − m(G/N) has been investigated in [12]. The group G acts by conjugation
on the set {S1, . . . , Sn} of the simple components of N. This produces a group
homomorphism G→ Sym(n) and the image K of G under this homomorphism is a
transitive subgroup of Sym(n). Moreover, the subgroup X of Aut S induced by the
conjugation action of NG(S1) on the first factor S1 is an almost simple group with
socle S.

By [12, Proposition 4], μ(G) ≥ μ(X) = m(X) − m(X/S). Assume m(G) = 3. Observe
that by Theorems 1.1 and 1.2, G/N is cyclic of prime power order. If X = S, then

3 = m(G) = m(G/N) + μ(G) ≥ m(G/N) + μ(X) = m(G/N) + m(S)
≥ m(G/N) + 3.

This implies that G/N = 1 and G = S is a simple group. If X � S, then G � N and

3 = m(G) ≥ m(G/N) + μ(G) ≥ 1 + μ(X).

Moreover, X/S is a nontrivial cyclic group of prime power order, so

m(X) = m(X/S) + μ(X) ≤ 1 + μ(X) ≤ 1 + 2 = 3.

By Corollary 2.4, m(X) = 3.
The groups

PΣL2(9), M10, Aut(PSL2(7))

are currently the only known examples (to the best knowledge of the authors) of almost
simple groups X with X � soc(X) and m(X) = 3. We believe that there are other such
examples, but our current computer codes are not efficient enough to carry out a
thorough investigation.

Let S := PSL2(7) and H := Aut(PSL2(7)), or let S := PSL2(9) and H ∈ {PΣL2(9),
M10}. Consider the wreath product W := H � Sym(n). Any element w ∈ W can be
written as w = π(a1, . . . , an), with π ∈ Sym(n) and ai ∈ H for 1 ≤ i ≤ n. In particular,
N = soc(W) = S1 × · · · × Sn = {(s1, . . . , sn) | si ∈ S}.

PROPOSITION 4.1. Let G be the subgroup of W generated by N = soc(W) and
γ = σ(a, 1, . . . , 1), where σ = (1 2 · · · n) ∈ Sym(n) and a ∈ H \ S. If n = 2t for some
positive integer t, then m(G) = 3.

In particular, this gives infinitely many examples of nonsimple, nonsoluble groups
G with m(G) = d(G) + 1 in Theorem 1.2.

PROOF. Suppose that n = 2t for some positive integer t. Let r := m(G); we aim to prove
that r = 3.

Let {g1, . . . , gr} be an independent generating set of G. Observe that

γn = (a, . . . , a) ∈ G \ N

and hence G/N is cyclic of order 2t+1. Therefore, relabelling the elements of
the independent generating set if necessary, we may assume G = 〈g1, N〉. Hence,
g1 = σ(as1, s2, . . . , sn) with s1, . . . , sn ∈ S. Moreover, for 2 ≤ i ≤ r, there exists
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ui ∈ Z such that gig
ui
1 ∈ N. Observe that {g1, g2gu2

1 , . . . , grg
ur
1 } is still an independent

generating set having cardinality r.
Let

m = (s2 · · · sn, s3 · · · sn, . . . , sn−1sn, sn, 1) ∈ N.

Then, Y = {gm
1 , (g2gu2

1 )m, . . . , (grg
ur
1 )m} is another independent generating set for G

having cardinality r. We have

y1 := gm
1 = σ(b, 1, . . . , 1),

with b = as1 · · · sn ∈ Aut S \ S, and for 2 ≤ i ≤ r, there exist si1, . . . sin ∈ S such that

yi := (gig
ui
1 )m = (si1, . . . , sin).

Let Z := {b, sij | 2 ≤ i ≤ r, 1 ≤ j ≤ n} and T = 〈Z〉. Since G = 〈y1, . . . , yt〉 ≤ T � 〈σ〉,
we must have Aut(S) = T . However, m(Aut(S)) = 3, so Aut(S) = 〈b, siu, sjv〉 for suitable
2 ≤ i, j ≤ r and 2 ≤ u, v ≤ n.

Let H := 〈y1, yi, yj〉 and, for 1 ≤ k ≤ n, consider the projection πk : N → S sending
(s1, . . . , sn) to sk. Notice that π1(yn

1) = b, π1((yi)y1−u
1 ) = siu, π1((yj)y1−v

1 ) = sjv. In particu-
lar, π1(H ∩ N) = S and H ∩ N is a subdirect product of N = S1 × · · · × Sn.

Recall that a subgroup D of N = S1 × · · · × Sn is said to lie fully diagonally
in N if each projection πi : D→ Si is an isomorphism. To each pair (Φ,α),
where Φ = {B1, . . . , Bc} is a partition of the set {1, . . . , n} and α = (α1, . . . ,αn) ∈
(Aut S)n, we associate a direct product Δ(Φ,α) = D1 × · · · × Dc, where each factor
Dj = {(xαi1 , . . . , xαid ) | x ∈ S} is a full diagonal subgroup of the direct product
Si1 × · · · × Sid corresponding to the block Bj = {i1, . . . , id} in Φ.

Since H ∩ N is a subdirect product of N, we must have H ∩ N = Δ(Φ,α) for a
suitable choice of the pair (Φ,α). As G = 〈H, N〉, the action by conjugation of H
on {S1, . . . , Sn} is transitive and hence the partition {B1, . . . , Bc} corresponds to an
imprimitive system for the permutation action of 〈σ〉 on {1, . . . , n}. So there exist c = 2γ

and d = 2δ with c · d = n such that

Bi := {i, i + c, i + 2c, . . . , i + (d − 1)c} for 1 ≤ i ≤ c.

Notice that y1 ∈ H normalises Δ(Φ,α). In particular, yc
1 normalises Δ(Φ,α). How-

ever, yc
1 normalises L = S1 × S1+c × · · · × S1+(d−1)c and acts on L as π · l, where π

is the d-cycle (1, 1 + c, . . . , 1 + (d − 1)c) and l = (b, 1, . . . , 1) ∈ L. In particular, π · l
normalises the full diagonal subgroup D1 of L. Therefore, setting φi = α1+(i−1)c, for
every s ∈ S, there exists t ∈ T such that

(sφdb, sφ1 , sφ2 , . . . , sφd−1 ) = (tφ1 , tφ2 , tφ3 , . . . , tφd ).
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It follows that

φdbφ−1
1 φ2 = φ1,

φdbφ−1
1 φ3 = φ2,
· · ·

φdbφ−1
1 φd = φd−1.

In particular, (φ1φ
−1
d )d ≡ bd−1 modulo S. If d is even, then b ∈ 〈x2 | x ∈ Aut(S)〉 = S,

against our assumption. Thus, d = 1 and hence c = n. However, this implies that
H ∩ N = N and consequently H = G. Thus, m(G) = r ≤ 3. However, m(G) ≥ 3 by
Theorem 2.3. So we conclude that m(G) = 3. �

4.2. Soluble groups: examples for Theorem 1.3. We give three elementary exam-
ples, but with the same ideas, one can construct more complicated examples. Let Sn be
the symmetric group of degree n and let Cn be the cyclic group of order n.

The group G := S3 × Ct
2 = C3 : Ct+1

2 with t ≥ 1 satisfies d(G) = t + 1 and
m(G) = t + 2. This gives examples of groups satisfying item (1) in Theorem 1.3.

The group G := S4 = K : S3 with K the Klein subgroup of S4 and the group
G := (Ct

3 : C2) × C2 with C2 acting on Ct
3 by inversion also satisfy m(G) = d(G) + 1.

These two examples yield groups satisfying item (2) in Theorem 1.3 with m(H) = 2 in
the first case and with H abelian in the second case.

As above, let K be the Klein subgroup of S4 and let G := K : (S3 × Ct−1
2 ). This gives

examples of groups satisfying item (3) in Theorem 1.3.
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