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Characterizations of
Simple Isolated Line Singularities
Alexandru Zaharia

Abstract. A line singularity is a function germ f : (Cn+1, 0) → C with a smooth 1-dimensional critical set
Σ = {(x, y) ∈ C× Cn | y = 0}. An isolated line singularity is defined by the condition that for every x 6= 0,
the germ of f at (x, 0) is equivalent to y2

1 + · · · + y2
n. Simple isolated line singularities were classified by Dirk

Siersma and are analogous of the famous A−D−E singularities. We give two new characterizations of simple
isolated line singularities.

1 Introduction

1.1

Let O := { f : (Cn+1, 0) → C} be the ring of germs of holomorphic functions and let m
be its maximal ideal. An important problem in Singularity Theory is the classification of
holomorphic germs f ∈ O with respect to the coordinate changes in (Cn+1, 0). When we
consider only germs f with an isolated singularity in the origin of Cn+1, the list starts with
the famous A− D− E simple isolated singularities, see for instance [2]:

Ak : xk+1 + y2
1 + · · · + y2

n, k ≥ 1

Dk : x2 y1 + yk−1
1 + y2

2 + · · · + y2
n, k ≥ 4

E6 : x4 + y3
1 + y2

2 + · · · + y2
n

E7 : x3 y1 + y3
1 + y2

2 + · · · + y2
n

E8 : x5 + y3
1 + y2

2 + · · · + y2
n.

Several characterizations of the A − D − E singularities are well-known, see for instance
Durfee’s paper [3].

After isolated singularities, a next step would be to consider the case of function germs
f : (Cn+1, 0) → C with a smooth 1-dimensional critical set. This approach was followed
by Dirk Siersma, who introduced in [9] the class of germs of holomorphic functions with
an isolated line singularity. Namely, if (x, y) = (x, y1, . . . , yn) denote the coordinates in
(Cn+1, 0), consider the line L := {y1 = · · · = yn = 0}, let I := (y1, . . . , yn) ⊆ O be its
ideal and let DI denote the group of local analytic isomorphisms ϕ : (Cn+1, 0)→ (Cn+1, 0)
for which ϕ(L) = L. Then DI acts on I2 and for f ∈ I2, the tangent space of (the orbit of)
f with respect to this action is the ideal defined by

τ ( f ) := m
(∂ f

∂x

)
+ I
( ∂ f

∂y1
, . . . ,

∂ f

∂yn

)
,
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while the codimension of (the orbit) of f is c( f ) := dimC
I2

τ ( f ) .

A line singularity is a germ f ∈ I2. An isolated line singularity (for short: ILS) is a line
singularity f such that c( f ) <∞. Geometrically, f ∈ I2 is an ILS if and only if the singular
locus of f is L and for every x 6= 0, the germ of (a representative of) f at (x, 0) ∈ L is
equivalent to y2

1 + · · · + y2
n. In Section 1 of [9], Siersma studied line singularities from

the point of view of Thom-Mather theory. One of his results is the following theorem. (A
topology on O is introduced as in [3, p. 145].)

Theorem 1.2 A germ f ∈ I2 is DI-simple (i.e. c( f ) < ∞ and f has a neighborhood in I2

which intersects only a finite number of DI-orbits) if and only if f is DI-equivalent to one of
the germs in the following table:

Name Normal form Conditions Determined jet
A∞ y2

1 + · · · + y2
n 2

D∞ xy2
1 + y2

2 + · · · + y2
n 3

Jk,∞ xk y2
1 + y3

1 + y2
2 + · · · + y2

n k ≥ 2 k + 2
T∞,k,2 x2 y2

1 + yk
1 + y2

2 + · · · + y2
n k ≥ 4 k

Zk,∞ xy3
1 + xk+2 y2

1 + y2
2 + · · · + y2

n k ≥ 1 k + 4
W1,∞ x3 y2

1 + y4
1 + y2

2 + · · · + y2
n 5

T∞,q,r xy1 y2 + yq
1 + yr

2 + y2
3 + · · · + y2

n q ≥ r ≥ 3 q
Qk,∞ xk y2

1 + y3
1 + xy2

2 + y2
3 + · · · + y2

n k ≥ 2 k + 2
S1,∞ x2 y2

1 + y2
1 y2 + xy2

2 + y2
3 + · · · + y2

n 4

1.3

The singularities in Theorem 1.2 are analogous of the A − D − E singularities and were
considered also by V. V. Goryunov, see for instance [4]. Non-isolated singularities were
studied, from different points of view, in many papers, e.g. [7], [6], [11], etc.

For convenience of notations, we consider also

J1,∞ : xy2
1 + y3

1 + y2
2 + · · · + y2

n, which is DI-equivalent to D∞,

Z0,∞ : xy3
1 + x2 y2

1 + y2
2 + · · · + y2

n, which is DI-equivalent to T∞,4,2,

A0 : x + y2
1 + · · · + y2

n, which is smooth (no singular points),

D3 : x2 y1 + y2
1 + y2

2 + · · · + y2
n, which is equivalent to A3.

Note that the normal forms of singularities in Theorem 1.2 are quasihomogeneous poly-
nomials, i.e. there exist weights w0,w1, . . . ,wn ∈ N \ {0} for the coordinates x, y1, . . . , yn,
and a natural number d, called the weighted degree of f , such that d ≥ 2w j for all j and
such that all monomials xa0 ya1

1 · · · y
an
n which are contained in f , i.e. which appear in f with

a non-zero coefficient, satisfy

wdeg(xa0 ya1
1 · · · y

an
n ) := a0w0 + a1w1 + · · · + anwn = d.

We denote by O≥d the ideal of O generated by all the monomials with weighted degree≥ d.
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1.4

The aim of this note is to give new characterizations of the simple isolated line singularities.
We assume that n = 2 and we denote the coordinates (x, y1, y2) in (C3, 0) by (x, y, z).
Hence the line L has equations y = z = 0, I = (y, z), the equation of the D∞ singularity is
xy2 + z2, etc.

In the next section we blow up an ILS, with center L, and we show that the singularities
of the strict transform and of the exceptional curve characterize the simple isolated line
singularities. In the last section we give a characterization of a simple ILS using its inner
modality, as introduced in [10].

It would be interesting to have other characterizations for simple ILS, and also for other
simple non-isolated singularities.

2 Blowing Up Line Singularities

2.1

Let f : (C3, 0) → C be an ILS, f ∈ (y, z)2. We fix a representative of f , defined on a small
neighborhood of 0 ∈ C3, and we continue to denote this representative by f : (C3, 0)→ C.

Let us put V := f−1(0) ⊆ (C3, 0) and let M be the blowing up of C3 with center L, i.e.
M is the subset of C3 × P1 described by M := {

(
(x, y, z), [u : v]

)
| yv = zu}. There are

two coordinate charts on M, namely U1 := M ∩ {u 6= 0}, with coordinates (x, y, v), and
U2 := M ∩ {v 6= 0}, with coordinates (x, z, u). Let σ : M → C3 be the projection map, let
X denote the strict transform of V , let H := σ−1(L) be the exceptional divisor of M and let
Y := X ∩ H be the exceptional curve of X. More precisely, X is the closure in C3 × P1 of
the set {

(
(x, y, z), [y : z]

)
| f (x, y, z) = 0, (y, z) 6= (0, 0)}, the equations of X are

in U1 : y−2 · f (x, y, vy) = 0; in U2 : z−2 · f (x, uz, z) = 0,

and the equations of Y are

in U1 : y = 0, y−2 · f (x, y, vy) = 0; in U2 : z = 0, z−2 · f (x, uz, z) = 0.

By a direct computation one can show the following

Proposition 2.2 If f is a simple isolated line singularity, then the singularities of X and of Y
are described in the following table:

Name of f (X,Y ) in U1 (X,Y ) in U2

A∞ (smooth, smooth) (smooth, smooth)
D∞ (smooth, smooth) (smooth, smooth)
Jk,∞ (smooth, one Ak−1) (smooth, smooth)

T∞,k,2 (one Ak−3, one A1) (smooth, smooth)
Zk,∞ (one A1, one Ak+1) (smooth, smooth)
W1,∞ (one A2, one A2) (smooth, smooth)
T∞,q,r (one Aq−3, one A1) (one Ar−3, one A1)
Qk,∞ (smooth, one Dk+1) (smooth, smooth)
S1,∞ (one A1, one A3) (smooth, smooth)
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2.3

Note that all the singularities of X and Y are in the origin of the coordinates charts U1 and
U2 and that they are not “too complicated”. We prove that the converse is also true. Before
stating our results, let us recall a definition.

Let f ∈ (y, z)2 be a line singularity and write it as f = y2ψ1 + 2yzψ2 + z2ψ3, for some
germs ψ1, ψ2, ψ3 ∈ O. These germs are not uniquely determined, but the corank of f , i.e.
the corank of the Hessian matrix

H f (0) =

(
ψ1(0) ψ2(0)
ψ2(0) ψ3(0)

)

is well defined. It is clear that the corank of f is equal to 0 if and only if f is DI-equivalent
to A∞. For g ∈ O, the k-jet of g will be denoted by jk(g).

Theorem 2.4 (Case: corank is one) Let f : (C3, 0)→ C be an isolated line singularity with
singular locus L = {y = z = 0}, let V = f−1(0) and let X denote the strict transform of V
after blowing up the line L in C3. Let Y be the exceptional curve of X and let us suppose that
the corank of f is equal to 1. Then we have:

(i) If X is smooth, then f is DI-equivalent to Jk,∞ for some k ≥ 1.
(ii) If X has an A1 singularity, then f is DI-equivalent to Zk,∞ for some k ≥ 0.
(iii) If X has an Ak−3 singularity, for some k ≥ 5, and Y has an A1 singularity, then f is

DI-equivalent to T∞,k,2.
(iv) If X has an A2 singularity and Y has an A2 singularity, then f is DI-equivalent to

W1,∞.

Proof Since f is an ILS with corank 1, one can find suitable coordinates in (C3, 0) such
that f (x, y, z) = y2g(x, y) + z2. Moreover, g(x, y) has an isolated singularity in (0, 0) ∈ C2

and g(x, 0) has an isolated singularity in 0 ∈ C. Thus, X and Y are smooth in U2 and only
the origin of U1 could be a singular point of X or of Y . Note that the equation of X in U1 is
g(x, y) + v2 = 0 and the equations of Y in U1 are y = g(x, 0) + v2 = 0.

If X is smooth, then g(x, y) = αx + βy + · · · for some (α, β) ∈ C2 \ {(0, 0)}. If α 6= 0,
then f is DI-equivalent to D∞ = J1,∞. When α = 0 and β 6= 0, then f is DI-equivalent
to Jk,∞, for some k ≥ 2. Thus, point (i) is proved.

If X is not smooth, then j2(g) is DI-equivalent to one of the following: xy, x2, y2 or 0.
If j2(g) = 0, then X has a singularity which is not of type As, for any s, contradicting the
hypothesis. It remains that j2(g) 6= 0.

Note that X has an A1 singularity if and only if j2(g) is DI-equivalent to xy; and in this
situation it is easy to see that f is DI-equivalent to Zk,∞ for some k ≥ 0.

If Y has an A1 singularity, then j2
(
g(x, 0)

)
= x2. If, moreover, X has an Ak−3 singularity,

for some k ≥ 5, then j2(g) = x2 and it is easy to see that f is DI-equivalent to T∞,k,2.
Suppose now that X and Y have singularities of type A2. By the above remarks it follows

that j2(g) = y2. Thus, g is DI-equivalent to y2 + yh(x, y) + a(x), for suitable germs h ∈ m2

and a ∈ m3 \m4. And now it is easy to see that f is DI-equivalent to W1,∞.

Theorem 2.5 (Case: corank is two) Let f : (C3, 0)→ C be an isolated line singularity with
singular locus L = {y = z = 0}, let V = f−1(0) and let X denote the strict transform of V
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after blowing up the line L in C3. Let Y be the exceptional curve of X and let us suppose that
the corank of f is equal to 2. Then we have:

(i) If X is smooth and Y has an isolated singularity, not of type A1, then f is DI-equivalent
to Qk,∞, for some k ≥ 2.

(ii) If X has an A1 singularity and Y has an isolated singularity, not of type A1, then f is
DI-equivalent to S1,∞.

(iii) If Y has only singularities of type A1, then f is DI-equivalent to T∞,q,r, for some
q ≥ r ≥ 3.

Proof Since f ∈ I2 has corank two, we can write

f = x
(

y2a(x) + yzb(x) + z2c(x)
)

+ g(y, z) + xh(x, y, z)

for suitable germs a, b, c ∈ O and g, h ∈ I3. The equations of X are:

in U1 : xa(x) + xvb(x) + xv2c(x) + y−2 · g(y, vy) + xy−2 · h(x, y, vy) = 0,

in U2 : xu2a(x) + xub(x) + xc(x) + z−2 · g(uz, z) + xz−2 · h(x, uz, z) = 0.

Since Y has only isolated singularities, we have: min{ord(a), ord(b), ord(c)} = 0.
Consider now the quadratic form Q(y, z) := y2a(0) + yzb(0) + z2c(0). After a suitable

linear coordinate change ϕ ∈ DI , we will have either Q = z2, or Q = yz.
If Q = z2, then c(0) = 1 and a(0) = b(0) = 0. Thus, the origin 0 ∈ U1 is a singular

point of Y , but not of type A1.
If Q = yz, then b(0) = 1 and a(0) = c(0) = 0. Using the standard classification

methods, one can easily show that f is DI-equivalent to a T∞,q,r singularity, for suitable
q ≥ r ≥ 3. Thus, point (iii) is proved.

Suppose that Y has at least one isolated singularity which is not of type A1. Then Q = z2,
c(0) = 1 and a(0) = b(0) = 0, hence X can be singular only in the origin 0 ∈ U1.

Assume moreover that X is smooth. Then j1
(

y−2 · g(y, vy)
)
6= 0. After a suitable coor-

dinate change ϕ ∈ DI , we can obtain j3( f ) = xz2 + y3. Using the standard classification
methods, one can show that f is DI-equivalent to a Qk,∞ singularity, for a suitable k ≥ 2.

If Y has at least one isolated singularity which is not of type A1 and X has an A1 singu-
larity, we write

a(x) = a1x + x2γ(x), h(x, y, z) = zH1(x, y, z) + h1 y3 + y3H2(x, y)

and

g(y, z) = g1 y3 + g2 y2z + g3 y4 + z2G1(y, z) + y3zG2(y) + y5G3(y)

for suitable coefficients a1, g1, g2, g3, h1 ∈ C and functions γ(x), G2(y), G3(y) ∈ O,
G1(y, z) ∈ I, H1(x, y, z) ∈ I2 and H2(x, y) ∈ m. Since X has an A1 singularity in the
origin 0 ∈ U1, it follows that g1 = 0, a1 6= 0 and g2 6= 0. After a coordinate change ϕ ∈ DI ,
we can assume that a(x) = x and g2 = 1. Thus, for suitable β j ∈ C and homogeneous
polynomials α1(y, z) ∈ I4, α2(y, z) ∈ I3, we have:

j4( f ) = xz2 + β1x2 yz + x2 y2 + y2z + β2 yz2 + β3z3 + α1(y, z) + xα2(y, z).

And now, the usual classification methods give us that f is DI-equivalent to S1,∞.
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2.6

Combining Proposition 2.2 with Theorems 2.4 and 2.5, we obtain the following

Corollary A simple isolated line singularity f ∈ (y, z)2 can be characterized by the corank of
f and by the singularities of X and Y .

Remark 2.7 In [5], G. Jiang extended the above results to the case of line singularities on
an A1 surface. However, these results can not be generalized to any class of non-isolated
singularities, as the next example shows us.

Let k ≥ 4 and let g : (Ck+2, 0) → C be defined by g(y1, y2, x1, . . . , xk) = x1 y2
1 + x2 y2

2 +
y1 y2h(x3, . . . , xk), where h(x3, . . . , xk) is an isolated singularity. Then the singular locus of
g is {y1 = y2 = 0} and under the blowing up of Ck+2 with center {y1 = y2 = 0}, the strict
transform of g−1(0) is smooth and intersects transversally the exceptional divisor. On the
other hand, it follows from [12] that if h is not an A − D − E singularity, then g is not a
simple non-isolated singularity.

3 Inner Modality

3.1

Let w0,w1,w2 ∈ N \ {0} be the weights of x, y, z and let d ∈ N. We assume that

w1 ≤ w2 and d ≥ 2w j > 0 for all j.(1)

Let f ∈ C[x, y, z] be a quasihomogeneous polynomial of degree d and assume that
f ∈ I2 is an ILS. Following [10, p. 286], we define the inner modality of f by

m0( f ) = dimC
I ∩ O≥d

J( f ) ∩ O≥d
, where J( f ) :=

(∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
,

and we say that f is i-simple if m0( f ) = 0. By [10], we have:

f is i-simple ⇐⇒ 2d < 2w0 + 3w1 + 2w2.(2)

In this section we prove the following

Theorem 3.2 Let f ∈ C[x, y, z] be a quasihomogeneous polynomial such that f ∈ I2 is
an isolated line singularity. Then f is i-simple if and only if f is DI-equivalent to one of the
normal forms listed in Theorem 1.2.

Remark 3.3 This theorem is similar to results obtained, for the A − D − E singularities,
by V. I. Arnold [1] and K. Saito [8].

Proof In [10, p. 289], it is already shown that the normal forms listed in Theorem 1.2 are
i-simple. Moreover, in the same place it is remarked that the converse is true for all i-simple
f , if the corank is equal to 1. Hence we have to prove that f is DI-simple only when f is
i-simple and has the corank equal to 2. This fact follows from the next proposition.
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Proposition 3.4 Let f ∈ C[x, y, z] be a quasihomogeneous polynomial such that f ∈ I2 is
an isolated line singularity of corank 2. Then we have:

(i) If f is i-simple, then j3( f ) contains at least one monomial from the following list:

xy2, xyz, xz2.(3)

(ii) If j3( f ) contains at least two monomials from the list (3), then f is DI-equivalent to a
germ T∞,r,r for a suitable r ≥ 3.

(iii) There is no such f for which j3( f ) contains only xy2 from the list (3).
(iv) If j3( f ) contains only xyz from the list (3), then f is DI-equivalent to a germ T∞,q,r

for suitable q ≥ r ≥ 3.
(v) If f is i-simple and j3( f ) contains only xz2 from the list (3), then f is DI-equivalent

either to S1,∞, or to a germ Qk,∞ for a suitable k ≥ 2.

Proof To prove (ii), note that w1 = w2, hence f (0, y, z) is a homogeneous polynomial. If r
denotes the (usual) degree of f (0, y, z), then using the classification methods one can easily
show that f is DI-equivalent to T∞,r,r .

To prove (iii), assume the contrary. The condition c( f ) <∞ implies that f contains at
least one monomial of the form xk yz or xkz2, for some k ≥ 2. A contradiction is given by
the inequalities: wdeg(xkz2) ≥ wdeg(xk yz) ≥ wdeg(xk y2) > w0 + 2w1 = d.

The point (iv) can be proved using the classification methods.
To prove (v), note that if j3

(
f (0, y, z)

)
6= 0, then the usual classification methods give

us that f is DI-equivalent either to S1,∞, or to Qk,∞, for some k ≥ 2.
Assume now that j3( f ) contains only xz2 from list (3) and that j3

(
f (0, y, z)

)
= 0. Using

(2), we will show that f is not i-simple. The condition c( f ) < ∞ implies that f contains
at least one monomial of type ya, xyb, zyc , for some a ≥ 3, b ≥ 3, c ≥ 2, and at least one
monomial of type x`yz or x`y2, for some ` ≥ 2. Since x2`y2z2 = xz2 · x2`−1 y2, it follows
that there exists some k ≥ 2 such that wdeg(xk y2) = d.

If f contains ya for some a ≥ 4, then 4d = wdeg(ya · x2z4 · xk y2) = (2 + k)w0 +
(a + 2)w1 + 4w2 ≥ 4w0 + 6w1 + 4w2.

If f contains xyb for some b ≥ 3, then 2d = wdeg(xz2 · xyb) = 2w0 + bw1 + 2w2 ≥
2w0 + 3w1 + 2w2.

If f contains zyc for some c ≥ 3, then 3d = wdeg(xk y2 · zyc · xz2) = (k + 1)w0 +
(c + 2)w1 + 3w2 ≥ 3w0 + 5w1 + 3w2.

The point (i) is a consequence of the following Lemma.

Lemma 3.5 Let f ∈ C[x, y, z] be a quasihomogeneous polynomial such that f ∈ I2 is an
isolated line singularity of corank 2 and such that j3( f ) contains no monomials from the list
(3). Then f is not i-simple.

Proof We list seven cases and we show that 2d ≥ 2w0 + 3w1 + 2w2 in each of them. Thus,
by (2), f is not i-simple. We leave almost all the details of the proof to the reader.

(i) f contains xzb for some b ≥ 3.
(ii) j3( f ) contains at least two monomials from the set {y3, y2z, yz2, z3}.
(iii) j3( f ) = αy3, with α 6= 0.
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It follows that w1 =
d
3 and that f contains at least one monomial of the form yza, with

a ≥ 3, or xzb, with b ≥ 3, or zc , with c ≥ 4. But w2 ≥ w1 =
d
3 , hence f does not

contain zc , with c ≥ 4. Also, by case (i), if f contains xzb, with b ≥ 3, then f is not i-
simple. It remains to consider the situation when f contains yza, with a ≥ 3. It follows
that w2 =

2d
3a < w1 =

d
3 , in contradiction with our assumption (1).

(iv) j3( f ) = αy2z, with α 6= 0.
(v) j3( f ) = αyz2, with α 6= 0.
(vi) j3( f ) = αz3, with α 6= 0.
(vii) j3( f ) = 0.

Then f contains at least one monomial from each of the following three lists:

xk y2, xk yz, xkz2 for some k ≥ 2;

ya+4, xyb+3, zyb+3 for some a, b ≥ 0; zu+4, xzv+3, yzv+3 for some u, v ≥ 0.

The last two lists show that d > 3w1 and d > 3w2. If f contains xk y2, then 2d >
wdeg(xk y2) + 3w2 = kw0 + 2w1 + 3w2 ≥ 2w0 + 3w1 + 2w2. A similar argument works
also when f contains xkz2 or when f contains xk yz.
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