Characterizations of Simple Isolated Line Singularities

Alexandru Zaharia

Abstract. A line singularity is a function germ $f:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow \mathbf{C}$ with a smooth 1-dimensional critical set $\Sigma=\left\{(x, y) \in \mathbf{C} \times \mathbf{C}^{n} \mid y=0\right\}$. An isolated line singularity is defined by the condition that for every $x \neq 0$, the germ of f at $(x, 0)$ is equivalent to $y_{1}^{2}+\cdots+y_{n}^{2}$. Simple isolated line singularities were classified by Dirk Siersma and are analogous of the famous $A-D-E$ singularities. We give two new characterizations of simple isolated line singularities.

1 Introduction

1.1

Let $\mathcal{O}:=\left\{f:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow \mathbf{C}\right\}$ be the ring of germs of holomorphic functions and let m be its maximal ideal. An important problem in Singularity Theory is the classification of holomorphic germs $f \in \mathcal{O}$ with respect to the coordinate changes in $\left(\mathbf{C}^{n+1}, 0\right)$. When we consider only germs f with an isolated singularity in the origin of \mathbf{C}^{n+1}, the list starts with the famous $A-D-E$ simple isolated singularities, see for instance [2]:

$$
\begin{gathered}
A_{k}: x^{k+1}+y_{1}^{2}+\cdots+y_{n}^{2}, \quad k \geq 1 \\
D_{k}: x^{2} y_{1}+y_{1}^{k-1}+y_{2}^{2}+\cdots+y_{n}^{2}, \quad k \geq 4 \\
E_{6}: x^{4}+y_{1}^{3}+y_{2}^{2}+\cdots+y_{n}^{2} \\
E_{7}: x^{3} y_{1}+y_{1}^{3}+y_{2}^{2}+\cdots+y_{n}^{2} \\
E_{8}: x^{5}+y_{1}^{3}+y_{2}^{2}+\cdots+y_{n}^{2} .
\end{gathered}
$$

Several characterizations of the $A-D-E$ singularities are well-known, see for instance Durfee's paper [3].

After isolated singularities, a next step would be to consider the case of function germs $f:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow \mathbf{C}$ with a smooth 1-dimensional critical set. This approach was followed by Dirk Siersma, who introduced in [9] the class of germs of holomorphic functions with an isolated line singularity. Namely, if $(x, y)=\left(x, y_{1}, \ldots, y_{n}\right)$ denote the coordinates in $\left(\mathbf{C}^{n+1}, 0\right)$, consider the line $L:=\left\{y_{1}=\cdots=y_{n}=0\right\}$, let $I:=\left(y_{1}, \ldots, y_{n}\right) \subseteq \mathcal{O}$ be its ideal and let \mathcal{D}_{I} denote the group of local analytic isomorphisms $\varphi:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow\left(\mathbf{C}^{n+1}, 0\right)$ for which $\varphi(L)=L$. Then \mathcal{D}_{I} acts on I^{2} and for $f \in I^{2}$, the tangent space of (the orbit of) f with respect to this action is the ideal defined by

$$
\tau(f):=m\left(\frac{\partial f}{\partial x}\right)+I\left(\frac{\partial f}{\partial y_{1}}, \ldots, \frac{\partial f}{\partial y_{n}}\right)
$$

Received by the editors January 14, 1998; revised April 18, 1998.
AMS subject classification: Primary: 32S25; secondary: 14B05.
(C)Canadian Mathematical Society 1999.
while the codimension of (the orbit) of f is $c(f):=\operatorname{dim}_{C} \frac{I^{2}}{\tau(f)}$.
A line singularity is a germ $f \in I^{2}$. An isolated line singularity (for short: ILS) is a line singularity f such that $c(f)<\infty$. Geometrically, $f \in I^{2}$ is an ILS if and only if the singular locus of f is L and for every $x \neq 0$, the germ of (a representative of) f at $(x, 0) \in L$ is equivalent to $y_{1}^{2}+\cdots+y_{n}^{2}$. In Section 1 of [9], Siersma studied line singularities from the point of view of Thom-Mather theory. One of his results is the following theorem. (A topology on \mathcal{O} is introduced as in [3, p. 145].)

Theorem 1.2 A germ $f \in I^{2}$ is \mathcal{D}_{I}-simple (i.e. $c(f)<\infty$ and f has a neighborhood in I^{2} which intersects only a finite number of \mathcal{D}_{I}-orbits) if and only if f is \mathcal{D}_{I}-equivalent to one of the germs in the following table:

Name	Normal form	Conditions	Determined jet
A_{∞}	$y_{1}^{2}+\cdots+y_{n}^{2}$		2
D_{∞}	$x y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}$		3
$J_{k, \infty}$	$x^{k} y_{1}^{2}+y_{1}^{3}+y_{2}^{2}+\cdots+y_{n}^{2}$	$k \geq 2$	$k+2$
$T_{\infty, k, 2}$	$x^{2} y_{1}^{2}+y_{1}^{k}+y_{2}^{2}+\cdots+y_{n}^{2}$	$k \geq 4$	k
$Z_{k, \infty}$	$x y_{1}^{3}+x^{k+2} y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}$	$k \geq 1$	$k+4$
$W_{1, \infty}$	$x^{3} y_{1}^{2}+y_{1}^{4}+y_{2}^{2}+\cdots+y_{n}^{2}$		5
$T_{\infty, q, r}$	$x y_{1} y_{2}+y_{1}^{q}+y_{2}^{r}+y_{3}^{2}+\cdots+y_{n}^{2}$	$q \geq r \geq 3$	q
$Q_{k, \infty}$	$x^{k} y_{1}^{2}+y_{1}^{3}+x y_{2}^{2}+y_{3}^{2}+\cdots+y_{n}^{2}$	$k \geq 2$	$k+2$
$S_{1, \infty}$	$x^{2} y_{1}^{2}+y_{1}^{2} y_{2}+x y_{2}^{2}+y_{3}^{2}+\cdots+y_{n}^{2}$		4

1.3

The singularities in Theorem 1.2 are analogous of the $A-D-E$ singularities and were considered also by V. V. Goryunov, see for instance [4]. Non-isolated singularities were studied, from different points of view, in many papers, e.g. [7], [6], [11], etc.

For convenience of notations, we consider also

$$
\begin{gathered}
J_{1, \infty}: x y_{1}^{2}+y_{1}^{3}+y_{2}^{2}+\cdots+y_{n}^{2}, \quad \text { which is } \mathcal{D}_{I} \text {-equivalent to } D_{\infty}, \\
Z_{0, \infty}: x y_{1}^{3}+x^{2} y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}, \quad \text { which is } \mathcal{D}_{I} \text {-equivalent to } T_{\infty, 4,2}, \\
A_{0}: x+y_{1}^{2}+\cdots+y_{n}^{2}, \quad \text { which is smooth (no singular points), } \\
D_{3}: x^{2} y_{1}+y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}, \quad \text { which is equivalent to } A_{3} .
\end{gathered}
$$

Note that the normal forms of singularities in Theorem 1.2 are quasihomogeneous polynomials, i.e. there exist weights $w_{0}, w_{1}, \ldots, w_{n} \in \mathbf{N} \backslash\{0\}$ for the coordinates x, y_{1}, \ldots, y_{n}, and a natural number d, called the weighted degree of f, such that $d \geq 2 w_{j}$ for all j and such that all monomials $x^{a_{0}} y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}$ which are contained in f, i.e. which appear in f with a non-zero coefficient, satisfy

$$
\operatorname{wdeg}\left(x^{a_{0}} y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}\right):=a_{0} w_{0}+a_{1} w_{1}+\cdots+a_{n} w_{n}=d
$$

We denote by $\mathcal{O}_{\geq d}$ the ideal of \mathcal{O} generated by all the monomials with weighted degree $\geq d$.

1.4

The aim of this note is to give new characterizations of the simple isolated line singularities. We assume that $n=2$ and we denote the coordinates $\left(x, y_{1}, y_{2}\right)$ in $\left(\mathbf{C}^{3}, 0\right)$ by (x, y, z). Hence the line L has equations $y=z=0, I=(y, z)$, the equation of the D_{∞} singularity is $x y^{2}+z^{2}$, etc.

In the next section we blow up an ILS, with center L, and we show that the singularities of the strict transform and of the exceptional curve characterize the simple isolated line singularities. In the last section we give a characterization of a simple ILS using its inner modality, as introduced in [10].

It would be interesting to have other characterizations for simple ILS, and also for other simple non-isolated singularities.

2 Blowing Up Line Singularities

2.1

Let $f:\left(\mathbf{C}^{3}, 0\right) \rightarrow \mathbf{C}$ be an ILS, $f \in(y, z)^{2}$. We fix a representative of f, defined on a small neighborhood of $0 \in \mathbf{C}^{3}$, and we continue to denote this representative by $f:\left(\mathbf{C}^{3}, 0\right) \rightarrow \mathbf{C}$.

Let us put $V:=f^{-1}(0) \subseteq\left(\mathbf{C}^{3}, 0\right)$ and let M be the blowing up of \mathbf{C}^{3} with center L, i.e. M is the subset of $\mathbf{C}^{3} \times \mathbf{P}^{1}$ described by $M:=\{((x, y, z),[u: v]) \mid y v=z u\}$. There are two coordinate charts on M, namely $\mathcal{U}_{1}:=M \cap\{u \neq 0\}$, with coordinates (x, y, v), and $\mathcal{U}_{2}:=M \cap\{v \neq 0\}$, with coordinates (x, z, u). Let $\sigma: M \rightarrow \mathbf{C}^{3}$ be the projection map, let X denote the strict transform of V, let $H:=\sigma^{-1}(L)$ be the exceptional divisor of M and let $Y:=X \cap H$ be the exceptional curve of X. More precisely, X is the closure in $\mathbf{C}^{3} \times \mathbf{P}^{1}$ of the set $\{((x, y, z),[y: z]) \mid f(x, y, z)=0,(y, z) \neq(0,0)\}$, the equations of X are

$$
\text { in } \mathcal{U}_{1}: y^{-2} \cdot f(x, y, v y)=0 ; \quad \text { in } \mathcal{U}_{2}: z^{-2} \cdot f(x, u z, z)=0,
$$

and the equations of Y are

$$
\text { in } \mathcal{U}_{1}: y=0, y^{-2} \cdot f(x, y, v y)=0 ; \quad \text { in } \mathcal{U}_{2}: z=0, z^{-2} \cdot f(x, u z, z)=0
$$

By a direct computation one can show the following
Proposition 2.2 If f is a simple isolated line singularity, then the singularities of X and of Y are described in the following table:

Name of f	(X, Y) in \mathcal{U}_{1}	(X, Y) in \mathcal{U}_{2}
A_{∞}	(smooth, smooth)	(smooth, smooth)
D_{∞}	(smooth, smooth)	(smooth, smooth)
$J_{k, \infty}$	(smooth, one A_{k-1})	(smooth, smooth)
$T_{\infty, k, 2}$	(one A_{k-3}, one A_{1})	(smooth, smooth)
$Z_{k, \infty}$	(one A_{1}, one A_{k+1})	(smooth, smooth)
$W_{1, \infty}$	(one A_{2}, one A_{2})	(smooth, smooth)
$T_{\infty, q, r}$	(one A_{q-3}, one A_{1})	(one A_{r-3}, one A_{1})
$Q_{k, \infty}$	(smooth, one $\left.D_{k+1}\right)$	(smooth, smooth)
$S_{1, \infty}$	(one A_{1}, one A_{3})	(smooth, smooth)

Note that all the singularities of X and Y are in the origin of the coordinates charts \mathcal{U}_{1} and \mathcal{U}_{2} and that they are not "too complicated". We prove that the converse is also true. Before stating our results, let us recall a definition.

Let $f \in(y, z)^{2}$ be a line singularity and write it as $f=y^{2} \psi_{1}+2 y z \psi_{2}+z^{2} \psi_{3}$, for some germs $\psi_{1}, \psi_{2}, \psi_{3} \in \mathcal{O}$. These germs are not uniquely determined, but the corank of f, i.e. the corank of the Hessian matrix

$$
H_{f}(0)=\left(\begin{array}{ll}
\psi_{1}(0) & \psi_{2}(0) \\
\psi_{2}(0) & \psi_{3}(0)
\end{array}\right)
$$

is well defined. It is clear that the corank of f is equal to 0 if and only if f is \mathcal{D}_{I}-equivalent to A_{∞}. For $g \in \mathcal{O}$, the k-jet of g will be denoted by $j^{k}(g)$.

Theorem 2.4 (Case: corank is one) Let $f:\left(\mathbf{C}^{3}, 0\right) \rightarrow \mathbf{C}$ be an isolated line singularity with singular locus $L=\{y=z=0\}$, let $V=f^{-1}(0)$ and let X denote the strict transform of V after blowing up the line L in \mathbf{C}^{3}. Let Y be the exceptional curve of X and let us suppose that the corank of f is equal to 1 . Then we have:
(i) If X is smooth, then f is $\mathcal{D}_{I^{-}}$equivalent to $J_{k, \infty}$ for some $k \geq 1$.
(ii) If X has an A_{1} singularity, then f is \mathcal{D}_{I}-equivalent to $Z_{k, \infty}$ for some $k \geq 0$.
(iii) If X has an A_{k-3} singularity, for some $k \geq 5$, and Y has an A_{1} singularity, then f is \mathcal{D}_{I}-equivalent to $T_{\infty, k, 2}$.
(iv) If X has an A_{2} singularity and Y has an A_{2} singularity, then f is \mathcal{D}_{I}-equivalent to $W_{1, \infty}$.

Proof Since f is an ILS with corank 1 , one can find suitable coordinates in $\left(\mathbf{C}^{3}, 0\right)$ such that $f(x, y, z)=y^{2} g(x, y)+z^{2}$. Moreover, $g(x, y)$ has an isolated singularity in $(0,0) \in \mathbf{C}^{2}$ and $g(x, 0)$ has an isolated singularity in $0 \in \mathbf{C}$. Thus, X and Y are smooth in \mathcal{U}_{2} and only the origin of \mathcal{U}_{1} could be a singular point of X or of Y. Note that the equation of X in \mathcal{U}_{1} is $g(x, y)+v^{2}=0$ and the equations of Y in \mathcal{U}_{1} are $y=g(x, 0)+v^{2}=0$.

If X is smooth, then $g(x, y)=\alpha x+\beta y+\cdots$ for some $(\alpha, \beta) \in \mathbf{C}^{2} \backslash\{(0,0)\}$. If $\alpha \neq 0$, then f is \mathcal{D}_{I}-equivalent to $D_{\infty}=J_{1, \infty}$. When $\alpha=0$ and $\beta \neq 0$, then f is \mathcal{D}_{I}-equivalent to $J_{k, \infty}$, for some $k \geq 2$. Thus, point (i) is proved.

If X is not smooth, then $j^{2}(g)$ is \mathcal{D}_{I}-equivalent to one of the following: $x y, x^{2}, y^{2}$ or 0 . If $j^{2}(g)=0$, then X has a singularity which is not of type A_{s}, for any s, contradicting the hypothesis. It remains that $j^{2}(g) \neq 0$.

Note that X has an A_{1} singularity if and only if $j^{2}(g)$ is $\mathcal{D}_{I^{-}}$-equivalent to $x y$; and in this situation it is easy to see that f is \mathcal{D}_{I}-equivalent to $Z_{k, \infty}$ for some $k \geq 0$.

If Y has an A_{1} singularity, then $j^{2}(g(x, 0))=x^{2}$. If, moreover, X has an A_{k-3} singularity, for some $k \geq 5$, then $j^{2}(g)=x^{2}$ and it is easy to see that f is \mathcal{D}_{I}-equivalent to $T_{\infty, k, 2}$.

Suppose now that X and Y have singularities of type A_{2}. By the above remarks it follows that $j^{2}(g)=y^{2}$. Thus, g is \mathcal{D}_{I}-equivalent to $y^{2}+y h(x, y)+a(x)$, for suitable germs $h \in m^{2}$ and $a \in m^{3} \backslash m^{4}$. And now it is easy to see that f is \mathcal{D}_{I}-equivalent to $W_{1, \infty}$.

Theorem 2.5 (Case: corank is two) Let $f:\left(\mathbf{C}^{3}, 0\right) \rightarrow \mathbf{C}$ be an isolated line singularity with singular locus $L=\{y=z=0\}$, let $V=f^{-1}(0)$ and let X denote the strict transform of V
after blowing up the line L in \mathbf{C}^{3}. Let Y be the exceptional curve of X and let us suppose that the corank of f is equal to 2 . Then we have:
(i) If X is smooth and Y has an isolated singularity, not of type A_{1}, then f is \mathcal{D}_{I}-equivalent to $Q_{k, \infty}$, for some $k \geq 2$.
(ii) If X has an A_{1} singularity and Y has an isolated singularity, not of type A_{1}, then f is $\mathcal{D}_{I^{-}}$equivalent to $S_{1, \infty}$.
(iii) If Y has only singularities of type A_{1}, then f is \mathcal{D}_{I}-equivalent to $T_{\infty, q, r}$, for some $q \geq r \geq 3$.
Proof Since $f \in I^{2}$ has corank two, we can write

$$
f=x\left(y^{2} a(x)+y z b(x)+z^{2} c(x)\right)+g(y, z)+x h(x, y, z)
$$

for suitable germs $a, b, c \in \mathcal{O}$ and $g, h \in I^{3}$. The equations of X are:

$$
\begin{aligned}
& \text { in } \mathcal{U}_{1}: x a(x)+x v b(x)+x v^{2} c(x)+y^{-2} \cdot g(y, v y)+x y^{-2} \cdot h(x, y, v y)=0, \\
& \text { in } \mathcal{U}_{2}: x u^{2} a(x)+x u b(x)+x c(x)+z^{-2} \cdot g(u z, z)+x z^{-2} \cdot h(x, u z, z)=0 .
\end{aligned}
$$

Since Y has only isolated singularities, we have: $\min \{\operatorname{ord}(a), \operatorname{ord}(b), \operatorname{ord}(c)\}=0$.
Consider now the quadratic form $Q(y, z):=y^{2} a(0)+y z b(0)+z^{2} c(0)$. After a suitable linear coordinate change $\varphi \in \mathcal{D}_{I}$, we will have either $Q=z^{2}$, or $Q=y z$.

If $Q=z^{2}$, then $c(0)=1$ and $a(0)=b(0)=0$. Thus, the origin $0 \in \mathcal{U}_{1}$ is a singular point of Y, but not of type A_{1}.

If $Q=y z$, then $b(0)=1$ and $a(0)=c(0)=0$. Using the standard classification methods, one can easily show that f is \mathcal{D}_{I}-equivalent to a $T_{\infty, q, r}$ singularity, for suitable $q \geq r \geq 3$. Thus, point (iii) is proved.

Suppose that Y has at least one isolated singularity which is not of type A_{1}. Then $Q=z^{2}$, $c(0)=1$ and $a(0)=b(0)=0$, hence X can be singular only in the origin $0 \in \mathcal{U}_{1}$.

Assume moreover that X is smooth. Then $j^{1}\left(y^{-2} \cdot g(y, v y)\right) \neq 0$. After a suitable coordinate change $\varphi \in \mathcal{D}_{I}$, we can obtain $j^{3}(f)=x z^{2}+y^{3}$. Using the standard classification methods, one can show that f is \mathcal{D}_{I}-equivalent to a $Q_{k, \infty}$ singularity, for a suitable $k \geq 2$.

If Y has at least one isolated singularity which is not of type A_{1} and X has an A_{1} singularity, we write

$$
a(x)=a_{1} x+x^{2} \gamma(x), \quad h(x, y, z)=z H_{1}(x, y, z)+h_{1} y^{3}+y^{3} H_{2}(x, y)
$$

and

$$
g(y, z)=g_{1} y^{3}+g_{2} y^{2} z+g_{3} y^{4}+z^{2} G_{1}(y, z)+y^{3} z G_{2}(y)+y^{5} G_{3}(y)
$$

for suitable coefficients $a_{1}, g_{1}, g_{2}, g_{3}, h_{1} \in \mathbf{C}$ and functions $\gamma(x), G_{2}(y), G_{3}(y) \in \mathcal{O}$, $G_{1}(y, z) \in I, H_{1}(x, y, z) \in I^{2}$ and $H_{2}(x, y) \in m$. Since X has an A_{1} singularity in the origin $0 \in \mathcal{U}_{1}$, it follows that $g_{1}=0, a_{1} \neq 0$ and $g_{2} \neq 0$. After a coordinate change $\varphi \in \mathcal{D}_{I}$, we can assume that $a(x)=x$ and $g_{2}=1$. Thus, for suitable $\beta_{j} \in \mathbf{C}$ and homogeneous polynomials $\alpha_{1}(y, z) \in I^{4}, \alpha_{2}(y, z) \in I^{3}$, we have:

$$
j^{4}(f)=x z^{2}+\beta_{1} x^{2} y z+x^{2} y^{2}+y^{2} z+\beta_{2} y z^{2}+\beta_{3} z^{3}+\alpha_{1}(y, z)+x \alpha_{2}(y, z) .
$$

And now, the usual classification methods give us that f is \mathcal{D}_{I}-equivalent to $S_{1, \infty}$.

Combining Proposition 2.2 with Theorems 2.4 and 2.5, we obtain the following
Corollary A simple isolated line singularity $f \in(y, z)^{2}$ can be characterized by the corank of f and by the singularities of X and Y.

Remark 2.7 In [5], G. Jiang extended the above results to the case of line singularities on an A_{1} surface. However, these results can not be generalized to any class of non-isolated singularities, as the next example shows us.

Let $k \geq 4$ and let $g:\left(\mathbf{C}^{k+2}, 0\right) \rightarrow \mathbf{C}$ be defined by $g\left(y_{1}, y_{2}, x_{1}, \ldots, x_{k}\right)=x_{1} y_{1}^{2}+x_{2} y_{2}^{2}+$ $y_{1} y_{2} h\left(x_{3}, \ldots, x_{k}\right)$, where $h\left(x_{3}, \ldots, x_{k}\right)$ is an isolated singularity. Then the singular locus of g is $\left\{y_{1}=y_{2}=0\right\}$ and under the blowing up of \mathbf{C}^{k+2} with center $\left\{y_{1}=y_{2}=0\right\}$, the strict transform of $g^{-1}(0)$ is smooth and intersects transversally the exceptional divisor. On the other hand, it follows from [12] that if h is not an $A-D-E$ singularity, then g is not a simple non-isolated singularity.

3 Inner Modality

3.1

Let $w_{0}, w_{1}, w_{2} \in \mathbf{N} \backslash\{0\}$ be the weights of x, y, z and let $d \in \mathbf{N}$. We assume that

$$
\begin{equation*}
w_{1} \leq w_{2} \text { and } d \geq 2 w_{j}>0 \quad \text { for all } j \tag{1}
\end{equation*}
$$

Let $f \in \mathbf{C}[x, y, z]$ be a quasihomogeneous polynomial of degree d and assume that $f \in I^{2}$ is an ILS. Following [10, p. 286], we define the inner modality of f by

$$
m_{0}(f)=\operatorname{dim}_{\mathbf{C}} \frac{I \cap \mathcal{O}_{\geq d}}{J(f) \cap \mathcal{O}_{\geq d}}, \quad \text { where } J(f):=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

and we say that f is i-simple if $m_{0}(f)=0$. By [10], we have:

$$
\begin{equation*}
f \text { is } i \text {-simple } \Longleftrightarrow 2 d<2 w_{0}+3 w_{1}+2 w_{2} \tag{2}
\end{equation*}
$$

In this section we prove the following
Theorem 3.2 Let $f \in \mathbf{C}[x, y, z]$ be a quasihomogeneous polynomial such that $f \in I^{2}$ is an isolated line singularity. Then f is i-simple if and only if f is \mathcal{D}_{I}-equivalent to one of the normal forms listed in Theorem 1.2.

Remark 3.3 This theorem is similar to results obtained, for the $A-D-E$ singularities, by V. I. Arnold [1] and K. Saito [8].

Proof In [10, p. 289], it is already shown that the normal forms listed in Theorem 1.2 are i-simple. Moreover, in the same place it is remarked that the converse is true for all i-simple f, if the corank is equal to 1 . Hence we have to prove that f is \mathcal{D}_{I}-simple only when f is i-simple and has the corank equal to 2 . This fact follows from the next proposition.

Proposition 3.4 Let $f \in \mathbf{C}[x, y, z]$ be a quasihomogeneous polynomial such that $f \in I^{2}$ is an isolated line singularity of corank 2. Then we have:
(i) If f is i-simple, then $j^{3}(f)$ contains at least one monomial from the following list:

$$
\begin{equation*}
x y^{2}, \quad x y z, \quad x z^{2} . \tag{3}
\end{equation*}
$$

(ii) If $j^{3}(f)$ contains at least two monomials from the list (3), then f is \mathcal{D}_{I}-equivalent to a germ $T_{\infty, r, r}$ for a suitable $r \geq 3$.
(iii) There is no such for which $j^{3}(f)$ contains only $x y^{2}$ from the list (3).
(iv) If $j^{3}(f)$ contains only $x y z$ from the list (3), then f is \mathcal{D}_{I}-equivalent to a germ $T_{\infty, q, r}$ for suitable $q \geq r \geq 3$.
(v) If f is i-simple and $j^{3}(f)$ contains only $x z^{2}$ from the list (3), then f is \mathcal{D}_{I}-equivalent either to $S_{1, \infty}$, or to a germ $Q_{k, \infty}$ for a suitable $k \geq 2$.

Proof To prove (ii), note that $w_{1}=w_{2}$, hence $f(0, y, z)$ is a homogeneous polynomial. If r denotes the (usual) degree of $f(0, y, z)$, then using the classification methods one can easily show that f is \mathcal{D}_{I}-equivalent to $T_{\infty, r, r}$.

To prove (iii), assume the contrary. The condition $c(f)<\infty$ implies that f contains at least one monomial of the form $x^{k} y z$ or $x^{k} z^{2}$, for some $k \geq 2$. A contradiction is given by the inequalities: $\operatorname{wdeg}\left(x^{k} z^{2}\right) \geq \operatorname{wdeg}\left(x^{k} y z\right) \geq \operatorname{wdeg}\left(x^{k} y^{2}\right)>w_{0}+2 w_{1}=d$.

The point (iv) can be proved using the classification methods.
To prove (v), note that if $j^{3}(f(0, y, z)) \neq 0$, then the usual classification methods give us that f is \mathcal{D}_{I}-equivalent either to $S_{1, \infty}$, or to $Q_{k, \infty}$, for some $k \geq 2$.

Assume now that $j^{3}(f)$ contains only $x z^{2}$ from list (3) and that $j^{3}(f(0, y, z))=0$. Using (2), we will show that f is not i-simple. The condition $c(f)<\infty$ implies that f contains at least one monomial of type $y^{a}, x y^{b}, z y^{c}$, for some $a \geq 3, b \geq 3, c \geq 2$, and at least one monomial of type $x^{\ell} y z$ or $x^{\ell} y^{2}$, for some $\ell \geq 2$. Since $x^{2 \ell} y^{2} z^{2}=x z^{2} \cdot x^{2 \ell-1} y^{2}$, it follows that there exists some $k \geq 2$ such that $\operatorname{wdeg}\left(x^{k} y^{2}\right)=d$.

If f contains y^{a} for some $a \geq 4$, then $4 d=\operatorname{wdeg}\left(y^{a} \cdot x^{2} z^{4} \cdot x^{k} y^{2}\right)=(2+k) w_{0}+$ $(a+2) w_{1}+4 w_{2} \geq 4 w_{0}+6 w_{1}+4 w_{2}$.

If f contains $x y^{b}$ for some $b \geq 3$, then $2 d=\operatorname{wdeg}\left(x z^{2} \cdot x y^{b}\right)=2 w_{0}+b w_{1}+2 w_{2} \geq$ $2 w_{0}+3 w_{1}+2 w_{2}$.

If f contains $z y^{c}$ for some $c \geq 3$, then $3 d=\operatorname{wdeg}\left(x^{k} y^{2} \cdot z y^{c} \cdot x z^{2}\right)=(k+1) w_{0}+$ $(c+2) w_{1}+3 w_{2} \geq 3 w_{0}+5 w_{1}+3 w_{2}$.

The point (i) is a consequence of the following Lemma.
Lemma 3.5 Let $f \in \mathbf{C}[x, y, z]$ be a quasihomogeneous polynomial such that $f \in I^{2}$ is an isolated line singularity of corank 2 and such that $j^{3}(f)$ contains no monomials from the list (3). Then f is not i-simple.

Proof We list seven cases and we show that $2 d \geq 2 w_{0}+3 w_{1}+2 w_{2}$ in each of them. Thus, by (2), f is not i-simple. We leave almost all the details of the proof to the reader.
(i) f contains $x z^{b}$ for some $b \geq 3$.
(ii) $j^{3}(f)$ contains at least two monomials from the set $\left\{y^{3}, y^{2} z, y z^{2}, z^{3}\right\}$.
(iii) $j^{3}(f)=\alpha y^{3}$, with $\alpha \neq 0$.

It follows that $w_{1}=\frac{d}{3}$ and that f contains at least one monomial of the form $y z^{a}$, with $a \geq 3$, or $x z^{b}$, with $b \geq 3$, or z^{c}, with $c \geq 4$. But $w_{2} \geq w_{1}=\frac{d}{3}$, hence f does not contain z^{c}, with $c \geq 4$. Also, by case (i), if f contains $x z^{b}$, with $b \geq 3$, then f is not i simple. It remains to consider the situation when f contains $y z^{a}$, with $a \geq 3$. It follows that $w_{2}=\frac{2 d}{3 a}<w_{1}=\frac{d}{3}$, in contradiction with our assumption (1).
(iv) $j^{3}(f)=\alpha y^{2} z$, with $\alpha \neq 0$.
(v) $j^{3}(f)=\alpha y z^{2}$, with $\alpha \neq 0$.
(vi) $j^{3}(f)=\alpha z^{3}$, with $\alpha \neq 0$.
(vii) $j^{3}(f)=0$.

Then f contains at least one monomial from each of the following three lists:

$$
x^{k} y^{2}, x^{k} y z, x^{k} z^{2} \quad \text { for some } k \geq 2
$$

$$
y^{a+4}, x y^{b+3}, z y^{b+3} \quad \text { for some } a, b \geq 0 ; \quad z^{u+4}, x z^{v+3}, y z^{v+3} \quad \text { for some } u, v \geq 0
$$

The last two lists show that $d>3 w_{1}$ and $d>3 w_{2}$. If f contains $x^{k} y^{2}$, then $2 d>$ $\operatorname{wdeg}\left(x^{k} y^{2}\right)+3 w_{2}=k w_{0}+2 w_{1}+3 w_{2} \geq 2 w_{0}+3 w_{1}+2 w_{2}$. A similar argument works also when f contains $x^{k} z^{2}$ or when f contains $x^{k} y z$.

Acknowledgements I would like to thank Professor Pierre Milman, University of Toronto, and The Fields Institute for the hospitality and support I received during the work on this note. I am also grateful to the referee, whose criticism helped me to improve the presentation.

References

[1] V. I. Arnold, Normal forms of functions in the neighborhood of critical points. Uspekhi Mat. Nauk (2) 29(1974), 11-49; Russian Math. Surveys (2) 29(1974), 18-50.
[2] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps. Vol. 1, Monographs in Math., Birkhauser, 1985.
[3] A. H. Durfee, Fifteen characterizations of rational double points and simple critical points. Enseign. Math. 25(1979), 131-163.
[4] V. V. Goryunov, Bifurcation diagrams of simple and quasi-homogeneous singularities. Funktsional Anal. i Prilozhen. (2) 17(1983), 23-37.
[5] G. Jiang, Functions with non-isolated singularities on singular spaces. Thesis, Utrecht University, 1998.
[6] T. de Jong, Some classes of line singularities. Math. Z. 198(1988), 493-517.
[7] G. R. Pellikaan, Finite determinacy of functions with non-isolated singularities. Proc. London Math. Soc. 57(1988), 357-382.
[8] K. Saito, Einfach elliptische Singularitäten. Invent. Math. 23(1974), 289-325.
[9] D. Siersma, Isolated line singularities. Proc. of Symposia in Pure Math. (2) 40(1983), 485-496.
[10] , Quasihomogeneous singularities with transversal type A_{1}. Contemporary Math. 90, (ed. R. Randell), 1989, 261-294.
[11] J. Stevens, Improvements of nonisolated surface singularities. J. London Math. Soc. 39(1989), 129-144.
[12] A. Zaharia, On simple germs with non-isolated singularities. Math. Scand. 68(1991), 187-192.

Institute of Mathematics
of The Romanian Academy

Mailing address (until July 1998):
Department of Mathematics
University of Toronto
Toronto, Ontario
M5S 3G3
e-mail: zaharia@math.utoronto.ca

