ON MULTIPLY TRANSITIVE PERMUTATION GROUPS

G. P. MONRO and D. E. TAYLOR
(Received 24 August 1977)
Communicated by W. D. Wallis

Abstract

We present a direct combinatorial proof of the characterization of the degree of transivity of a finite permutation group in terms of the Bell numbers.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 B 20.

The k th Bell number B_{k} is the number of partitions of a set of k elements (Comtet, 1974, p. 210). It has been observed by Merris and Pierce (1971) that if G is a group of permutations of a set X, then G is k-fold transitive if and only if

$$
\frac{1}{|G|} \sum_{g \in G} \pi(g)^{k}=B_{k}
$$

where $\pi(g)$ denotes the number of elements of X fixed by g. The proof given by Merris and Pierce is by induction on k and uses the recurrence relation $B_{k+1}=\sum_{j=0}^{k}\binom{k}{j} B_{j}$. In this note we give a proof based directly on the interpretation of B_{k} as the number of partitions of a set of k elements.

Theorem. G is k-fold transitive if and only if

$$
\frac{1}{|G|} \sum_{g \in G} \pi(g)^{k}=B_{k} .
$$

Proof. Let Y be the set of k-tuples of elements of X, and let G act on Y by setting $g\left(\left\langle x_{1}, \ldots, x_{k}\right\rangle\right)=\left\langle g\left(x_{1}\right), \ldots, g\left(x_{k}\right)\right\rangle$. Note that if $g \in G, g$ fixes $\pi(g)^{k}$ elements of Y. It follows from a theorem of Burnside on the number of orbits of a permutation group (Huppert, 1968, p. 536) that if Y has N orbits under G, then

$$
\frac{1}{|G|} \sum_{g \in G} \pi(g)^{k}=N
$$

Now, let \mathscr{P} be a partition of the set $\{1, \ldots, k\}$. Let $Y_{\mathscr{g}}$ be the subset of Y consisting of those k-tuples $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ such that $x_{i}=x_{j}$ if and only if i and j are both in the same block of \mathscr{P}. Clearly $Y_{\mathscr{F}}$ is a union of orbits. If G is k-fold transitive each $Y_{\mathscr{F}}$
is in fact an orbit, so there are B_{k} orbits. If G is not k-fold transitive, consider $\mathscr{P}_{0}=\{\{1\}, \ldots,\{k\}\} . \quad Y_{\mathscr{S}_{0}}$ will be the union of more than one orbit, so altogether there will be more than B_{k} orbits.

Weaker forms of this theorem are discussed by Huppert (1968, p. 599) and van Lint (1974, p. 31).

References

L. Comtet (1974), Advanced Combinatorics (Reidel, Dordrecht, 1974).
B. Huppert (1968), Endliche Gruppen I (Springer-Verlag, Berlin, 1968).
R. Merris and S. Pierce (1971), "The Bell numbers and r-fold transitivity", J. Combinatorial Theory (A) 12, 155-157.
J. van Lint (1974), Combinatorial Theory Seminar, Eindhoven University of Technology (SpringerVerlag Lecture Notes in Mathematics, 382, Berlin).

Department of Pure Mathematics
University of Sydney
N.S.W. 2006

Australia

