
Proceedings of the Edinburgh Mathematical Society (2022) 65, 460–479

doi:10.1017/S0013091522000177

SUM EXPRESSIONS FOR KUBOTA–LEOPOLDT P -ADIC
L-FUNCTIONS

LUOCHEN ZHAO

Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, 3400 N.
Charles Street, Baltimore, MD 21218, USA (lzhao39@jhu.edu)

(Received 10 October 2021; first published online 10 June 2022)

Abstract When p is an odd prime, Delbourgo observed that any Kubota–Leopoldt p-adic L-function,
when multiplied by an auxiliary Euler factor, can be written as an infinite sum. We shall establish such
expressions without restriction on p, and without the Euler factor when the character is non-trivial, by
computing the periods of appropriate measures. As an application, we will reprove the Ferrero–Greenberg
formula for the derivative L′

p(0, χ). We will also discuss the convergence of sum expressions in terms of
elementary p-adic analysis, as well as their relation to Stickelberger elements; such discussions in turn
give alternative proofs of the validity of sum expressions.
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1. Introduction

1.1. Motivation

The facts that we mention in the following without proof, if not specified otherwise, can
be found in Chapter 3 of [9], Chapter 2 of [14], Chapters 4 and 10 of [16], and Chapters 5
and 12 of [20]. All limits, when not emphasized, are with respect to the p-adic topology.

Given an even Dirichlet character χ, it is well known that there exists a unique p-adic
meromorphic function Lp(s, χ) for s ∈ Zp that satisfies the interpolation property:

for all integer n ≥ 1, Lp(1− n, χ) = (1− χω−n(p)pn−1)L(1− n, χω−n), (1.1)

where L(s, χ) for s ∈ C is the usual Dirichlet L-function. As is customary, we refer to
these Lp(s, χ) as Kubota–Leopoldt p-adic L-functions, or just p-adic L-functions for short.
Also, when χ is the trivial character 1 (respectively is of conductor pt for some t ∈ Z>0),
we refer to Lp(s,1) (respectively Lp(s, χ)) as the p-adic zeta function (respectively a twist
of the p-adic zeta function).
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One construction of the Kubota–Leopoldt p-adic L-functions, as initiated by Mazur, is
from their integral representations. For example, when the conductor of χ is a power of
p, for any c ∈ Z>0 prime to p, there exists a p-adic measure μ1,c−1 [14, § II.5] (denoted
E1,c in [16, § 2.2]), such that [16, p. 107]

− Lp(s, χ) =
1

1− χ(c)〈c〉1−s
∫
Z×

p

ω−1χ(x)〈x〉−sμ1,c−1(x). (1.2)

In a different flavour, thanks to the works of Delbourgo, it is also possible to write
p-adic L-functions more explicitly as a conditionally convergent infinite sum. For instance,
when p is odd, Delbourgo [2] obtained the following sum expression:

Lp(s, ωβ+1) =
1

2(1− ωβ+1(2)〈2〉1−s)
∑
n≥1

⎛
⎜⎜⎝ ∑
pn−1≤m<pn

p�m

ωβ(m)
〈m〉s (−1)m+1

⎞
⎟⎟⎠ , (1.3)

where β ∈ Z/(p− 1) and s ∈ Zp. His method, which crucially exploits a periodicity
nature of the measure μ1,2−1 , will be explained in § 1.5.

We conclude by summarizing the importance of sum expressions beyond their inherent
appeal: First, they provide a straightforward way to numerically approximate the special
values of Lp(s, χ) for s ∈ Z>1, which are outside of the classical range. In turn, the
nonvanishing of such values would imply the finiteness of certain Iwasawa modules (see,
e.g. [1, Proposition 3.3.7]). Second, their theoretical significance is illustrated in the study
of derivatives, and higher derivatives, of p-adic L-functions, thanks to their explicit nature.
We shall demonstrate this point by giving a direct proof of the Ferrero–Greenberg formula
for the derivative of the p-adic L-function in § 4, a result that is known to be a key link
in the proof of Gross–Stark conjecture in the case of Q [8, § 4].

1.2. Notation

Fix a rational prime p. Let Cp be the completion of an algebraic closure Q̄p of Qp,
and let op be its ring of integers. Fix also an algebraic closure Q̄ of Q and embeddings of
Q̄ into C and Cp, so we can identify Q̄ as a subfield of both. For a, b ∈ Cp and r ∈ Z≥0,
by a ≡ b mod pr we mean that a− b ∈ prop. Thus, if a, b ∈ Qp, then a ≡ b mod pr means
a− b ∈ prZp. In the rest of this article, unless specified otherwise, N will always denote a
positive integer bigger than 1 and is prime to p, and q = pf > 1 will denote the smallest
power of p such that q ≡ 1 mod N . The letter χ shall denote a Dirichlet character of
conductor N , while ψ shall denote one of conductor a power of p, which will be simply
denoted by 1 when it is trivial. When h > 1 is an integer, for any a ∈ Z/h, we denote by
a�h,a

�
h the unique integers such that a�h ∈ [0, h), a�h ∈ (0, h] and a ≡ a�h ≡ a�h mod h.

1.3. Overview of the main result

Our main achievement in this paper is the establishment of sum expressions for all
Kubota–Leopoldt p-adic L-functions in complete generality, extending the previous works
of Delbourgo [2–4]. The exact statement is as follows:
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Theorem 1.1. Let p be a prime, N ∈ Z>1 be prime to p, and let q = pf > 1 be the
smallest p-power such that pf ≡ 1 mod N . Suppose χ is a Dirichlet character of conductor
N, and ψ is one of conductor a power of p. Then, we have

(i) for the (twist of) p-adic zeta function:

Lp(s, ψω) = − 1
1− ψω(N)〈N〉1−s lim

n→∞

∑
1≤m<qn,p�m

ψ(m)
〈m〉s m

�
N ;

(ii) for the (twist of) p-adic Dirichlet L-function:

Lp(s, χψω) = − lim
n→∞

∑
1≤m<qn,p�m

ψ(m)
〈m〉s

∑
1≤a<m�

N

χ(a).

Remark 1.2. After the draft of this paper has been finalized, we are informed that
Knospe and Washington [15, Theorem 2.4, Corollary 2.5] have obtained (i) and a weaker
version of (ii). For this reason, we only sketch the proof of (i) in § 1.5. Our formula in (ii)
may be regarded as stronger as it removes the auxiliary Euler factor away from p that is
present in [15].

Remark 1.3. While the Kubota–Leopoldt p-adic L-functions are in fact defined on
the larger domain [20, Theorem 5.9]

{s ∈ Cp : |s|p < |2p
p−2
p−1 |−1

p },
in this article, we will exclusively treat the case when s varies in Zp, for it is sufficient for
our purposes, and for saving us from additional discussions on analysis. Basically, when
s /∈ Zp, using our approach one can derive the same limit formulas, and even estimates
on the error term if one so desires, by using the asymptotic identity 〈x〉s = 〈a〉s +O(pns)
for all a ∈ Z×

p , x ∈ a+ pnZp and s in the above range.

Remark 1.4. It is worth pointing out that, when s = 1, ψ = 1 and N = 2, the formula
in (i) is virtually due to Koblitz [13, p. 461, Remark 1] (see also [18, Theorem 59.1]).
Formulas of a similar flavour are recorded in Remark 3.10.

1.4. Novelty in this paper

As remarked earlier, the statement about the sum expressions for p-adic Dirichlet
L-functions without the Euler factor is new. The explicit period formulas that lead to
them, however, were implicit in the works of Iwasawa on Stickelberger elements, and
were studied in the works of Ferrero [5] and Ferrero–Washington [7]. Nevertheless, the
measure-theoretic form in which the formulas are stated does not seem to have been
recorded in the literature, not does our proof of them by computing certain periods of a
particular rational function. Finally, the analytic formulas listed in Remark 3.10 (when
N �= 2) and the expressions of higher derivatives of p-adic L-functions in (4.3) seem to
be new.

Another aspect we supplement to previous works on sum expressions is an alternative
explanation of their convergence. This only uses some elementary p-adic analysis, as well
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as a trick of Ferrero–Greenberg. We believe it makes these infinite sums less mysterious
and exemplifies the naturalness and significance of the Ferrero–Greenberg permutation in
their studies. The last point is further strengthened in our re-derivation of the derivative
formula, a useful application that is not pointed out in preceding works.

1.5. The method

To establish Theorem 1.1, we will follow the method of Delbourgo [2], complemented
by its measure-theoretic reflection. In concrete terms, we invoke a machinery that yields
infinite sum expressions of p-adic L-functions based on three ingredients:

(a) the integral representation of the p-adic L-functions;

(b) computability of various periods μ(a+ pnZp) for all a ∈ Zp and n ∈ Z≥0, where μ
is the attached measure in (a);

(c) uniform periodicity of the above periods, i.e., there exists f ∈ Z>0 such that for
all m ∈ Z≥0 and all n, n′ ∈ Z≥0 such that pn > m, pn

′
> m and n ≡ n′ mod f , we

have μ(m+ pnZp) = μ(m+ pn
′
Zp).

We explain here how these can be assembled together to give a quick proof of the first
part of Theorem 1.1: The integral representation is provided by (1.2) with c = N , and
we have the explicit formula [16, p. 38]

μ1,N−1(a+ pnZp) =
a

pn
− 1

2
−N

(
(a/N)�pn

pn
− 1

2

)
,

where n ∈ Z≥0 and 0 ≤ a < pn. It can be worked out that μ1,N−1(a+ pnZp) = ( apn )�N −
N+1

2 (cf. [15, Theorem 3.1]). Therefore, by taking the Riemann sums of (1.2), we have

−(1− ψω(N)〈N〉1−s)Lp(s, ψω) = lim
n→∞

∑
1≤m<pn,p�m

ψ(m)
〈m〉s

[(
m

pn

)�
N

− N + 1
2

]
.

This is not yet an infinite sum, since the m-th coefficient, am(n) = ( mpn )�N − N+1
2 ,

depends on n. Still, one can see that their dependence on n is uniform and periodic
in the sense of (c) above. Thus, taking only n to be divisible by f , we have the formula
in Theorem 1.1.(i), by noting that limn→∞

∑
1≤m<pn,p�m ψ(m)〈m〉−s = 0.

Remark 1.5. When N = 2, this reproduces the argument in [2], by [16, Proposition
4.3.4].

1.6. Further developments

The sum expressions also exist for p-adic Hecke L-functions of totally real fields under
an analogue of Heegner hypothesis introduced by Cassou-Noguès, and will be treated
in a forthcoming paper. These sum expressions thus give rise to generalizations of the
Ferrero–Greenberg derivative formula, and we hope they could shed more light on the
Gross–Stark conjecture.
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In a separate paper, we will discuss the possibility of writing the p-adic L-functions
of cuspidal forms as an infinite sum. In this case, the integral representation (of an
allowable root of the Hecke polynomial) is known by the works of Amice-Vélu and Vishik
(see, e.g.[17]), and the periods are in a sense computable, being modular integrals. We
are, however, not certain if uniform periodicity holds for them. For example, when the
weight is 2 and the form is rational, the periodicity implies the attached elliptic curve
has multiplicative reduction at p, as well as the vanishing of abundant modular integrals.

2. Background on p-adic measures

In this section, we give a quick recapitulation of p-adic measure theory; the details can
be found in the standard textbooks listed in § 1.1.

Let R be the ring of integers of some p-adic field over Qp. Denote by C(Zp, R) the
set of all continuous functions from Zp to R, topologized by the sup-norm. Recall a
measure on Zp valued in R is a continuous R-linear map C(Zp, R)→ R, and we denote
by Mes(Zp, R) the set of all such linear maps. For f ∈ C(Zp, R) and μ ∈ Mes(Zp, R), their
pairing will be written as

∫
Zp
f(x)μ(x), which is explicitly given by the limit of Riemann

sums, limn→∞
∑

0≤a<pn f(a)μ(a+ pnZp).
The space of measures can in fact be understood algebraically. By restricting the Amice

transform, defined a priori on locally analytic distributions, we have an isomorphism
F : Mes(Zp, R) ∼−→ R[[t− 1]], where R[[t− 1]] is the ring of formal power series in t−
1, equipped with the (p, t− 1)-adic topology. As such, for any F ∈ R[[t− 1]] and μ ∈
Mes(Zp, R), we shall denote F(μ)(t) by Aμ(t), and F−1(F (t)) by μF . The power series
realization of a measure, to us, is most useful in the following

Proposition 2.1. For any μ ∈ Mes(Zp, R), n ∈ Z≥0 and a ∈ Zp, we have

μ(a+ pnZp) =
1
pn

∑
ζ:ζpn=1

ζ−aAμ(ζ),

where the sum is over all pn-th root of unity in Cp.

Symmetrically, for F (t) ∈ R[[t− 1]] and all n ∈ Z≥0 and a ∈ Zp, we define

ΩF (a, n) =
1
pn

∑
ζ:ζpn=1

ζ−aF (ζ), (2.1)

which, through the Amice transform, equates μF (a+ pnZp). We will often refer to
ΩF (a, n)’s as periods (attached to F or μF ). In turn, we have∫

Zp

f(x)μF (x) = lim
n→∞

∑
0≤a<pn

f(a)ΩF (a, n). (2.2)

We finish this section by introducing our protagonist, the rational function

Lχ(t) =
∑

1≤a<N
χ(a)

ta

tN − 1
. (2.3)
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Here, as set in § 1.2, χ denotes a Dirichlet character of conductor N > 1 that is prime
to p. Denote further by Zp[χ] the ring obtained from Zp by adjoining values of χ. Since
N is prime to p, we see that Lχ(t), as an element in the fraction field of Zp[χ][[t− 1]], is
regular except potentially having a pole of order 1 at t = 1. The singularity is, however,
superfluous, since

∑
1≤a<N

χ(a)
ta

tN − 1
=

∑
1≤a<N

χ(a)
ta − 1
tN − 1

+
1

tN − 1

∑
1≤a<N

χ(a)

=
∑

1≤a<N
χ(a)

ta − 1
tN − 1

=
∑

1≤a<N
χ(a)

a+ a(a−1)
2 (t− 1) + · · ·

N + N(N−1)
2 (t− 1) + · · ·

.

(2.4)

Thus, Lχ(t) belongs to Zp[χ][[t− 1]], and Lχ(1) =
∑

0≤a<N χ(a) aN , which is further
equal to −L(0, χ) [9, Corollary 2.3.2]. Finally, we remind the reader of the role Lχ plays
in the integral representation: let ψ be any Dirichlet character of a p-power conductor,
then

− Lp(s, χψ) =
∫
Z×

p

ω−1ψ(x)〈x〉−sμLχ
(x). (2.5)

As (2.5) is not found in [9], we give it a very brief account. By a density argument,
it suffices to prove the above integral of μLχ

interpolates L-values for all s = −k ∈ Z≤0.
Also, we may work with ψωk+1 instead of ψ, where ψ is of conductor pt. Then, we have
(cf. [12, p. 485]):

−
∑

n≥1,p�n

χψ(n)nk = −
∑

n≥1,p�n

χψ(n)nktn
∣∣∣
t=1

=
(
t
d

dt

)k { ∑
1≤a<Npmax{t,1}

p�a

χψ(a)ta

tNpmax{t,1} − 1

}∣∣∣
t=1

,

where the leftmost quantity is no other than−(1− χψ(p)pk)L(−k, χψ), and the rightmost
quantity, by the Amice transform, is

∫
Zp
xkμ[ψ|

Z
×
p

]Lχ
(x) =

∫
Z×

p
xkψ(x)μχ(x) (see [9, §

3.5]).

Remark 2.2. We will not need it, but the same argument establishes the identity

−L(−k, χ) =
∫
Zp

xkμLχ
(x).

When k = 0, this has been observed in the form of Lχ(1) = −L(0, χ).

In what follows we shall often write μLχ
simply as μχ.
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3. Explicit period formulas and sum expressions

Invoking the machinery introduced in § 1.5, in this section, we will establish the second
part of Theorem 1.1 for any Dirichlet character χ of conductor N > 1, where gcd(N, p) =
1. Note that ingredient (a) is provided by (2.5). As such, in the following, we will start
by establishing the explicit formulas of the periods ΩLχ

(m,n) = μχ(m+ pnZp) attached
to the power series Lχ, or μχ, for all n ∈ Z≥0 and m ∈ Zp; this fulfils the requirement
(b). We will see from the explicit formula (3.4) that (c) automatically follows.

Recall that Lχ(t) =
∑

1≤a<N χ(a) ta

tN−1
is an element in Zp[χ][[t− 1]]. In § 2, we have

seen that

Lχ(1) =
∑

1≤a<N
χ(a)(a/N) = −L(0, χ). (3.1)

For ζ �= 1, we have the following

Lemma 3.1. The following identity holds in Q̄, and thus in Cp:

∑
ζ �=1:ζpn=1

Lχ(ζ)ζ−m =
∑

1≤a<N
χ(a)

(
m− a
N

)�
pn

. (3.2)

Proof. It suffices to prove this in C. For this, we introduce an auxillary parameter
x ∈ R such that 0 < x < 1, and observe the following archimedean limit:

∑
ζ �=1:ζpn=1

Lχ(ζ)ζ−m = lim
x→1−

∑
ζ �=1:ζpn=1

ζ−m
∑

1≤a<N
χ(a)

ζa

xζN − 1
.

Before taking the limit, the right-hand side can be expanded as:

∑
ζ �=1:ζpn=1

∑
1≤a<N

χ(a)
ζa

xζN − 1
ζ−m =

∑
ζ:ζpn=1

∑
1≤a<N

χ(a)
ζa

xζN − 1
ζ−m − 1

x− 1

∑
1≤a<N

χ(a)

= −
∑

ζ:ζpn=1

∑
1≤a<N

χ(a)ζa−m
1

1− xζN

= −
∑

1≤a<N
χ(a)

∑
ζ:ζpn=1

ζa−m
∑
k≥0

xkζNk

= −
∑

1≤a<N
χ(a)

∑
k≥0

xk
∑

ζ:ζpn=1

ζa−m+Nk

= −pn
∑

1≤a<N
χ(a)

∑
k≥0

Nk≡m−a mod pn

xk.
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As we have assumed that gcd(p,N) = 1, the above can be malleated further to

−pn
∑

1≤a<N
χ(a)

∑
k≥0

k≡m−a
N mod pn

xk = −pn
∑

1≤a<N
χ(a)

x( m−a
N )

�pn

1− xpn

= pn
∑

1≤a<N
χ(a)

1− x( m−a
N )�

pn

1− xpn

→
∑

1≤a<N
χ(a)

(
m− a
N

)�
pn

(x→ 1−). �

We can further analyse (m−a
N )�pn . Clearly, there is a unique h(a,m) = hn(a,m) ∈ Z

such that (m−a
N )� = m−a+h(a,m)pn

N . So, we may re-structure the above sum as:

∑
1≤a<N

χ(a)
(
m− a
N

)�
=

∑
1≤a<N

χ(a)
m− a+ pnh(a,m)

N

=
m

N

∑
1≤a<N

χ(a)− 1
N

∑
1≤a<N

χ(a)a+
pn

N

∑
1≤a<N

χ(a)h(a,m)

= L(0, χ) +
pn

N

∑
1≤a<N

χ(a)h(a,m).

Combining (3.1) and (3.2), we conclude that

Ωχ(m,n) =
1
pn

∑
ζ:ζpn=1

ζmLχ(ζ−1) =
1
N

∑
1≤a<N

χ(a)h(a,m). (3.3)

We now compute h(a,m) = hn(a,m). Recall that for b ∈ Z/N , we use b�N to denote
the unique integer in [0, N) such that b�N ≡ b mod N .

Proposition 3.2. For n ≥ 0, 0 ≤ a < N and 0 ≤ m < pn, we have 0 ≤ hn(a,m) < N ,
whence hn(a,m) = (a−mpn )�N . In turn, for n, a,m in the said range, the function hn(a,m)
is periodic in n with period f, the smallest positive integer such that pf ≡ 1 mod N, and
is periodic in m with period N . As a special case, if pn ≡ 1 mod N, then hn(a,m) =
(a−m)�N .

Proof. Since (m−a
N )� = m−a+h(a,m)pn

N < pn, a < N and m ≥ 0, we have:

−N + h(a,m)pn

N
<
m− a+ h(a,m)pn

N
≤ pn − 1,

which gives h(a,m) < N . On the other hand, because (m−a
N )� ≥ 0, a ≥ 0 and m < pn, we

have
pn + h(a,m)pn

N
>
m− a+ h(a,m)pn

N
≥ 0.
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Therefore h(a,m) > −1, which implies h(a,m) ≥ 0. Now, we can pin down the value of
hn(a,m): By definition, m−a+pnh(a,m)

N is an integer, so m− a+ h(a,m)pn ≡ 0 mod N ,
from which we have h(a,m) ≡ a−m

pn mod N . The inequality 0 ≤ h(a,m) < N then forces
h(a,m) to be (a−mpn )�N . The remaining statements are clear. �

With the value of h(a,m) uncovered, we can now establish the explicit period formula:

Theorem 3.3. Let χ be a Dirichlet character of conductor N > 1 that is prime to p,
and let μχ = μLχ

be the p-adic measure attached to Lχ (2.3). Then for any 0 ≤ m < pn,
we have

μχ(m+ pnZp) =
1
N

∑
1≤a<N

χ(m+ pna)a. (3.4)

When pn ≡ 1 mod N, the above formula becomes

μχ(m+ pnZp) = −L(0, χ) +
∑

1≤a<m
χ(a). (3.5)

Proof. By (3.3) and Proposition 3.2, we have μχ(m+ pnZp) = Ωχ(m,n) =
1
N

∑
1≤a<N χ(a)(a−mpn )�N . Thus

μχ(m+ pnZp) =
1
N

∑
1≤a<N

χ(a+m)
(
a

pn

)�
N

=
1
N

∑
1≤a<N

χ(m+ apn)a.

Now assume pn ≡ 1 mod N . To start, note that since h(a,m) is periodic in m with
period N , so is Ωχ(m,n) by (3.3), as long as 0 ≤ m < pn. As such, since the same peri-
odicity in m is also enjoyed by the right-hand side of (3.5), we only need to prove (3.5)
when 0 ≤ m < N . In this case:

Ωχ(m,n) =
1
N

∑
1≤a<N

χ(a)(a−m)�N =
1
N

∑
1≤a<N

χ(a)(a−m)

+
1
N

∑
1≤a<m

χ(a)N = −L(0, χ) +
∑

1≤a<m
χ(a). �

Corollary 3.4. Let χ be as in Theorem 3.3, and ψ be a Dirichlet character of conductor
a power of p. Let q > 1 be the smallest power such that q ≡ 1 mod N . Then

−Lp(−s, χψω) = lim
n→∞

∑
1≤m<qn,p�m

⎛
⎝ ∑

1≤a<m�
N

χ(a)

⎞
⎠ψ(m)〈m〉s

= lim
n→∞

∑
1≤a<N

χ(a)
∑

1≤m<qn

p�m,m�
N>a

ψ(m)〈m〉s.
(3.6)
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Proof. This follows from taking the Riemann sums of (2.5) with respect to the cosets
of qnZp for all n ≥ 0, and the two simple facts mentioned below; the second is standard
in p-adic analysis (see [18, § 34]).

1.
∑

1≤a<m χ(a) =
∑

1≤a<m�
N
χ(a) since χ is non-trivial;

2. limn→∞
∑

1≤m<qn,p�m ψ(m)〈m〉s = 0, since the function ψ(m)〈m〉s is continuous
on Z×

p , and thus on Zp by extending by zero. �

Remark 3.5. We may change � to � and still get an equality, since
∑

1≤a<N χ(a) = 0.

Remark 3.6. The limit sign of the second equality of (3.6) can be taken inside.
Namely,

lim
n→∞

∑
1≤m<qn

p�m,m�
N>a

ψ(m)〈m〉s

exists. This is discussed in Appendix B.

Remark 3.7. With some algebraic manipulation, one can show that the 2-regularized
sum expression given by Theorem 2.4 of [3] follows from the second period formula (3.5),
by deriving the following 2-regularized version (p is odd and f ′ is the order of p in
(Z/2N)×):

ΩLχ,2(m, f
′n) = L(0, χ) +

∑
1≤a<m

χ(a)− 2
∑

1≤a<m/2
χ(a), (3.7)

where Lχ,2(t) = Lχ(t)− 2Lχ(t2) is the rational function used in [3].

Remark 3.8. While we have only focussed on the case of pn ≡ 1 in the sum expression
(3.6), there are also sum expressions for other residues in (Z/N)×. For instance, when
p ≡ 2 mod 3 and χ is the quadratic character of conductor 3, we have

Lp(−s, χψω) = lim
n→∞

∑
1≤m<p2n+1,p�m
m≡1 mod 3

ψ(m)〈m〉s.

Remark 3.9. Since μχ is valued in Zp and s ∈ Zp, the nth partial sum of (3.6), being
the Riemann sum of division by qnZp, is equal to −Lp(−s, χψω) modulo qn. In practise,
the computational complexity of the sum expression can be cut by half by noting that
χψω is even, and that 〈m〉s ≡ 〈pn −m〉s mod pn.
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Remark 3.10. Using Leopoldt’s formula [11, p. 61, Theorem 3], one can deduce the
following analogous formulas by letting s = 1:

−
(

1 − 1

p

)
logpN = lim

n→∞
∑

1≤m<qn,p�m

m�
N

m

logp

(
1 − ζbph

1 − ζbN
ph

)
= lim
n→∞

∑
1≤m<qn,p�m

ζbmph m�
N

m
for h ≥ 1, b ∈ (Z/ph)×

logp

(
1 − ζcN

(1 − ζcpN )1/p

)
= lim
n→∞

∑
1≤m<qn,p�m

∑
1≤a<m�

N
ζcaN

m
for c ∈ (Z/N)×

logp(1 − ζbphζcN ) = lim
n→∞

∑
1≤m<qn,p�m

ζbmph

∑
1≤a<m�

N
ζcaN

m
for h ≥ 1, b∈(Z/ph)×, c∈(Z/N)×.

When p is odd and N = 2, starting from the first formula, we can easily obtain the
following variant

−2
(

1− 1
p

)
logp 2 = lim

n→∞

∑
1≤m< pn

2 ,p�m

1
m
.

An interesting question is the following: given n, what is the largest d(n) ∈ Z≥0 such
that

−2
(

1− 1
p

)
logp 2 ≡

∑
1≤m< pn

2 ,p�m

1
m

(mod pd(n))?

While it is automatic from the Riemann sum perspective that d(n) ≥ n, from some
small numerical experiments we find that d(n) ≥ 2n− 1. Can one show that there exists
a constant C > 0, such that for all p > 2 and n ≥ 1, d(n) ≥ 2n− C?

Remark 3.11. Finally, we remark on an important application of explicit period
formulas on Iwasawa invariants. Basically, for any p-adic measure μ attached to some
Kubota–Leopoldt p-adic L-function, by choosing a topological generator κ of 1 + pZp,

we can form a power series in R[[t− 1]] via the integral
∫
Z×

p
t
− logp x

logp κμ(x), which in turn
is the Iwasawa power series of the corresponding p-adic L-function. If we take the pnZp-
Riemann sum of the integral, we then get a well-defined element in R[t− 1]/(tp

n − 1),
whose coefficients encode the information of Iwasawa μ and λ invariants modulo pn. This
observation is classically exploited by [5] and [7], where the coefficients are obtained from
Stickelberger elements. For the link between Stickelberger elements and sum expressions,
we refer the reader to Appendix D.

4. Application: Derivative formulas at s = 0

As promised, we now reprove the Ferrero–Greenberg formula using the sum expression
for p-adic Dirichlet L-functions, based on an eponymous trick recalled in Appendix A.
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Even better, our approach also leads to formulas of higher derivatives expressed in terms
of certain elementary functions. For the original and other existing proofs, see [6, 13, 19]

As is customary, let χ be a non-trivial Dirichlet character of conductor N that is prime
to p, and let ψ be one of a p-power conductor with χψ(−1) = −1 so that Lp(s, χψω) is
not identically zero. For simplicity, in this section, we will drop the subscript from the
notation m�/�

N . Changing � to � in (3.6), we have

−Lp(−s, χψω) = lim
n→∞

∑
1≤a<N

χ(a)
∑

1≤m<qn

p�m,m�>a

ψ(m)〈m〉s

= lim
n→∞

∑
1≤a<N

χ(a)
∑

1≤m<qn

p�m,m�>a

ψ(m)
∑
k≥0

(logpm)k
sk

k!

= lim
n→∞

∑
1≤a<N

χ(a)
∑
k≥0

sk

k!

∑
1≤m<qn

p�m,m�>a

ψ(m)(logpm)k.

(4.1)

We now show limn→∞
∑

1≤m<qn

p�m,m�>a

ψ(m)(logpm)k exists for all k ≥ 0, so that we may

take the limit inside and obtain a Taylor expansion. To achieve this, we invoke the Ferrero–
Greenberg permutation (see Appendix A), supposing qn is larger than the conductor of
ψ: ∑

1≤m<qn

p�m,m�>a

ψ(m)(logpm)k ≡
∑

1≤m<qn

p�m,m�>a

ψ(ι(m)N)[logp ι(m) + logpN ]k (mod qn)

=
∑

1≤m<N−a
N qn

p�m

ψ(m)ψ(N)[logpm+ logpN ]k

= ψ(N)
∑

0≤i≤k

(
k

i

)
(logpN)k−i

∑
1≤m<N−a

N qn

p�m

ψ(m)(logpm)i.

As such, we conclude that limn→∞
∑

1≤m<qn

p�m,m�>a

ψ(m)(logpm)k exists from the existence

of
lim
n→∞

∑
1≤m<N−a

N qn

p�m

ψ(m)(logpm)i,

which in turn is guaranteed by Example 3. Indeed, as we have seen in that example, the
above limit is exactly Λψ logi

p
( aN ), whereby

lim
n→∞

∑
1≤m<qn

p�m,m�>a

ψ(m)(logpm)k = ψ(N)
∑

0≤i≤k

(
k

i

)
(logpN)k−iΛψ logi

p

( a
N

)
. (4.2)
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Combining (4.1) and (4.2), we then have:

Theorem 4.1. Let χ be a Dirichlet character of conductor N > 1 that is prime to p,
and ψ be one of a p-power conductor. Then, we have

− Lp(−s, χψω) = ψ(N)
∑
k≥0

sk

k!

∑
1≤a<N

χ(a)

⎡
⎣ ∑

0≤i≤k

(
k

i

)
(logpN)k−iΛψ logi

p

( a
N

)⎤⎦ .
(4.3)

Next, we compare our computation with the Ferrero–Greenberg formula: Let ψ = 1 be
the trivial character and χ be odd, then for k = 1:

∑
0≤i≤1

(
1
i

)
(logpN)1−iΛlogi

p

( a
N

)
= Λ1

( a
N

)
logpN + Λlogp

( a
N

)

=
[ a
N
− 1− V

( a
N
− 1

)]
logpN + logp Γp

( a
N

)
,

where the last equality follows from our discussions in Example 1 and 2. By (4.3), we
thus have

L′
p(0, χω) =

∑
1≤a<N

χ(a)
[
logpN

( a
N
− 1− V

( a
N
− 1

))
+ logp Γp

( a
N

)]

=
∑

1≤a<N
χ(a) logp Γp

( a
N

)
+ logpN

∑
1≤a<N

χ(a)
a

N

− logpN
∑

1≤a<N
χ(a)V

( a
N
− 1

)

=
∑

1≤a<N
χ(a) logp Γp

( a
N

)
− L(0, χ) logpN − logpN

∑
1≤a<N

χ(a)V
( a
N
− 1

)
.

(4.4)
Combining (4.4) with the following lemma, we have recovered the following formula of

Ferrero–Greenberg [6, Proposition 1]:

L′
p(0, χω) =

∑
1≤a<N

χ(a) logp Γp
( a
N

)
− (1− χ(p))L(0, χ) logpN. (4.5)

Lemma 4.2. If χ is odd, then

∑
1≤a<N

χ(a)V
( a
N
− 1

)
= χ(p)

∑
1≤a<N

χ(a)
a

N
. (4.6)

Proof. First, we see that V ( aN − 1) = 1
p [

a
N − 1− ( aN − 1)�p]. Write ( aN − 1)�p =

−(N−a)+ph(0,N−a)
N as in § 3. Then Proposition 3.2 shows that h(0, N − a) = (−a/p)�N .
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Thus ∑
1≤a<N

χ(a)V
( a
N
− 1

)
= −

∑
a∈(Z/N)×

χ(a)
(−a/p)�N

N

= −
∑

1≤a<N
χ(−ap) a

N

= χ(p)
∑

1≤a<N
χ(a)

a

N
. �
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Appendix A. Ferrero–Greenberg permutation

Notation as set in § 1.2. Let Mn be the set {1 ≤ m < qn : p � m}, which has two
filtrations:

• Mn = Φn0 � Φn1 � · · ·ΦnN−1 � ΦnN = ∅, where for 0 ≤ a ≤ N , Φna = {1 ≤ m < qn : p �

m,m�
N > a}.

• Mn = Ψn
0 � Ψn

1 � · · ·Ψn
N−1 � Ψn

N = ∅, where for 0 ≤ a ≤ N , Ψn
a = {1 ≤ m <

N−a
N qn : p � m}.

Following [6], we define the map ι : Mn →Mn,

for m = m�
N + hN, ι(m) = h+ 1 + (N −m�

N )
qn − 1
N

.

We record here the standard properties of ι.

Proposition A.1. The Ferrero–Greenberg map ι is a well-defined permutation on the
finite set Mn. More precisely, we have:

(i) If m ∈Mn, then qn−1
N ·m ≡ −ι(m) mod qn, i.e., m ≡ Nι(m) mod qn.

(ii) For all 0 ≤ a ≤ N, ι induces a bijection between Φna and Ψn
a .

Proof. See the proof of [6, Lemma 1]. �

Here is an illustration of how ι looks like for p = 5 and N = 3: We may arrange M2 =
{1 ≤ m < 25 : 5 � m} in the table

1 4 7 13 16 19 22
2 8 11 14 17 23
3 6 9 12 18 21 24
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which under ι is mapped to

17 18 19 21 22 23 24
9 11 12 13 14 16
1 2 3 4 6 7 8

Appendix B. Convergence of sum expressions

It may appear intriguing that the limits that show up in sum expressions exist. Our goal
here is to give an elementary proof to their convergence. More specifically, in both sum
expressions stated in Theorem 1.1, by grouping terms according to their residues modulo
N , it suffices to prove for any 0 ≤ a ≤ N the existence of the following

lim
n→∞

∑
1≤m<qn

p�m,m�>a

ψ(m)〈m〉s.

By using Ferrero–Greenberg permutation in the style of § 4, it reduces to prove the
existence of

lim
n→∞

∑
1≤m<N−a

N qn

p�m

ψ(m)〈m〉s. (B.1)

To show this, we invoke some standard fact of p-adic analysis [18]. Let f be a continuous
function on Zp valued in Cp. Then we may uniquely solve the difference equation (ibid.,
Theorem 34.1)

F (x+ 1)− F (x) = f(x),

so that F is also continuous on Zp and F (0) = 0. Now, if f is only a continuous function
on Z×

p , we may extend f on Zp by zero, and denote the resulting continuous function by
f!. As such, we let Λf be the unique solution to the difference equation of f!. In this way,
the existence of (B.1) follows from Example B.3.

Example B.1. Let f(x) = 1 be the constant function. Then for all n ∈ Z>0, Λf (n) =∑
1≤m<n,p�m 1 = n− 1− �n−1

p �. The function n → �np � sends a0 + a1p+ · · · arpr to a1 +
a2p+ · · ·+ arp

r−1, and therefore is extended to the familiar (continuous) Verschiebung
operator V on the Witt ring W (Fp) = Zp. Therefore, Λf (x) = x− 1− V (x− 1).

Example B.2. Let f(x) = logp x. Then, we have

Λf (x) = lim
n>0,n→x

logp
( ∏

1≤m≤n,p�m

m
)

= logp Γp(x+ 1),

where Γp(x) is the Morita p-adic Gamma function [16, § 14.1].

Example B.3. Finally, let f be continuous on Z×
p , 0 ≤ a

N ≤ 1 with gcd(N, p) = 1, and
q = pf ≡ 1 mod N . Then

lim
n→∞

∑
1≤m<N−a

N qn,p�m

f(m) = lim
n→∞Λf

(
(N − a)qn + a�N

N

)
= Λf

(
a�N
N

)
.
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Appendix C. An elementary method to sum expressions

In this appendix, we sketch how sum expressions can be proved by using only some
elementary p-adic analysis, following the discussions in previous appendices. We will only
treat p-adic zeta functions with odd p, since they are technically easier.

C.1. Preliminaries on power sums

For k, n ∈ Z≥0 we let Sk(n) =
∑

0≤d≤n d
k. For example, we have S0(n) = n+ 1,

S1(n) = n(n+1)
2 and S2(n) = n(n+1)(2n+1)

6 . In general, if we write

XeyX

eX − 1
=

∑
r≥0

Xr

r!
Br(y),

then

Sr(n) =
Br+1(n+ 1)−Br+1

r + 1
.

Here Br(0) = Br is the usual Bernoulli number.
Following Appendix B, for k ∈ Z≥0 we consider the function Λk(x) = limn∈Z>0,n→x∑
0≤d<n,p�d d

k. For any n ∈ Z>0 we have

Λk(n) = Sk(n − 1) − pkSk

(⌊
n − 1

p

⌋)
=

Bk+1(n) − pkBk+1

(⌊
n−1
p

⌋
+ 1

)
k + 1

− (1 − pk)
Bk+1

k + 1
.

Hence

Λk(x) =
Bk+1(x)− pkBk+1(V (x− 1) + 1)

k + 1
− (1− pk)Bk+1

k + 1
, (C.1)

where V is the Verschiebung operator.

C.2. The proof

Let N and q be as in § 1.2. For an even number k, define:

Lk(s) = lim
n→∞

∑
1≤m<qn,p�m

ωk−1(m)〈m〉−sm�
N .

Then, by density, to prove the sum expression for −(1− ωk(N)〈N〉−s+1)Lp(s, ωk),
it suffices to show that for all r ∈ Z>0 such that r ≡ k mod p− 1, Lk(1− r) = −(1−
Nr)Lp(1− r, ωk). First, note that by the Ferrero–Greenberg permutation (applied to
Φna−1 \ Φna), we have

Lk(1− r) = Nr−1 lim
n→∞

∑
1≤a≤N

a
∑

N−a
N qn≤m<N−a+1

N qn,p�m

mr−1. (C.2)
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Using (C.1), for all a in [1, N ], it is not hard to see that∑
N−a

N qn≤m<N−a+1
N qn,p�m

mr−1

=
1
r

{
Br

(
a− 1
N

)
−Br

(
a�N
N

)
− pr−1

[
Br

(
V

(
−N − a+ 1

N

)
+ 1

)

−Br
(
V

(
−N − a

�

N

)
+ 1

)]}
.

To simplify, note the following Abel-type summations:

∑
1≤a≤N

a

[
Br

(
a− 1
N

)
−Br

(
a�N
N

)]
=

∑
0≤a<N

Br

( a
N

)
−NBr,

and

∑
1≤a≤N

a

[
Br

(
V

(
−N − a+ 1

N

)
+ 1

)
−Br

(
V

(
−N − a

�
N

N

)
+ 1

)]

=
∑

1≤a≤N
Br

(
V

(
−N − a

�

N

)
+ 1

)
−NBr(V (−1) + 1)

=
∑

1≤a≤N
Br

(
N − (a/p)�N

N

)
−NBr =

∑
0≤a<N

Br

( a
N

)
−NBr.

Combining these equalities, we have

Lk(1− r) = Nr−1(1− pr−1)
1
r

⎡
⎣ ∑

0≤a<N
Br

( a
N

)
−NBr

⎤
⎦ .

To proceed, we use the identity∑
0≤a<N

Br

( a
N

)
= N1−rBr,

which can be seen from the Taylor expansion of

∑
0≤a<N

Xe
a
N X

eX − 1
=

X

eX/N − 1
.

In turn,

Lk(1− r) = Nr−1(1− pr−1)
1
r
(N1−r −N)Br = (1−Nr)(1− pr−1)

Br
r
.

This concludes Lk(1− r) = −(1−Nr)Lp(1− r, ωr) by (1.1).
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Appendix D. From Stickelberger elements to sum expressions

In this appendix, we will show that the sum expressions for p-adic L-functions can be
directly derived from Stickelberger elements. Our main reference is [10], complemented by
Chapter 6 of [11]. For simplicity, we assume p ≥ 3, for p = 2 the argument runs mutatis
mutandis.

D.1. Background on Stickelberger elements

Let χ be a character of conductor N ≥ 1 such that gcd(N, p) = 1, and ψ be one of
conductor pe for some e ≥ 0. For any n ≥ e− 1, the nth Stickelberger element attached
to (χ, ψ) is defined to be [10, p. 200]

ξn = − 1
Npn+1

∑
1≤a<Npn+1,p�a

χψ(a)a[γ(a)−1] ∈ Q̄p[Γn].

Here Γn = 1 + pZp/1 + pn+1Zp, γ : (Z/N)× × Z×
p → 1 + pZp is the natural projection,

and [γ(a)] is the element in Q̄p[Γn] corresponding to γ(a). When χ is non-trivial, ξn is
known to be in Z̄p[Γn] [11, pp. 75-76]. When χ is trivial, hence N = 1, a regularization
process is required: Let c ∈ Z×

p and define the regularized Stickelberger element

ηc,n = (1− ψ(c)c[γ(c)−1])ξn.

It can be shown that ηc,n has coefficients in Z̄p; explicitly

ηc,n = − 1
pn+1

∑
1≤a<pn+1,p�a

{
ψ(a)a[γ(a)−1]− ψ(ac)ac[γ(ac)−1]

}

=
∑

1≤a<pn+1,p�a

ψ(ac)
ac− (ac)�pn+1

pn+1
[γ(ac)−1].

As discussed in [11, pp. 72–73], when χψ is odd, the Stickelberger elements are compati-
ble with respect to projections, and thus we may consider the limits ξ = limn→∞ ξn (when
χ is non-trivial) and ηc = limn→∞ ηc,n (when χ is trivial). Now, let ϕs : lim←−n Z̄p[Γn]→ Cp

be the specialization map sending γ(a) to γ(a)−s, then [10, § 3] has shown that

ϕs(ηc) = (1− ψω(c)〈c〉1+s)Lp(−s, ψω), (D.1)

and
ϕs(ξ) = Lp(−s, χψω). (D.2)

D.2. Re-deriving sum expressions: zeta case.

By approximating ηc by ηc,n for all n ≥ e, we have the following limit by (D.1):

(1− ψω(c)〈c〉1+s)Lp(−s, ψω) = lim
n→∞

∑
1≤a<pn,p�a

(
ac− (ac)�pn

pn

)
ψ(ac)〈ac〉s

= lim
n→∞

∑
1≤a<pn,p�a

−
(

(a/c)�pnc− a
pn

)
ψ(a)〈a〉s
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− c− 1
2

lim
n→∞

∑
1≤a<pn,p�a

ψ(a)〈a〉s

= − lim
n→∞

∑
1≤a<pn,p�a

(
a

pn
− 1

2
−c

[
(a/c)�pn

pn
− 1

2

])
ψ(a)〈a〉s.

As such, to obtain the sum expression when c ∈ Z>1, one may proceed by employing
the identity (ac )

�
pn = a+pn(−a/pn)�

c

c .

D.3. Re-deriving sum expressions: Dirichlet case

Now assume the character χ is non-trivial, so we may take the limit over ξn’s as they
are already bounded. As such, by (D.2):

Lp(−s, χψω) = − lim
n→∞

1
Npn

∑
1≤a<Npn,p�a

χψ(a)a〈a〉s

= − lim
n→∞

1
Npn

∑
1≤a<pn,p�a

ψ(a)〈a〉s
∑

0≤d<N
χ(dpn + a)(dpn + a)

= − lim
n→∞

∑
1≤a<pn,p�a

ψ(a)〈a〉s
⎡
⎣ 1
N

∑
0≤d<N

χ(a+ dpn)d

⎤
⎦

= − lim
n→∞

∑
1≤a<pn,p�a

ψ(a)〈a〉sμχ(a+ pnZp).

Remark D.1. It is no coincidence that, in the calculations above, the coefficients of
Stickelberger elements give rise to values of the periods attached to μχ. Indeed, define
the unconventional Stickelberger elements by (cf. [16, § 2.1])

Θn =
∑

a∈Z/Npn+1

(
a�Npn+1

Npn+1
− 1

2

)
χ(a)[a] ∈ Q̄[Z/Npn+1].

Then, we can project Θn to θn ∈ Q̄[Z/pn+1]. Explicitly,

θn =
∑

0≤a<pn+1

[a]
∑

0≤d<N

χ(a+ dpn+1)d
N

,

which can be thus regarded as an element in Zp[χ][Z/pn]. Note that the restriction
of θn to Zp[χ][(Z/pn+1)×] followed by a projection to Zp[χ][Γn] recovers −ξn. On the
other hand, using the additivity of the first Bernoulli polynomial [16, p. 36, B 4], it
can be easily shown that the Stickelberger elements Θn’s give rise to a distribution on
lim←−n Z/Npn = Z/N × Zp, and so do θn’s on Zp; in the latter case a measure by integrality.
Moreover, this measure is exactly μχ, and we get the explicit period formula for free by
reading off the coefficients of θn’s.
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