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1. Introduction. An invertible operator T on a Hilbert space § is a 
multiplicative commutator if there exist invertible operators A and B on § 
such that T = ABA~lB~l. In this paper we discuss the question of which 
operators are, and which are not, multiplicative commutators. The analogous 
question for additive commutators (operators of the form AB — BA) has 
received considerable attention and has, in fact, been completely settled (2). 
The present results represent the information we have been able to obtain by 
carrying over to the multiplicative problem the techniques that proved 
efficacious in the additive situation. While these results remain incomplete, 
they suffice, for example, to enable us to determine precisely which normal 
operators are multiplicative commutators. 

In what follows we restrict our attention to complex, separable, infinite-
dimensional Hilbert space. (It is known (6) that a necessary and sufficient 
condition for an operator on a finite-dimensional Hilbert space to be a multi­
plicative commutator is that it have determinant 1; as for the hypothesis of 
separability, it would be easy, but not particularly rewarding, to state all the 
theorems below so as to make them valid on non-separable spaces.) Let § 
be a separable Hilbert space, and let 8 (§ ) denote the algebra of all bounded 
linear operators on § . The solution of the additive commutator problem may 
be described as follows. If T Ç 8 (§ ) is not congruent to a scalar modulo the 
ideal (C) of compact operators (these are the operators of class (F) of (2)), 
then T is always an additive commutator; if T is congruent to a scalar X 
modulo (C), then T is an additive commutator if and only if X = 0. 

It is plausible to suppose that the multiplicative problem will have a solution 
that parallels the solution of the additive problem, and this supposition is 
borne out by the results presented below. A basic distinction appears to subsist 
between the operators of class (F) and those that are scalar modulo (C). 
Regarding the former, we conjecture that an arbitrary operator of class (F) 
(if invertible) is a multiplicative commutator. Our best result in that direction 
is the theorem that the direct sum of two operators of class (F) is a multi­
plicative commutator (Theorem 4). As for operators of the form X + C with C 
compact, it seems most likely that such an operator is a multiplicative com­
mutator provided only that |X| = 1. (The converse is certainly valid and 
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738 ARLEN BROWN AND CARL PEARCY 

appears as Theorem 1 below.) In particular, these conjectures are shown to be 
correct for normal operators (Theorem 5) so that, as noted, our results are 
definitive in this special case. 

It is also tempting to surmise that additive and multiplicative commutators 
might be somehow related via exponentiation. That such a relation, even 
supposing one to exist, cannot be a simple one is indicated by the following 
facts: 

(1) eT may be a multiplicative commutator when T is not an additive 
commutator. 

(2) eT may fail to be a multiplicative commutator even when Tis an additive 
commutator. 

(3) There exist multiplicative commutators that cannot be expressed as 
eT for any T. 

2. A negative result. The symbols (C), (F), and 8(§) introduced above 
will be used consistently in what follows. Moreover, from now on, we write 
commutator instead of multiplicative commutator when no confusion can 
result. 

The substance of the present paragraph is the following theorem, which 
establishes a class of non-commutators.* 

THEOREM 1. If T is a commutator and if T is congruent to X modulo (C), then 
|X| = 1. 

Proof. The proof rests on the observation, valid in any Banach algebra 
with unit, that no scalar X satisfying |X| ^ 1 can be a commutator. For if 
X = ABA~1B~1

1 then AB = \BA and, denoting as usual the spectrum of 
X by A(X), one has A(AB) = \A(BA). But also A(AB) = A(BA) since AB 
and BA are similar, so that the equation A (AB) = \A(AB) is obtained. 
Since A(AB) is compact and A(AB) ^ {0}, the last relation is clearly possible 
only when |X| = 1. 

Suppose now that T is a commutator in 8 ( § ) and that T = X + C where C 
is compact. Then in the quotient algebra 8 ( § ) / (C) the scalar X is a commutator, 
and the theorem is proved. 

3. A basic construction. Let fi be a Hilbert space, which for present 
purposes may even be finite-dimensional, and let 

$ * = £ ® t = . . . ® f i e ( S ) e i e . . . 
—oo 

denote the two-way infinite direct sum of copies of $ . In other words, $* is 
the Hilbert space of square-summable sequences {. . . , x_i, (x0),xi, . . .} of 
elements of $. (The parentheses are used here to indicate the 0th term of the 

"Theorem 1 and a slightly weaker version of Corollary 4.7 have been known to P. R. Halmos 
for some time, but were never published. 

https://doi.org/10.4153/CJM-1966-074-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-074-1


MULTIPLICATIVE COMMUTATORS OF OPERATORS 739 

sequence.) If {^4ra}w=o,±if±2,... is a sequence of invertible operators in 8($) , 
then the mapping 

{. . . , x_i, (x0), xi, . . .} —» {. . . , A-iX-i, (A0Xo), A1X1, . . .} 

defines an invertible operator on $* if and only if the sequences {||̂ 4n||} and 
{| |̂ 4W

—x||} are both bounded. For such an operator, which is, of course, just 
the direct sum of the Any we employ the notation diag(^4w), in view of the 
obvious matricial interpretation. Clearly [diag(^4w)]_1 = diag(^4w

_1). We 
construct commutators on $* by using such diagonal operators and another 
familiar operator, the bilateral shift U defined by 

U[. . . , x-i, (x0), xi, . . . } = {... , x_2, (x_i), xo, . . .}. 

It is well known that U is a unitary operator with inverse given by the shift 
in the opposite direction: 

U~l{. . . , x_i, (x0), xi, . . .} = {. . . , xo, (xi), x2, . . .} . 

Suppose now that diag(^4w) is an invertible operator on $*. For any x in $ 
and fixed index k, we write X(k) for the vector in $* that has x in the kih position 
and all other entries equal to zero. An easy calculation then shows that 

Z / d i a g ^ J ^ d i a g ^ » " 1 ) ^ * ) = [Ak^ AJT'X]^ 

and hence that 

(*) UdiagC4J U-i diagG^-1) = diag(Cn) 

where 
Cft = A.n—i J±n , n = U, d b l , . . . . 

Now this equation may be solved for the An in terms of the Cn. Indeed, if 
diag(Crc) is a given invertible operator on $*, we have but to define 

A0 = 1, 

(**) An = ( C 1 . . . C J - 1 , n = 1 , 2 , . . . , 

An = Cn+i. . . Co, n = — 1 , — 2, . . . , 

to ensure that, formally at least, (*) is satisfied. Motivated by these equations, 
we say that a sequence {Cw}n=o,±i,±2,... of invertible operators on $ is multipliable 
if both of the sequences {||̂ 4«||}n=of±i,±2,... and {|Mw

-1||}w=o,±i,±2,... are bounded 
where the An are the products appearing in (**). 

The following lemma summarizes the above remarks. 

LEMMA 3.1. If the sequence {Cn}w==0,±i,±2,... of invertible operators on $ is 
multipliable, then diag(Cw) is a commutator on $*. 

In order to be able to apply the above construction to a given operator on 
an abstract Hilbert space, it is necessary that the operator possess a large 
supply of reducing subspaces. This is a major obstacle, and essentially limits 
our application of the lemma to operators that have a large normal direct 
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summand. Of course it is also necessary to arrange the reducing subspaces 
in such a way that, at the appropriate moment, multipliability can be estab­
lished. In the following theorems we employ, first, the trivial observation that 
every sequence {Cn} of unitary operators is multipliable and, secondly, the 
easily verified fact that if 

Z IIC||< - , 
—oo 

then \eCn] is multipliable. As usual, the notation A\$H is employed for the 
restriction of an operator A to an invariant subspace 90Î. 

THEOREM 2. If T is an invertible operator on § that admits an infinite-dimen­
sional reducing subspace 9Î such that T\3l is a unitary operator, then T is a 
commutator. 

Proof. Observe first that any unitary operator W on an infinite-dimensional 
Hilbert space can be split into the direct sum of two infinite-dimensional 
operators, both of which are themselves necessarily unitary. (This is an easy 
exercise in spectral theory. If A(W) is infinite, we can divide A{W) into two 
infinite disjoint Borel sets and use the corresponding spectral projections to 
split W; if A{W) is finite, we have but to split some one infinite-dimensional 
eigenspace of W.) It follows by induction that W can be split into the direct 
sum of infinitely many unitary operators each acting on an infinite-dimensional 
space. In particular this is true of W = T\3l. 

As a first application of this last remark, we note that we may assume that 
§ 0 5JÎ is infinite-dimensional also, for if this were not so, we could replace 9Î 
by a smaller reducing subspace and make it so. Under that assumption, let 
SDîo = § O 5ft. Next split 31 as indicated into the direct sum of an infinite 
family of infinite-dimensional subspaces, all reducing for T, and enumerate 
these subspaces as {3Jtw}w=±i,±2f.... Finally, choose a fixed infinite-dimensional 
Hilbert space & and, for each n, a unitary isomorphism of %Jln onto $ . The 
direct sum of these isomorphisms is a unitary isomorphism of § onto $* that 
carries T onto a diagonal operator diag(Cw) on $*. Since Cn is unitary for 
n T^ 0, it is clear that {Cn}n=o,±i,±2,... is multipliable, and since unitary 
isomorphisms carry commutators to commutators, an application of Lemma 
3.1 completes the argument. 

COROLLARY 3.2. Every unitary operator {on an infinite-dimensional Hilbert 
space) is a commutator. 

THEOREM 3. Every invertible normal operator {on an infinite-dimensional 
Hilbert space) of the form X + C, where | \ | = 1 and C is compact, is a com­
mutator. 

Proof. We prefer to write the operator as X(l + C), where of course 1 + C 
is invertible and normal, and C is compact. Since the spectrum of 1 + C 
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cannot separate the origin from œ, there exists a compact, normal logarithm: 
D = log(l + C) so that 1 + C = eD. Since D is compact and normal, it is an 
easy matter to split § into a direct sum 

oo 

§ = Z ©aft» 
—oo 

of infinite-dimensional reducing subspaces for D in such a way that 

\imn\\D\mn\\ = 0. 

Furthermore this convergence can be accelerated as much as desired by group­
ing and relabelling the $Jln. In particular, we may and do arrange the direct-sum 
decomposition so that 

£ iim.ii < ». 
(The reader is referred to (1, §3) for a similar construction.) 

Now fix a Hilbert space $, and for each n, choose a unitary isomorphism 
of Tln onto $ . The direct sum of these isomorphisms carries § onto $* and D 
onto a diagonal operator (diag(An) with 

oo 

E \\An\\< ». 

Moreover X(l + C) — \eD is carried onto diag(\e^n). Since \\eT\\ < ê Tl] for 
any operator T, the summability of the sequence {||̂ 4n||} implies the multi-
pliability of {\eAn}, and the proof is completed by an application of Lemma 3.1. 

4. Operators of type (F). In this section we show that the direct sum of 
any two operators of type (F) is a commutator, and we apply this result to 
obtain complete information concerning normal commutators. Just as in the 
study of additive commutators (2), the constructions needed for this purpose 
involve 2 X 2 matrices and 3 X 3 matrices with operator entries. We remind 
the reader that if A, B, C, and D, are operators on § , then the matrix 

T-[AC a 
defines an operator on § © § according to the rule 

T(x, y) = (Ax + By, Cx + Dy). 

Conversely, any operator T G 8 ( § © § ) can be represented as such a 2 X 2 
matrix with entries from 8(^>). An analogous relationship holds between 
3 X 3 matrices with entries from 8 (§ ) and operators in 8 ( § © £ > © § ) . 

We say that two operators X and X' on Hilbert spaces § and § ' , respectively, 
are similar if there exists a bounded linear transformation 5: § —> § ' with 
bounded inverse S~l: §' —> § such that X' = SXS~l. Also, if X and F a r e 
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742 ARLEN BROWN AND CARL PEARCY 

operators (on the same or different Hilbert spaces), and if X' and Y' are opera­
tors on the same Hilbert space § ' that are similar to X and Y respectively, 
then the product X' Y' will be called a generalized product of X and Y. In other 
words, a generalized product of X and Y is any operator of the form 

(SXS-^iTYT-1). 

It is easy to see that any operator that is similar to a generalized product of 
X and Y is another generalized product of X and F, and that a generalized 
product of invertible operations is itself invertible. 

LEMMA 4.1. If some generalized product of X and Y is a commutator, then the 
direct sum X © Y is also a commutator. 

Proof. Note first that an operator that is similar to a commutator is itself 
a commutator. (This fact will be used frequently below without further notice. ) 
It follows from this observation and the equation 

SXS~l © TYT-1 = (S 0 T)(X © Y)(S © T)~l 

that it suffices to treat the case of two operators X and Y on the same Hilbert 
space with XY a commutator. Let XY = ADA^D'1, and let C = YD A, 
so that Y = CA~YD-X and X = ADC'1. Direct calculation shows that 

[o ^iro ciro ii[~o D-I~\ = [x oi 
Li oJL^ o J U " 1 oJLc-1 o J [_o Y]> 

and, since ,^_1 n is the inverse of ^ ft , the proof is complete. 

Remark. This construction can be carried out for generalized products and 
direct sums of more than two operators, but the 2 X 2 case suffices for all 
our purposes. 

LEMMA 4.2. / / T is an operator on § © § of the form 

and if the spectra of A and C are disjoint, then T is similar to Cf°c] 
Proof. Since the spectra of A and C are disjoint, it follows from a theorem 

of Lumer and Rosenblum (4, Theorem 10) that there exists an operator 
X G £ ( § ) satisfying CX — XA = — B. The following computation completes 
the proof: 

[-iî}[rj(iî]-[rci 
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LEMMA 4.3. Let F, G, and S be invertible operators on § , and suppose F and G 
are of class (F). Then for all sufficiently large positive numbers t, there exists a 
generalized product of F and G of the form 

on the Hilbert space § © § . 

\C{t) 0 1 

L o ts\ 

G„ Gl2 0 
G2I G22 1 

L-G3I G32 0 

Proof. Since G is of class (F), it is similar (2, Theorem 2) to an operator Gi 
on £ > © § © § of the form 

G1 

Applying the same theorem to F and then interchanging the second and third 
copies of § , we obtain an operator Fi similar to F of the form 

Fi = 

Since Fi and G\ are similar to F and G, it suffices to find a generalized product 
of F\ and G\ of the specified form. Let Si and T(t) denote the diagonal operators 

Si = diag(l, 1, S), Tit) = diag(£, t, 1), t > 0. 

on £> © § © £ . and write F2 = S i F i S f 1 and G2(t) = r(*)Gi ^ ( 0 _ 1 -
Direct calculation shows that 

Fu 0 ^ 3 1 

F 21 0 ^ 3 2 

Fn 1 -^33 

Fu 0 
f « 0 

SFn S 

FnS-1 

FnS-i 
SF3iS-i 

G,(t) = 
G11 

G*21 

1 „ 

u 

G12 

G22 

and 

F2G2(/) = ikf+ y N 0 

where 

M [F^Gn F i i G u l i V = l " 
L ^ 2 l G u .F21 G12J ' |_ 

F\zS 1 G31 

^"23 - 5 - 1 G31 

FUS-
F2Z S 

1 G32] 
1G32J • 

(We have here taken the liberty of writing the upper left-hand 2 X 2 block of 
Fi Gz(t) as the sum of two 2 X 2 blocks.) The operator F2 G2(0 is, of course, 

https://doi.org/10.4153/CJM-1966-074-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-074-1


744 ARLEN BROWN AND CARL PEARCY 

a generalized product of Fi and d , and we complete the proof by showing that, 
for sufficiently large t, Fi Gi(t) is similar to an operator of the desired form. 

Let 0 be a unitary isomorphism of § © ^ onto § , and let A and B be the 
operators on ^ that correspond to M and N under this isomorphism. Then the 
direct sum of <t> acting on the first two copies of § with the identity operator 
on the third copy of § is a unitary isomorphism of § © § © § onto § © § 
that carries F2 G<2,(t) onto an operator of the form 

Z(t) = 
A+\B o 
. * tS} 

Write Cit) = A + ( 1 / 0 5 , and observe that for / > 1, ||C(*)|| < P H + p | | . 
Also note that since S is invertible, A(tS) = tA(S) lies entirely outside the 
circle \z\ = ||^4j| + | | 5 | | for sufficiently large t. Thus the spectra of C(t) and 
tS are disjoint for sufficiently large /, and an application of Lemma 4.2 completes 
the argument. 

The emphasis in Lemma 4.3 is on the form of the matrix diag(*, tS); the 
operator S is entirely at our disposal. The next pair of lemmas show, somewhat 
surprisingly, that it is possible to construct an invertible 5 such that diag(*, tS) 
is almost always a commutator. 

LEMMA 4.4. Let X and p, be scalars and let M = M(X, ju) denote the 2 X 2 
diagonal matrix 

*<».,o-[j ; ] . 
If X 9^ M and XV2 ^ 1, then the diagonal matrix ilf(XV2> 1) is a generalized 
product of M with itself. 

Proof. Consider the matrix 

r.-['t> f] 
which has inverse 

*<*- [_! r+'J 
for all scalars 0. For every £, Tp MTfxM = Q{0) is a generalized product of 
M with itself, and consideration of the characteristic equation of Ç(/3) yields 
the fact that if /30 is defined by 

„ ( 1 - M 2 ) ( 1 - X 2 ) 
^° _ (M ~ X)2 ' 

then <2(/3o) has eigenvalues 1 and XV- Since by assumption XV2 ^ 1, (?(#o) 
is similar to the diagonal matrix I f (XV2, 1), and the proof is complete. 
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LEMMA 4.5. There exists an invertible operator S on § with the property that 
diag(C, tS) is a commutator for every invertible C G 8 (§ ) and all positive t ^ 1. 

Proof. We begin by defining an invertible operator 5 such that (a) S is 
spatially isomorphic to the direct sum of two (or more) copies of itself, and 
also such that (b) for the stated values of t, there exists a generalized product 
of tS with itself that is unitary on a large reducing subspace. The balance of 
the argument shows that such an S satisfies the conditions of the lemma. 

On the basis of the preceding construction it is easy to write down such an 5. 
Fix a positive number Xo 9e 1, let /z0 = X0~\ and write 

s-ft «1 
where the matrix entries denote scalar operators on an infinite-dimensional 
space. Then S = M (Xo, Mo) in the notation of Lemma 4.4, and since 

tS = M(t\o,tno)t 

a direct application of that lemma shows that 

is a generalized product of tS with itself whenever t > 0, t 9^ 1. 
In particular, this generalized product N acts as the identity operator on an 

infinite-dimensional reducing subspace so S satisfies (b). That 5 satisfies (a) 
is clear; in fact, 5 is indistinguishable from the direct sum of infinitely many 
copies of itself. 

I t remains to show that 5 satisfies the conditions of the lemma. Let C be an 
invertible element of 8 ( § ) , and let t be a fixed positive number different from 1. 
We first split S into the direct sum of three copies of itself and write (up to 
spatial isomorphism) 

diag(C, tS) = diag(C © tS, tS © tS). 

According to Lemma 4.1, the lemma will be proved if we exhibit a generalized 
product of C © tS and tS © tS that is a commutator. Let N be as above; i.e., 
a generalized product of tS with itself that is the identity operator on an 
infinite-dimensional reducing subspace. Clearly tCS © N is a generalized 
product of C © tS and tS © tS, and, since tCS © N is a commutator by 
Theorem 2, the proof is complete. 

This last lemma essentially completes the proof of the following main result. 

THEOREM 4. If F and G are both invertible operators of class (F), then F © G 
is a commutator. 

Proof. Lemmas 4.3 and 4.5 together say that there exists a generalized 
product of F and G that is a commutator, and the theorem then follows from 
Lemma 4.1. 
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COROLLARY 4.6. Every invertible normal operator of type (F) is a commutator. 

Proof. A normal operator is of type (F) if and only if its spectrum contains 
at least two limit points. (A point X is a limit point of the spectrum of a normal 
operator if every Borel neighbourhood of X has infinite spectral measure.) 
Using this observation and the spectral theorem one shows easily that every 
invertible normal operator of class (F) is a direct sum of two (necessarily 
invertible) infinite-dimensional operators of class (F), and the proof is com­
pleted by applying Theorem 4. 

Corollary 4.6, together with Theorems 1 and 3, yields definitive information 
about normal commutators. 

THEOREM 5. An invertible normal operator is a commutator if and only if it 
is not of the form X + C where C is compact and |X| ^ 1. 

This theorem enables us to show that the commutator subgroup of the 
group G of invertible operators (on a separable infinite-dimensional Hilbert 
space) is G itself. In fact, we obtain the following better result. 

COROLLARY 4.7. Every invertible operator is the product of two commutators. 

Proof. Any invertible operator A has a polar decomposition A = UP where 
U is unitary and P is positive definite. If P is of type (F), the proof is completed 
by applying Corollary 3.2 and Theorem 5 to U and P respectively. If P is of 
the form P = X + C for C compact, then C is necessarily Hermitian, and one 
can easily construct a unitary operator W of class (F) such that W commutes 
with P. Then A = (UW*)(WP), where UW* is unitary, and WP is a normal 
operator of class F. (The fact that WP is normal follows from WP = PW; 
the fact that WP is of class (F) follows from the observation that the inverse 
of any operator of the form X + C is again of that form.) The proof is completed 
by applying Corollary 3.2 and Theorem 5 to the operators UW* and WP 
respectively. 

5. Two further results. A central role in the theory of additive com­
mutators is played by the theorem (5, Theorem 1) that every operator of the 
form 

[: ô] 
(on the direct sum of an infinite-dimensional Hilbert space with itself) is a 
commutator. An analogous result in the present setting would be that every 
invertible operator of the form 

is a multiplicative commutator, and it seems plausible that a proof of this 
would likewise lead to further progress in the structure theory of multiplicative 

https://doi.org/10.4153/CJM-1966-074-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-074-1


MULTIPLICATIVE COMMUTATORS OF OPERATORS 747 

commutators. (It is easily seen that this result must hold if the conjectures 
stated in the introduction are valid.) While we have been unable to establish 
this result in general, we present two theorems in this section that bear on the 
problem and serve to establish special cases. 

First we note the following lemma. 

LEMMA 5.1. Let T denote the triangular operator 

on § © § . If X and Z are both invertible, then so is T and 

l-Z^YX-1 Z-1] 

On the other hand, if T is invertible on & © § , and if at least one diagonal entry 
has range § , then both X and Z must be invertible. 

Proof. The first half of the lemma is proved by multiplying T on the left 
and right by the given candidate for T~x. Suppose now that T is invertible 
and one diagonal entry, say Z, has range § . Let T~l be the matrix 

\_L N 

Since T^T = 1, we obtain MZ = 0 and thus M = 0. Hence KY = NZ = 1. 
Similarly, using the fact that TT~l = 1, we have XK — ZN = 1, and the 
result follows. 

THEOREM 6. If X and Z are both multiplicative commutators on § , and Y is any 
operator on § , then 

is a commutator on § © § . 

Proof. Choose A, C, K, and M so that AKA^K.-1 = X and CMC-lM~l = Z. 
Choose X > 0 large enough so that the spectra of X~M_1 and C~lZ are disjoint; 
let Ax = \A, and note that ^ x ^ C ^ x ) " 1 ^ " 1 = X. Apply (4, Theorem 10) 
once again to obtain an operator L such that 

(C~lZ)L - L(Ax)~l = -C-'YK, 

and observe that 

CLAx-'K-1 - CMC^M^LK-1 = CLA^K'1 - ZLK'1 = Y. 

An easy calculation now shows that 

Ax 0 ] \K 0 1 [Ayr1 0 "1 [ H-* 0 1 = \X 0] 
0 CJIL MJl 0 C-1] l-M-'LK-1 M-1} \_Y ZJ' 

• 
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THEOREM 7. Every invertible operator on $& ® & of the form 

is a commutator provided N is normal. 

Proof. The normal operator N is invertible by Lemma 5.1. If N is a com­
mutator, then so is T by Theorem 6. Hence, according to Theorem 5, we may 
assume that N = X + C, where |X| 9e 1 and C is normal and compact. More­
over, if the scalar 1 does not lie in the spectrum of N, then, by Lemma 4.2, 
T is similar to N © 1 and so is a commutator by Theorem 2. On the other 
hand, if 1 belongs to the spectrum of TV, it must appear as an isolated eigenvalue 
of finite multiplicity, say of multiplicity k. Hence there exists an orthonormal 
basis {ew}n=i,2t... in § with respect to which the matrix of N is diagonal, with 
the first k diagonal entries equal to 1 and all other entries bounded away from 1. 
By removing the finite-dimensional subspace V{^i, . . . , ek} from the first copy 
of § in ^ © § and adding it (directly) to the second copy, it is possible to 
construct a unitary equivalence between T and an operator T\ on p̂ © >̂ of 
the form 

[M 0 1 
1 IX 1 + F] ' 

where M is now a normal operator that does not have 1 in its spectrum 
and F is a nilpotent operator of finite rank. Since the spectra of M and 1 + F 
are disjoint, we may apply Lemma 4.2 to show that Ti is similar to 

M © (1 + F). 

Finally, since F has finite rank, it is clear that 1 + F has a large reducing 
subspace on which it acts as the identity operator, whence it follows from 
Theorem 2 that M © 1 + F is a commutator. Thus T is a commutator and 
the proof is complete. 

6. Concluding remarks. 
I. Examples of the phenomena labelled (1), (2), and (3) in the introduction 

can be given as follows: 
(1) Let T by any non-zero pure imaginery scalar operator on an infinite-

dimensional space. 
(2) Let T be the operator 

T-Ï1 ° 1 
[ 0 1 + 2wij 

where the entries are scalar operators on an infinite-dimensional space. 
(3) In (3), some invertible operators without square roots were constructed, 

each of which is an infinite direct sum of finite-dimensional operators. Examina­
tion shows that each such operator A is the direct sum of two operators of 
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class (F), and is thus a multiplicative commutator by Theorem 4. But A 
cannot be written as A = eT for any T, since eT clearly has square roots. 

II. It follows easily from Theorem 2 that every invertible operator (on 
an infinite-dimensional space) of the form eie + F where F is a finite rank 
operator is a commutator. 

III . If A is an additive commutator, then so is A + A. But there are 
multiplicative commutators A such that A2 is not a multiplicative commutator. 
Example: 
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