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ON THE INVERSION OF FOURIER TRANSFORMS

NAKHLE H. ASMAR AND KENT G. MERRYFIELD

Let G be a locally compact abelian group, with character group G. Let iji be an arbitrary
continuous real-valued homomorphisin defined on G. For / in CP(G), 1 < p ^ 2, let

M*f =

where 1 ]_„ „[ is the indicator function of the interval ] — v, v [, and / is an unbounded
increasing sequence of positive real numbers. Then there is a constant Af p , independent
of / , such that M * / < Mp \\f\\p. Consequently, the pointwise limit of the function

( / I ] -* , i/[ O1I>) exists, almost everywhere on G, as v tends to infinity. Using this result
and a generalised version of Riesz's theorem on conjugate functions, we obtain a pointwise
inversion for Fourier transforms of functions on R° X T , where a and 6 are nonnegative
integers, and on various other locally compact abelian groups.

1. INTRODUCTION

Notation. Throughout this paper we adhere to the following notation. The symbol G
will denote a locally compact abelian group with character group G. the Haar measure
on G will be denoted by \S.Q • When no confusion may arise, we will simply write ft.
Lebesgue measure on R will be denoted by A.

If A is a set and B is a subset of A, the complement of B in A will be denoted
by A \ B. The indicator function of B will be denoted by 1B ; it is the function with
values 1 on B, and 0 on A \ B.

Other standard notation used here without explanation is as in [8] and [9].

Theme of this paper. We wish to transfer known results on the real line to a new
setting in higher dimensional or otherwise different spaces. The principal result that we
wish to transfer is the fact that partial sums for the inversion of the Fourier transform of
a function / in £P(R), 1 < p < 2, converge pointwise A-almost everywhere. This is of
course the celebrated Carleson-Hunt theorem on the pointwise convergence of Fourier
series on R.
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Our transference result is achieved in the following set-up. Let ip be an arbitrary
continuous real-valued homomorphism defined on G. For / in Cp(G), 1 < p < 2, let

M*f =

where / is an unbounded and increasing sequence of positive real numbers. We show

that there is a constant Mp, independent of / , such that | | M * / | | < Mp | | / | |_. Con-

sequently, the pointwise limit of the function f /I ]_„,„( o -0 J exists almost everywhere

on G as v tends to infinity. Using this result and a generalised version of Riesz's the-

orem on conjugate functions, we obtain a pointwise inversion for Fourier transforms of

functions on R" x T \ where a and b are nonnegative integers, and on various other

locally compact abeliaii groups.

2. T H E FOURIER TRANSFORM ON R

2 .1 . Given p in [1, 2], / in £ p (R) , and for A-alrnost all s £ R, we write:

/(«) = -/== / /(y)exp(-iay)«iy,
V 27r JR

where the integral converges in the sense of [11, Vol. 2, Theorem (3.14), p.257].

For every positive u € R, the function s t—* (sini/s)/a is in £ , (R) , for all q > 1.
Thus for / in Cp(R), 1 < p < 2, the integral

1 f n \sm v

- f(*- y)
is finite for all x £ R. We denote this integral by f(x).

The following are well-known facts about the function / :

(2.1.1) for / in £p(R) n £,(R) where 1 ^ p < 2, (fj{s) = /(OlfL,, , , («),

where l(*_VI/j(3) = l|_1/il/j(3) for all \s\ ^ v, and l(*_Vil,|(a) = 1/2 for \s\ = u;

for / in £p(R) n £i(R) where 1 < p < oo, the inequality

holds, where Ap depends oidy on p .

The following version of the Carleson-Hunt theorem follows from the classical ver-
sion on the circle and [10, Theorem 1).
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THEOREM 2.2. Suppose that f is in £P(R), where 1 < p ^ 2. Let

Mf(x) = sup{|/"(x)| : v > 0}

for all x e R • Tiien

\\Mf\\p^MP\\f\\p,
wiiere Mp depends only on p.

3. THE PARTIAL SUM OPERATOR ON G

A particular case 3.1. Throughout this section we suppose that <j> is a topological
isomorphism of R into G. For each v 6 R+, and every continuous function / with
compact support on G, let

(3.1.1) Svf(x) = - [ f{x -

Note that, for all x in G, the function t i-» f(x — (j>(t)) is continuous on R, with com-
pact support. Hence the integral in (1) is finite for all x in G. The operator Sv is
well-defined, so far, on a dense subset of CP(G), for all p in [ 1, oo [ . To extend this
operator to all Cp(G) and study its properties, we will introduce the adjoint homomor-
phisrn ij) of </>. The homomorphism tp maps G into R and satisfies the identity:

(3.1.2) exp(iV(x)(0) = X°<AW

for all x in G, and all t in R. See [8, Definition (24.37), p.392].
In the present case of a topological isomorphism (f>, the properties of the operator

5|/ and the maximal operator associated with it are easily obtained using well-known
properties of the partial sum operator on R and a judicious application of the Weil
formula. We now set the stage for this formula.

The subgroup <̂ (R) is locally compact in its relative topology. Hence [8, Theorem
5.11, p.35] implies that <£(R) is closed in G. Let w denote the Haar measure on ^(R)
normalised so that the equality

g(x)dw(x) = j g(<t>(s))ds
•'R

obtains for all g in £j(0(R)). (Simply define w(A) — X{(j>~1(A)) , for all Borel subsets
A of <£(R).) Now normalise the Haar measure fiG/<t>(ft) s o that the Weil formula, [9,
(28.54.iii), p.91] holds. We have

/ f{x)dfi(x)= / /
JG JO/<I>(R) J0

= / /
JGIMH) JR/G/tf(R) JR

for all / in £i(G).
We start now deriving some properties of the transferred operator.
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LEMMA 3.2. Suppose that f is continuous with compact support on G, and let

p £ ] 1, oo [. We have

where Ap is as in (2.1.2).

PROOF: We compute the norm using the Weil formula, and (2.1.2). We have

p

i JRG/<t>(R)

p l l / l lp '

a
= A'\\f\\*

LEMMA 3.3. The notation is as above. Suppose that f is continuous with compact

support on G and such that f is in CilGJ . For every positive number v, and all x

in G, we have

0) (

where lf_Vil>J(*) = l[-,,,,](*) for all \x\ ± v, and l(_ViVj{x) = 1/2 for \x\ = v.

PROOF: We compute (i) using Lebesgue's dominated convergence theorem, some

well-known facts about Fourier integrals, Fubini's theorem, (3.1.1) and (3.1.2).

= / Hx)x(x) lira - / e
JG n-*°° T J[-n, n]

= Km / f(X)x(x)- I e
n-*°°JG n J[-ntn]

= lim 1 / / f(X)x(x -

= Inn - / / ( * - <j>{t))——dt

= Svf{x).

The identity (i) follows now from the uniqueness of Fourier transforms. 0

Remark 3.4. Combining Lemmas 3.2 and 3.3, we see that, for all positive numbers v,
the function ![*_„,„] ° V" is an jCp(G)-multiplier, for 1 < p ^ 2, with norm ^ Ap, where
Ap is as in (2.1.2).
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THEOREM 3.5. For all positive numbers v, the function l]_1/)1/[ o tf> is an CP(G)-

multiplier, for 1 < p ̂  2, with norm ^ Ap, where Ap is as in (2.1.2).

PROOF: Let / be in CP{G). By Remark (3.4), it is enough to show that
i>~1({—f, f}) n s u p p / has measure zero. Since s u p p / is er-compact, it is enough
to show that ip~1({0}) is locally null. If not, then i>~L{{0}) is open, and the anni-
hilator H in G of ^ ( { O } ) is compact. We also have <£(R) C H. Clearly this is
impossible since <j> is a topological isomorphism, so that ^(R) cannot be compact. 0

A maximal ope ra to r on G 3.6. For p in ] 1, 2 ] , and all / in Cp(G), let

= sup
l/g/

where / is a fixed, unbounded, increasing sequence of positive numbers. The function

M # / is defined almost everywhere on G. When / has compact support and / is in

£i (G), Lemma 3.3 and Theorem 3.5 show that

(3.6.1) M*f{x)=aup\Svf{x)\,
*€/

for almost all x in G.

THEOREM 3.7. The operator M * is a bounded sublinear operator on Cp(G), for

all p in ] 1, 2 ] , with norm less than or equal to Mp, where Mp is as in Theorem 2.2.

PROOF: The operator M # is clearly sublinear. To prove that it is bounded, it

is enough to consider functions in a dense subset of Cp(G). (See [7, Theorem (3.1.1),

p.36]), Suppose that / has compact support on G and is such that / is in £ i ( G). Now

we use (3.6.1), Theorem 2.2, and the Weil formula, as we did in the proof of Lemma

3.2. We have

/ {M*f(x))Pdfi(x) = j f {M*f{x + t(y))
G JG/*(R) JR

/ / ( f f(x + 4>(y -/ (sup - f

I f \f(x + 4>{y))\v dydfiG/m)(x)
JGI4,(R) JR

This completes the proof of the theorem.
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4 .1 THE GENERAL CASE

Unwinding the solenoid 4.1. We continue with the notation of Section 3, with the

exception that 0 is a continuous homomorphism of R into G which is not a topological

isomorphism. Thus, according to [8, Theorem (9.1), p-84] <p(R)~, the closure of <j>(R)

in G, is compact. The subgroup <f>(R) may be thought of as a solenoid wrapped densely

inside y(R) .

To be able to use the results of Section 3, we will undo the solenoid by embedding

G in G x R, the direct product of G and R.

Define the continuous homomorphism $ from R into G x R by $(r) = (4>(r), r).

It is clear that $ is a topological isomorphism of R onto $(R). Moreover, it is easy to
verify that the adjoint homomorphism $ of $ is given by $(x> *) = V"(x) + s > where
ijj is the adjoint homomorphism of <f>.

For F in CP(G x R), where 1 < p ^ 2, let TVF be the function whose Fourier
transform is given by

(4.1.1) (TvF){x, s) = F(X, «)!]_„,,,[ o * ( x , a) = F{X, , ) ! ,_„ ,

(Note that the operator Tu is the partial sum operator Sv corresponding to the ho-
moinorphism !P. However, since we will have the occasion to use both operators in
the same proof, we have introduced a new notation to avoid confusion. For the same
reason, we will introduce a new notation for the maximal operator M * . ) Let

M + F ( x , t) = sup\T,,F(x, t)\.

Since * is a topological isomorphism onto $(R), Theorem 3.7 applies and yields the
inequality

where Mp is independent of F, and is the same as in Theorem 2.2. (Whenever confusion

may arise, the symbol || ||p x will be used to denote the usual norm in CP(X).)

The following remarks will simplify the proof of our main theorem.

Remarks 4.2. (a) Suppose that y(R)~ is a compact subgroup of G. Using the struc-
ture theorem for locally compact abelian groups, write G as R° X fi, where a is a
nonnegative integer and $7 contains a compact open subgroup. It is clear, in this case,
that y(R)~ is contained in {0} x ft. The character group G is topologically isomorphic
to R° x J2, where fi is the character group of ft. The annihilator of <p{R)~ in G is
an open subgroup, and hence is of the form R° x Yo , for some open subgroup Yo of

https://doi.org/10.1017/S0004972700017494 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017494


[7] Inversion of Fourier transforms 435

A. Since the adjoint homomorphism i}> of <j> maps the annihilator of y(R)~ to zero, it

follows that V"(Ra * ^o) = {0}- Now, given a compact nonvoid subset K of G, cover

K with finitely many cosets of the open subgroup R° x Fo- It follows that i>(K) is a

finite subset of R. We will say, in this case, that ^(G\ is a discrete subgroup of R,

meaning that i>(K) is finite for every compact subset K of G.

(b) Suppose that <p{R)~ is a compact subgroup of G. Let / be in CP(G), where

1 < p < 2, such that / is compactly supported. By (a), ipisupp f) is a finite subset

of R. Write V"(supp/J = {a;}™=] . Let a > 0 be such that: for all j = 1, . . . , n , if

fj-\ ^ o.j ^ Vj for a unique couple (i/j-i, Vj), where fj-i, and Vj are in / U ( — I ) ,

then fj-i < ao-j < Vj • (To find a , simply let a1 be such that: | a ' a , | < Vj — Vj-i, for

all j = 1, . . . , n; and take a = 1 — a' .) Let if)' denote the homomorphism atp. We

clearly have: /!]_,,.,„.[ o ip = / I j _ ^ l V j [ o rp', for all j = 1, . . . , n, where the equality

holds everywhere on G. Hence, from the uniqueness of the Fourier transform, it follows

that the equality

sup I (/l]-„,„[ °V>)1 = sup I ( / l ]_„,„[ oV'YI

holds almost everywhere on G.

We can now state and prove our main theorem.

THEOREM 4.3. Let V> be an arbitrary continuous real-valued homomorphism on
G. Let f be in CP{G), where 1 < p < 2; then

\\M*f\\PiG < ^ P H/llp,G •

where Mp is independent of f, and is the same as for the case G = R.

PROOF: We distinguish two cases.

Case 1. 0 is a topological isomorphism. This is the case treated in Theorem 3.7.

Case 2. cj> is not a topological isomorphism. By Remark 4.2 (a), i>[G) is a discrete

subgroup of R. Also, to prove the theorem it is enough to consider / in a dense

subset of Cp(G). So suppose that / has a compactly supported Fourier transform / ,

and denote its support by K. By Remark 4.2, ij){K) is finite, and we may suppose

that ip(K) D / ' = 0, where / ' = / U {—v: v £ / } , since the constants in our proof

do not depend on the choice of the homomorphism xp. Let 6 — dist (^(A"), / ' ) =

min{|V>(x) — v\ : % £ K, v £ / ' } ; then 6 > 0. Let g be an arbitrary function in £p(R)

such that ||</||pR > 0, and supp £ C ] 0, 6 [.

Note that, for all \ in G, all a in R, and all v in / , we have

(4-3.1) / /
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Let F in £p(G x R) be defined by: F(x, t) = f(x)y{t). We have

(4.3.2) F(X, a) = f(X)g(s).

From (4.3.1), (4.3.2), and (4.1.1), it follows that

(TvF){x, s) = gia)f{x)l]-vM{i>{x))\ or

(4.3.3) TvF{x,i)

where the equality holds fi x A-almost everywhere G x R. We thus have, from (4.3.3)

(4.3.4) M*F(x, t) = sup \g(t)\\(f I]-.,.[oi>)-(x) =\g{t)\M# / ( * ) .

Using (4.3.4), and applying (4.1.2) to M^F, we obtain

(4.3.5) \\M*F{x, t)\\piQxR = \\g\\pJR \\M*f\\pG < Mp \\g\\pJR

The theorem follows now by dividing both sides of the inequality in (4.3.5) by

\\9\\P.n- D
An immediate application of Theorem 4.3 is the following pointwise inversion result.

THEOREM 4.4. Suppose that i\i is an arbitrary continuous reai-vaiued homomor-

plusm on G. For every f in £p(G), wiiere p € ] 1, 2 ], we have

for almost all x in G.

PROOF: The theorem is clearly true if / is compactly supported. The set of all

such functions is dense in £p(G). The theorem follows now from Theorem 4.3 and [7,

Theorem (1.2.1), p.ll]. D

5. INVERSION OF THE FOURIER TRANSFORM ON R° X T6

In this section we describe a method for recapturing pointwise a function / in
£P(R° x Tfc) from its Fourier transform, where a and 6 are arbitrary nonnegative
integers, and p is in ] 1, 2 ]. By using an abstract verion of Riesz's theorem on conjugate
functions, we will reduce our problem to the one-dimensional case, then use Theorem 4.4
above. Several versions of Riesz's theorem appeared recently. We refer the interested
reader to [1, Theorem (7.2)] and [2, Section 7].
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Fix an integer TO such that Ra x Z6 = Si U . . . U 5 m , where each Sj is the inter-

section of finitely many half-spaces; then for each j = 1, . . . , TO, there is a continuous

real-valued homomorphism rf)j on Ra x Z1" such that Sj f) i>J1{[—s, s}) is relatively

compact for all s in R. For example, write R2 as the union of the four quadrants. Let

ipi{xi, x2) = V"3(^i, x2) = »i + x2; and i>2{xi, x2) = i>i(xi, x2) = x-y - x2.

By repeatedly using Riesz's theorem, we can write an arbitrary / in Cp(R
a x T6)

as: / = /1 + h + • • • + fm, where ||/,|| ^ /?p | / | p , for all j in {1, . . . , TO} , where fiv

depends only on p, a, and b; and /;- = /15 . . Apply Theorem 4.4 to each /;- and t[)j
separately to see that

for almost all x in R° x T . Consequently, we obtain our inversion theorem for Fourier
transforms of functions on R* x T .

THEOREM 5.1. Let p be a number in ] 1, 2] . For eaci v = 1, 2, . . . , let

Tnen eacii Bv is relatively compact; and for all f in £P(R° x T6), we have

J ^ (/lfl^tx) = f(x)

for almost all x in R° x T6.

PROOF: The theorem follows from the preceding observations, and the equality

D
Remarks 5.2. (a) Take a — 0 in Theorem (5.1) to obtain the pointwise convergence
results of Fefferman [5] concerning multiple Fourier series.
(b) Let T°° denote the countable product of the circle T. We denote the character
group of T°° by Zw, which is the weak direct product of countably many copies of Z.
A generic element x of Z™ is represented by a sequence of integers (xi, x2, • • •) all but
finitely many of its terms are zero. Define a real-valued homomorphism ip on Zw by:

00

I/J((XI, x2, ••-, XJ,...))= *£j3Xj- Call a function / in £ 1 ( T ° ° ) analytic if / vanishes
i
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outside the first orthant; that is / ( ( s i , x^, ...)) = 0 if xy < 0, for some _;'. In this case,
the set ip~1([—u, i/]) f tsupp/ is finite for all v. So, for analytic functions in £p(T°°),
where 1 < p < oo, Theorem 4.4 gives a pointwise inversion for the Fourier transform
analogous to the one given by Theorem 5.1.

(c) Finally we note that, in view of the negative results concerning the convergence of
the restricted rectangular partial sums of multiple Fourier series in [6], one may not
expect to get pointwise convergence using arbitrary rectangular blocks in Theorem 5.1.

As we mentioned in the introduction, our methods consist in transfering to a new
set-up a certain operator and its properties. This idea has been explored extensively
by various other writers. For example, in [5], the pointwise convergence of multiple
Fourier series, and the boundedness of the maximal operator associated with them,
are obtained by reducing to the one-dimensional case and using the Carleson-Hunt
theorem. Also the idea of decomposing a function as a sum of functions each having a
Fourier transform vanishing outside a sector is due to [5]. The main results of [1] were
obtained by transferring the properties of the Hilbert transform. A general transference
method is presented in [3], where the transference of maximal operators is also studied.
Generalisations of [3] are taken-up in [4], The novelty in our proof is that, unlike the
results that we just mentioned, we succeeded in transferring properties of a maximal
operator associated with convolution operators with kernels which are not compactly
supported; or, for that matter, not even integrable. It is clear, however, that our proofs
depend vitally on the fact that the action of R on CP(G) is of a very special kind.
More precisely, to each r £ R , corresponds the translation operator on Cp(G) defined
by translating by <t>{r), where <j> is a continuous homomorphism of R into G.
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