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Abstract. Working over the complex numbers, we study curves lying in a complete intersection
K3 surface contained in a (nodal) complete intersection Calabi^Yau threefold. Under certain
generality assumptions, we show that the linear system of curves in the surface is a connected
componend of the the Hilbert scheme of the threefold. In the case of genus one, we deduce
the existence of in¢nitesimally rigid embeddings of elliptic curves of arbitrary degree in the gen-
eral complete intersection Calabi^Yau threefold.
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0. Introduction

The principal objects of study in this work are embeddings of smooth complex
projective curves into smooth, three-dimensional complete intersections with trivial
canonical class. These varieties ^ and projective Calabi^Yau threefolds in general
^ are currently of active interest in algebraic geometry and physics, and understand-
ing the curves lying in them is important in both contexts.

By adjunction, a complete intersection of hypersurfaces of degrees b1 X b2 X � � �
X brÿ3 in Pr has trivial canonical bundle precisely when

P
bi � r� 1, so that there

are only ¢ve families of such threefolds: the quintic threefolds in P4, the complete
intersections of types �4; 2� and �3; 3� in P5, the complete intersections of type
�3; 2; 2� in P6 and those of type �2; 2; 2; 2� in P7. We refer to any variety of this type
as a complete intersection Calabi^Yau ^ or ciCY ^ threefold.

On any complete intersection one can construct continuous families of curves by
taking hyperplane sections. Even if such embeddings are excluded ^ say by specifying
that the degree d of the embedding should satisfy d > 2gÿ 2 (where g is the genus of
the curves) ^ a particular threefold may still admit a continuous family of curves; for
example, one easily constructs families of lines on the Fermat quintic. But a
dimension count suggests that for a suf¢ciently general ciCY threefold, this should
not occur; curves ^ if they exist ^ should be isolated, or rigid. Thus for a ¢xed
d and g, a broad goal would be to answer the following: Are there degree d
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embeddings of smooth genus g curves into a general K-trivial complete intersection
threefold (or Calabi^Yau threefold)? Are some of them rigid? If they are all rigid,
how many are there?

Rigid embeddings may be used to construct algebraic cycles not algebraically
equivalent to other cycles. With this motivation, Clemens [5] constructed rigid
embeddings of arbitrarily high degree from P1 into a general quintic threefold
Y � P4. His method consists of constructing smooth rational curves C on a smooth
quartic surface X , embedding X in a nodal quintic threefold Y0, and showing that
under a general deformation of Y0 to a smooth quintic Y , C deforms to a curve
rigid in Y . It was observed by S. Katz [14] that a theorem of Mori [19] guarantees
the existence of a smooth quartic surface containing a smooth rational curve of
any degree, and that Clemens's deformation argument therefore constructs rigid
smooth rational curves of all degrees in a general quintic threefold. Katz went
on to deduce that for dW 7, the general quintic contains a ¢nite positive number
of smooth degree d rational curves; this has been extended to degrees dW 9 by Nijsse
[21] and independently by Johnsen and Kleiman [13]. In fact, Clemens [6] con-
jectured that this ¢niteness should hold in all degrees.

This conjecture ^ and the implicit goal of counting the smooth rational curves of a
particular degree in a general quintic (or ciCY) threefold ^ has inspired some remark-
able mathematics over the past decade, including the development of quantum
cohomology and the discovery of some surprising connections with physics and
the theory of mirror symmetry; see [4, 8, 11, 14, 17, 18].

As we will show, a dimension count (2.3) suggests existence, rigidity and ¢niteness
results when considering curves of arbitrary genus in all of the complete
intersections. In the case of genus one, we prove:

THEOREM 1. Fix dX 3. Then the general complete intersection Calabi^Yau three-
fold contains rigid elliptic curves of degree d, with the exception of degree 3 curves
in threefolds of type �2; 2; 2; 2�.

and

THEOREM 2. For 3W dW brÿ3 � 3 (or if 4W dW 5 if �bi� � �2; 2; 2; 2�), the general
ciCY threefold of type �b1; . . . ; brÿ3� contains a ¢nite positive number of smooth curves
of degree d and genus one.

Note. Theorem 1 does not imply that a general threefold contains embeddings of
all degrees; for that, one would need a generic complete intersection, i.e., the comp-
lement of countably many divisors in the projective space of all complete
intersections.

Because smooth cubic and quartic curves of genus one are complete intersections,
algebro-geometric counts for the numbers of such curves on a general quintic exist;
see [8]. In general, using the theory of mirror symmetry, predictions for the numbers
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of elliptic curves of degree d on a general quintic threefold have been made; cf. [3].
Recent work of Getzler [10] may lead to a mathematical proof of these formulae
along the lines of that given by Givental [11] for rational curve.

OVERVIEW. Section 1 consists of general material. In Section 1. we brie£y recall
the fundamental properties of Hilbert schemes and give a de¢nition of rigid
embedding. In Section 1.2, we discuss zero schemes of sections of a vector bundle,
their deformations over C, and their Hilbert schemes. Speci¢cally, we show that
under a certain vanishing hypothesis, their Hilbert schemes are themselves
zero-schemes (Theorem 1.5). In Section 1.3, we establish some results on linear sys-
tems on K3 surfaces. The main tool is the Atiyah exact sequence, and the section
opens with a discussion of its construction.

Although we are ultimately interested in smooth curves, the proof of Theorem 1
will make use of complete linear systems on K3 surfaces. To handle all curves occur-
ring in this way, we construct CH ^ a smooth open subscheme of the Hilbert scheme
of curves in Pr ^ which parameterizes all of the smooth genus g curves of degree
d > 2gÿ 2 in Pr as well as any deformation of them on complete intersection
K3 surfaces. As an application of Section 1.2, we then establish that if Y � Pr

is a (global) complete intersection, HilbY \ CH is the scheme-theoretic zero locus
of a section of a locally free sheaf V on CH.

Now it turns out that in case Y is a Calabi^Yau complete intersection,
dim CH � rkV, which suggests that a suf¢ciently general section should have some
isolated zero points. Thus, we would like to show that sections of V arising from
a general Calabi^Yau complete intersections are suf¢ciently general in the above
sense; in the genus one case, this is precisely the content of Theorem 1, and suggests
the more general:

CONJECTURE 1. Let gX 0, d > 2gÿ 2 and suppose there exist degree d projective
embeddings of smooth connected curves of genus g. Then there exist rigid degree
d embeddings of smooth, connected curves of genus g into a general complete inter-
section Calabi^Yau threefold.

A more optimistic guess would be that all of the zeros are reduced and isolated.
Theorem 2 and the theorem of Katz [14] are very special cases, and we show
how to deduce them from Theorem 1 and the existence theorem of Clemens^Katz
respectively.

Section 3 contains the proof of Theorem 1. In Section 3.1, following the general
idea of Clemens's proof as described above, we study the inclusion of curves on
complete intersection K3 surfaces into general complete intersection Calabi^Yau
threefolds. The main result ^ Theorem 3.5 ^ is that the deformations of these curves
in the threefold are all present as deformations in the surface. The proof relies
on the lemmas established in Section 1.3. Now the main theorem of Mori [19]
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and its generalizations to K3 surfaces of degrees 6 and 8 guarantee the existence of a
K3 surface X carrying a good linear system, and we ¢x a suf¢ciently general
threefold Y0 containing it. At this point, we give a brief alternate proof of a result
of Ekedahl, Johnsen and Sommervoll [7], to the effect that a generic ciCY threefold
contains rigid rational curves of any degree.

Finally, in Section 3.2, we show that a general deformation of Y0 contains a
smooth rigid curve. Here, the main tool is the characterization from Section 1.2
of HilbY0 and its deformations. It is only in this section that the genus one hypothesis
becomes necessary.

CONVENTIONS AND NOTATION. Unless otherwise indicated, all schemes are
separated and of ¢nite type over a ¢eld k; except in Section 1, we assume
k � C, the ¢eld of complex numbers. A curve is a purely one-dimensional scheme.
A variety is a reduced and irreducible scheme.

Let Y be a scheme and F anOY -module; denote by F_ � HomOY �F ;OY � its dual.
For a locally closed subscheme X ,!Y , let N X=Y :� HomOU �I ;OX � �
HomOX �I=I 2;OX � be the normal sheaf of X in Y , where I is the ideal sheaf of
X in some open U � Y in which X is closed. For f a global section of a locally
free OY -module E of ¢nite rank, denote by Z�f � the zero-scheme of f (cf. [9, B.3.4]).

A complete intersection of type �bi� � �b1; b2; . . . ; bn� in Pr is a subscheme Y � Pr

of pure codimension n whose ideal is generated by n elements of degrees
b1 X b2 X � � � X bn X 1. These elements in turn determine a section f 2 G�Pr;LO�bi�� such that Y � Z�f �.

1. General Material

1.1. HILBERT SCHEMES AND RIGID EMBEDDINGS

Let Y be a projective variety. We write UnivY ! HilbY for the universal £at family
over its Hilbert scheme. Recall the following result from the local study of these
schemes:

PROPOSITION 1.1 (In¢nitesimal properties of Hilb). The Zariski tangent space of
HilbY at a closed embedding X ,!Y is H0�X ;N X=Y �. Furthermore, if
H1�X ;N X=Y � � 0, then HilbY is smooth at this point.

For a construction of these schemes and a proof of this theorem, see [23] or, for a
more general theory, [16, Section I.1 and Section I.2].

DEFINITION 1.1. A closed embedding i:X ,!Y into a projective variety is rigid if i
is represented by an isolated point of HilbY , i.e., if the component of this point is
zero-dimensional. If, furthermore, this point is reduced, i is said to be in¢nitesimally
rigid.
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(When a particular embedding is understood, we often say that X is rigid or
in¢nitesimally rigid in Y .) From the in¢nitesimal study of HilbY , it is immediate
that i is in¢nitesimally rigid if and only if H0�C;N C=Y � � 0.

1.2. ZERO SCHEMES AND THEIR HILBERT SCHEMES

In this section, unless otherwise noted, schemes are separated and of ¢nite type over
an arbitrary ¢eld k.

Let W be a scheme and E a locally free OW -module of rank e, and ¢x a global
section f 2 G�W ; E�. Let Z � Z�f � ,!W be the zero-scheme of f .

LEMMA 1.2. There is an exact sequence of OZ-modules

0!N Z=W !m E 
 OZ !
r M! 0: �1:1�

Moreover, if Z!i W is a regular embedding, then M is locally free of
rank eÿ codimW Z.

Remark. In case i is a regular embedding,M is the excess normal bundle of the
¢ber square

where E is the geometric bundle of E and 0E is the zero section; see [9, Section 6.3].
Proof. Let I denote the ideal sheaf of Z in W . Let U �W be an af¢ne open set

over which E is free and ¢x an isomorphism EjU � Oe
U . With respect to this

trivialization, write f � �f1; f2; . . . ; fe�. De¢ne the morphism m:HomOZ �I=I 2;OZ�
! E 
OZ by j 7! �j� f1�;j�f2�; . . . ;j� fe��. By de¢nition, IjU �

P
fiOU , implying

that m is a monomorphism. Since the � fi� patch together to form the global
section f , this local construction globalizes to a monomorphism
m:N Z=W ! E 
OZ; in particular, for a global section a 2 G�Z;N Z=W � it makes
sense to write m�a� � a�f �. One can equally well check that the dual is an
epimorphism, so that whenN Z=W is locally free ^ e.g., when i is a regular embedding
^ the cokernelM of mmust be locally free of rank eÿ rkN Z=W � eÿ codimWZ.&

We shall need a local description of m in terms of derivations. Let I denote the
ideal sheaf of Z in W , and let z 2 Z be a closed point. Denote by
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d: �mz;W=m
2
z;W �_ ! �I z=I 2z�

_
the natural map. Then the description of m in the

proof of Lemma 1.2 implies:

LEMMA 1.3. The composition mz � mz � d: �mz;W=m
2
z;W �_ ! E 
 k�z� is given on a

derivation d by mz�d� � d�f �.

Over the complex numbers, zero schemes of regular sections which do not have the
expected codimension may often be deformed to ones that do:

PROPOSITION 1.4. In the above situation, suppose that k � C, that W is smooth of
dimension e, and that i:Z ,!W is regular of codimension eÿ c. If f 0 2 G�W ; E� such
that Z�r�i�f 0�� has a reduced isolated point at a smooth point z of Z, then for
general e, the scheme Z� f � ef 0� has a reduced isolated point in a neighborhood
of z in W.

Proof. Because z is a smooth point, it is possible to choose local analytic
coordinates �u1; . . . ; ue� on a neighborhood U of z in W and a local trivialization
j: EjU !

� Oe
U such that j�f � � �u1; u2; . . . ; ueÿc; 0; . . . ; 0�. This induces a

trivialization c:MjU\Z !Oc
U\Z such that crjÿ1�g1; . . . ; ge� � �geÿc�1; . . . ; ge�.

Write j�f 0� � �f 01; . . . ; f 0e �. Then cr�i�f 0� � �f 0eÿc�1; . . . ; f 0e �, and since this has a
reduced isolated zero at z, there is a neighborhood V � U of z on which
�u1; . . . ; ueÿc; f 0eÿc�1; . . . ; f 0e � is a system of coordinates.

By the implicit function theorem, for e in a suf¢ciently small neighborhood of 0,
the system

u1 � ef 01 � � � � � ueÿc � ef 0eÿc � ef 0eÿc�1 � � � � � ef 0e � 0

has a solution p�e� � �p1; . . . ; peÿc; 0; . . . ; 0� in V , where the pi are analytic functions
of e. At p�e�, the corresponding Jacobian matrix J�e� is of the form

J�e� � I � eJ 0�e� eA
0 eI

� �
where

J 0�e� � @f 0i
@uj
�p�e��

� �
1W i;jW eÿc

:

Thus, J has maximal rank if I � eJ 0 does, and since it does at e � 0, it does for jej
suf¢ciently small. &

In certain cases, the Hilbert scheme of a zero scheme is itself a zero scheme: LetW
be a projective scheme, E a locally free OW -module and f 2 G�W ; E�; set Z � Z�f �.
Let H � HilbW be open and denote by p:U ! H the restriction of the universal
family and by q:U !W the second projection.
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THEOREM 1.5. Assume that

H1�Us; �q�E�s� � 0 for all points s 2 H:

Then p�q�E is locally free over H, and the global section p�q�f has the property that
HilbZ \ H � Z� p�q�f � as subschemes of H.

Proof. Let F � q�E, which is £at over H. Recall the following consequence of
semicontinuity (e.g., [20, Theorem, p. 46]).

Fact. Let p:X ! Y be a proper morphism of Noetherian schemes and F a coher-
ent OX -module, £at over Y . Suppose that H1�Xy;F y� � 0 for all points y 2 Y . Then
p�F is a locally free OY -module, and for all morphisms g:Y 0 ! Y , the natural
morphism g�p�F ! p0��g0��F is an isomorphism, where p0 and g0 are the morphisms
from X �Y Y 0 to Y 0 and X respectively.

Thus, p�F is locally free. Consider the embedding g: HilbZ \H ! H. Since
qg0:U �H �HilbZ \ H� !W factors through Z ,!W , the section p0��g0��q��f � is zero;
using the above fact, so is g�p�q��f �. By the universal property of zero schemes, this
implies that g factors through h:Z�p�q�f � ,!H. Conversely, the universal property
of HilbZ implies that h factors through g. Thus, h and g represent the same closed
subscheme of H. &

With the same notation, assume the hypothesis of Theorem 1.5 holds, and set
HZ � HilbZ \H � Z�p�q�f �. Let z 2 HZ correspond to a closed embedding
X ,!Z. Denote by TzHZ and TzH the Zariski tangent spaces at z of HZ and H
respectively, and by m0 the composition

N X=W !N Z=W 
OX ÿ!
mjX E 
 OX

(where m:N Z=W ! E 
OZ is the morphism of Lemma 1.2).

PROPOSITION 1.6. There is a commutative diagram of exact sequences of
k�z�-vector spaces

where the ¢rst two vertical arrows are the standard isomorphisms and the third follows
from semicontinuity, and mz is the morphism of Lemma 1.3 applied to the locally free
sheaf p�q�E.

Proof. Let k0 � k�z� (which is the ¢eld of de¢nition of X ), and denote by k0�e� the
ring of dual numbers over k0. To prove commutativity of the right-hand square,
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start with a 2 H0�X ;N X=W �. There is a corresponding scheme X �W �k Spec k0�e�,
£at over Spec k0�e�, which lifts X . Over an af¢ne open set V � SpecA �W , the ideal
of X in Spec �A
k k0�e�� �W � Spec k0�e� isSa2I a� ea�a�, where I � I�X \ V � and
we think of ajV 2 HomA�I;A=I�. By the universal property of the Hilbert scheme,
this in turn gives rise to a morphism v � v�a�: Spec k0�e� ! HilbW whose image is
the point z and such that U �HilbW Spec k0�e� � X . The map a 7! v�a� is precisely
the middle isomorphism of our diagram (for details, see e.g. [23, Prop. 4.4]). Let
r � r�a�:X ! U be the induced morphism. Then by the construction ofX , the section
r�q�f 2 G�X ; r�q�E� is given by r�q�f � f � ea�f �: (As noted in the proof of
Lemma 1.2, this notation makes sense.) The desired commutativity is now immediate
from the descriptions of m and m in Lemmas 1.2 and 1.3.

That the left-hand square commutes is a consequence of the above description of
the vertical isomorphism. Finally, exactness at the left of either sequence is standard,
and exactness at the middle follows because m is a monomorphism (Lemma 1.2). &

1.3. THE ATIYAH EXACT SEQUENCE AND CURVES ON K3 SURFACES

Recall that for OX -modules F and G on a scheme X , there is a @-functorial pairing

Hrÿi�X ;F� � ExtiOX
�F ;G�ÿ!Hr�X ;G�

called the Yoneda Pairing. (See e.g. [1, Theorem IV.1.1].) As a consequence of
@-functoriality, the pairing has a simple description in case i � 1: for
x 2 Ext1OX

�F ;G�, choose an extension 0! G! E ! F ! 0 representing x. Then
the map �x: Hrÿ1�X ;F� ! Hr�X ;G� is just the connecting homomorphism in the
long exact sequence of cohomology arising from the above extension. Recall also
([1, Corollary IV.2.6]) that in case F is locally free of ¢nite rank, there is a natural
isomorphism

ExtiOX
�F ;G� � Hi�X ;G 
 F_�: �1:2�

Now suppose that X is a compact Ka« hler variety and that L is a line bundle on X .
Atiyah [2] showed that the class 2pic1�L� 2 H1�X ;O1

X � � Ext1�T X ;OX � may be
represented by the Atiyah exact sequence

0ÿ!OX ÿ!ALÿ!T X ÿ! 0; �1:3�
constructed as follows: Let p:P! X be the geometric principal bundle associated to
L. Then C� acts on the exact sequence

0ÿ!V ÿ!T Pÿ!p�T X ÿ! 0;

where V is the sheaf of vertical vector ¢elds. Taking C�-invariants, one obtains an
exact sequence which descends to X as 0!Ad�L� ! AL ! T X ! 0, where
Ad�L� � OX is the adjoint bundle of L; this is (1.3). One way to think of AL is
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as the sheaf of ¢rst-order deformations of the pair �X ;L�, i.e., as ¢rst-order
deformations of the geometric realization of L preserving the vector bundle
structure.

EXAMPLE 1.1 [2, Section 6]. When X � P � P�V � and L � OP�1�, the Atiyah
sequence is the Euler sequence

0ÿ!OPÿ!V 
OP�1� ÿ!T Pÿ! 0:

The Atiyah sequence is functorial [2, Section 2 Remark (2)]: if f :X 0 ! X is a
holomorphic map, Af �L � f �AL �f �T X T X 0 : Consequently, we have:

PROPOSITION 1.7. Suppose X is projective: X ,!Pr. Then for all k

Hkÿ2�X ;N X=Pr� !d Hkÿ1�X ; T X � !c Hk�X ;OX �

is a complex, exact if Hkÿ1�X ;OX �1�� � 0; here d arises from
0! T X ! T P 
OX !N X=P! 0 and c is the Yoneda pairing �c1�OX �1��.

Proof. Functoriality and the example give commutative diagrams with exact rows
and columns:

A diagram chase establishes the proposition. &

Recall that p:P! X is the geometric principal bundle associated to L. Now p�L is
canonically trivial, and for U � X open, there are isomorphisms

cU :G�U;L� !� G�pÿ1�U�; p�L�C� :

Given s 2 G�U;L� and x 2 G�U;AL�, we may differentiate cU �s� by x, obtaining a
C�-invariant function on pÿ1�U�, i.e.,

x�cU �s�� 2 G�pÿ1�U�; p�L�C� � G�U;L�:

Thus, given a global section s 2 G�X ;L�, we may de¢ne a morphism of sheaves
ns:AL ! L by ns�x� � cÿ1U �x�cU �sjU ��� for x 2 G�U;AL�.
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Suppose s 2 G�X ;L�, and let D � Z�s� be the associated locally principal sub-
scheme of X . One way to describe the usual morphism

m: T X ! T X 
OD !N D=X !� L
OD

is by m�x� � x�s�jD. Thus, we have a commutative diagram of exact sequences

This shows

PROPOSITION 1.8. If X is a smooth projective variety over C and D an effective
divisor on X, the square

commutes for all k.

We apply the above results to the case X ,!Pr a smooth projective K3 surface, C0

a smooth connected curve of genus g on X , and L � OX �C0�. As usual, denote
jLj � P�G�X ;L��. We shall need a preliminary result:

LEMMA 1.9. For all C 2 jLj and m > 0:

(1) h0�OC� � 1 and h1�OC� � g,
(2) h0�N C=X � � g and h1�N C=X � � 1, and
(3) If OC0 �m� is non-special, then OC�m� is nonspecial.

Remark. Since the linear system parameterizes a £at family of curves, (3) implies
that if OC0 �m� is nonspecial, h0�OC�m�� � h0�OC0�m��.

Proof.Obviously, results 1 and 3 hold forC � C0. For any curveD 2 jLj, there is a
standard exact sequence

0ÿ! L_ ÿ!OX ÿ!ODÿ! 0: �1:4�
By the de¢nition of K3 surface, h1�OX � � 0. Therefore, h0�OC� � h0�OC0� � 1,
implying the ¢rst assertion.
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Since oX � OX , Serre duality allows us to deduce from (1.4) that

h0�L� � g� 1 while h1�L� � h2�L� � 0:

The second assertion then follows from

0ÿ!OX ÿ!Lÿ!L
OC ÿ! 0

and the isomorphism N C=X � L
OC .
Finally, tensor (1.4) with OX �m�. When D � C0,

h1�OD�m�� � h2�OX �m�� � 0;

which implies h2�L_�m�� � 0. The third assertion is immediate. &

For each C 2 jLj, there is an exact sequence

0ÿ!N C=X ÿ!N C=Pr ÿ!N X=Pr 
OC ÿ! 0: �1:5�

LEMMA 1.10. Suppose that OX �1� and L are independent in PicX. Then for
all C 2 jLj, the composition

j: H0�X ;N X=Pr� ÿ!H0�C;N X=Pr 
OC� ÿ!H1�C;N C=X �

of the restriction with the connecting homomorphism arising from (1.5) is surjective.
Furthermore, kerj is independent of C (given L).

Proof. From the commutative diagram

of OX -modules we obtain a commutative square of connecting homomorphisms; in
combination with the square of Proposition 1.8, it gives a commutative diagram

Because of Lemma 1.9, d is an isomorphism and since the top row is independent
of C, so is kerj. For surjectivity it suf¢ces to prove that the composition
��c1�L�� � d0 is surjective or, equivalently,
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Claim. image�d0� 6� ker��c1�L��.
Since oX � OX , Serre duality on X states that the Yoneda pairing

H1�X ; T X � �H1�X ;O1
X � ÿ!H2�X ;OX �

is non-degenerate. In particular, the maps �c1�L� and �c1�OX �1�� are surjective and
because L and O�1� are independent in PicX ,

ker��c1O�1�� 6� ker��c1L�:

By Kodaira vanishing h1�OX �1�� � 0, so by Proposition 1.7, image�d0� �
ker��c1O�1��, proving the claim. &

Now suppose that X is a complete intersection of type �a1; a2; . . . ; arÿ2� in Pr and
that OC0 �minfaig� is nonspecial; let C 2 jLj. By Lemma 1.9, OC�minfaig� is
nonspecial, and since N X=Pr 
OC �

LOC�ai�, this implies that h1�N X=Pr 
OC�
� 0. Then via (1.5), Lemma 1.10 implies

H1�C;N C=Pr� � 0:

In particular, we have

COROLLARY 1.11. Let X be a complete intersection K3 surface in Pr and C0 a
smooth genus g curve on X. If OX �1� and L � OX �C0� are independent in PicX
and OC0�1� is nonspecial, Hilbr is smooth at all points representing curves C 2 jLj.

2. A Framework for Studying Curves on Complete Intersection Threefolds

Fix integers dX 1, gX 0 and rX 4. For the remainder of this work, unless the con-
trary is speci¢cally stated, we assume that

d > 2gÿ 2 and (d,g) =2 f (1,1), (2,1), (3,2), (4,2), (5,3)g. �2:1�

For a projective variety Y , let CUnivY !p CHilbY be the universal family over the
Hilbert scheme of curves of degree d and genus g in Y , and q: CUnivY ! Y the
second projection. Then CHilbY is a ¢nite union of connected components of
HilbY , and p is the corresponding restriction of the universal UnivY ! HilbY .
Let CHilbY

sm be the open subscheme of CHilbY parameterizing smooth connected
curves. In case Y � Pr, we abbreviate to CHilbr etc.

PROPOSITION 2.1. With the hypotheses (2.1), CHilbr
sm is smooth, connected and

of dimension �r� 1�d ÿ �rÿ 3�g� rÿ 3.
Proof. Apply Riemann-Roch and the in¢nitesimal properties of the Hilbert

scheme. &
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Let CHilbr
sm be the closure in CHilbr. Now q�O�1� is £at over CHilbr, so by the

semi-continuity theorem, the set

S � �s 2 CHilbr
sm : dimk�s�H0�CUnivrs; q

��O�1��s� � d ÿ g� 1g
and CHilbr is irreducible at s

	
is open in CHilbr.

DEFINITION 2.1. De¢ne CHr � CHilbr
sm to be the smooth locus of the open sub-

scheme corresponding to S. If Y � Pr is a closed subvariety, let CHY be the
scheme-theoretic intersection

CHY :� CHr \ CHilbY :

By abuse of notation, we denote by CUY !p CHY the restriction of the universal
family, and q: CUY ! Y the second projection.

Two results illustrate the utility of the de¢nition of CHr. First, as a direct
consequence of Corollary 1.11:

PROPOSITION 2.2. With the notation of Corollary 1.11, if d � L � O�1� > 2gÿ 2,
all curves C 2 jLj are parameterized by points of CHr

PROPOSITION 2.3. Let Y � Pr be a complete intersection of type �b1; . . . ; brÿc�,
corresponding to a section f 2 G�Pr;

LO�bi��. Then p�q��
LO�bi�� is locally free

of rank �P bi�d � �rÿ c��1ÿ g� on CHr. Furthermore, CHY � Z�p�q��f �� as schemes.
Proof. Riemann^Roch and the invariance of Euler characteristics in £at families

imply that for all n > 0, H1�C;O�n�� � 0 for all curves C ,!Pr parameterized by
points of CHr. The proposition is then a special case of Theorem 1.5. &

Henceforth, we work with a ¢xed �b1; . . . ; brÿ3� satisfyingX
bi � r� 1;

so that complete intersections of this type are Calabi^Yau threefolds. For a scheme
X � Pr, set

BX :� OX �b1� � � � � � OX �brÿ3�
and let

V :� p�q�BPr : �2:2�
Combining Propositions 2.1 and 2.3, we have

rkV � dim CHr: �2:3�
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Let Y � Z� f � be a complete intersection of type �bi�. A smooth curve of degree d
and genus g which is in¢nitesimally rigid in Y corresponds to a reduced isolated
point of CHilbY

sm, i.e., to a point of CHilbr
sm where p�q�� f � meets the zero section

transversely. Therefore, Theorem 1 follows from

THEOREM 2.4. If g � 1 and dX 3 (or dX 4 if �bi� � �2; 2; 2; 2�), then for general
f 2 G�Pr;B�, Z�p�q��f �� has reduced isolated points in CHilbr

sm.

Given the dimension count (2.3), such a theorem seems reasonable enough. More
optimistically, one hopes that for general f 2 G�B�, the corresponding p�q�� f � have
¢nite, reduced zero schemes.

Let us examine how one proves ¢niteness in low degrees. A standard consequence
of the algebraic version of Sard's theorem is

PROPOSITION 2.5. Let E be a locally free sheaf of rank r on a smooth complex
variety X of dimension n. If E is globally generated by a linear subspace
L � G�X ; E�, then for general s 2 L, Z�s� is either empty or smooth of dimension nÿ r.

Remark. In case rX n, the smoothness hypothesis may be weakened: if X has a
dense, smooth open subscheme X 0, the proposition still holds as can be seen by
applying the smooth case on X 0 and on the smooth strata of the reduced singular
scheme of X .

Now h0�BPr � is independent of d, whereas rk�V� increases with d, so for d
suf¢ciently large, V cannot possibly be generated by sections of the form p�q��f �.
On the other hand, if one continues to assume that d > 2gÿ 2, an immediate
consequence of a theorem of Gruson, Lazarsfeld and Peskine [12, Theorem
p. 492] is

PROPOSITION 2.6. The bundle V is generated over CHilbr
sm by sections of the form

p�q��f � whenever brÿ3 X d ÿ 2 or when gX 1 and brÿ3 X d ÿ 3.

Note. Actually, the theorem of [12] is considerably stronger: it gives the bound
nX d ÿ r for nondegenerate nonrational curves in Pr. Since we must consider
degenerate curves, however, this is the best we can do.

Combining the two propositions in our language we have:

COROLLARY 2.7. For a general complex complete intersection threefold Y of type
�b1; . . . ; brÿ3� (with

P
bi � r� 1), if g � 0 and dW brÿ3 � 2 or if gX 1 and

2gÿ 2W dW brÿ3 � 3, then CHilbY
sm is ¢nite and reduced.

Theorem 2 is a combination of this Corollary with Theorem 1.
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Note. Since the theorem of [12] and hence Proposition 2.6 are sharp, the proof of
¢niteness for rational curves in degrees d � 8, 9 on quintics by Nijsse [21] and
by Johnsen and Kleiman [13] requires careful analysis of those curves C for which
G�P4;O�5�� ! G�C;O�5�� fails to be surjective.

3. Finding Rigid Curves

3.1. CONSTRUCTING Y0 AS A PENCIL OF K3 SURFACES

In order to prove the existence results, we need a source of curves, such as the main
result of [19]:

THEOREM 3.1 (Mori). Let k be an algebraically closed ¢eld of characteristic 0 and
d > 0 and gX 0 be integers. Then there is a nonsingular curve C0 of degree d and
genus g on a nonsingular quartic surface X in P3 if and only if (1) g � d2=8� 1,
or (2) g < d2=8 and �d; g� 6� �5; 3�.

Note. The cases g � d2=8� 1 occur when C0 is a complete intersection of X and
another surface. In all other cases, O�1� and O�C0� are independent in PicX .

The existence statement of Mori's theorem may be generalized to K3 surfaces of
higher degree. Oguiso [22, Theorem 3] established the existence of K3 surfaces
of arbitrary degree containing a smooth rational curve of given degree. For the other
complete intersections, one has:

THEOREM 3.2. Let k be an algebraically closed ¢eld of characteristic 0 and d > 0
and gX 0 be integers.

(1) If �d; g� � �3; 1�, or g < d2=12 and �d; g� 6� �7; 4�, there exist a nonsingular
complete intersection surface X of type �3; 2� in P4 and a nonsingular curve
C0 � X of degree d and genus g.

(2) If �d; g� � �4; 1�, or g < d2=16 and �d; g� 6� �9; 5�, there exist a nonsingular
complete intersection surface X of type �2; 2; 2� in P5 and a nonsingular curve
C0 � X of degree d and genus g.

Furthermore, O�C0� and O�1� are independent in PicX.
Proof. The proof follows Mori's almost verbatim. In Proposition 3 [19] one makes

the obvious numerical modi¢cation to obtain a polarization of degree 6
(respectively 8.) A cohomology calculation shows that every K3 surface with a
degree 6 (respectively 8) polarization may be realized as a complete intersection
of type �3; 2� (respectively �2; 2; 2�), so Mori's Remark 4 remains valid. In the ¢nal
inductive step of the proof, one again makes obvious numerical modi¢cations.
In the degree six case, one needs to explicitly construct curves with
�d; g� � �1; 0�, �2; 0�, �3; 0�, �4; 1� and �5; 2� while in the degree eight case, one needs
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curves with �d; g� � �1; 0�, �2; 0�, �3; 0�, �4; 0�, �5; 1�, �6; 2� and �7; 3� to start the
induction. All of these may be constructed explicitly. &

Note. While this theorem is adequate for our purposes, A. L. Knutsen [15] has
recently given a complete characterization a© la Mori of smooth curves on complete
intersection K3s, and in fact, on K3s with polarization of arbitrary degrees.

We now ¢x d and g subject to the continuing conditions (2.1). The idea of using K3
surfaces to construct rigid curves on Calabi^Yau threefolds ¢rst appears in [5], where
Clemens uses a quartic surface X containing rational curves, realizes it as fq � ` � 0g
in P4 for q 2 G�P4;O�4�� and ` 2 G�P4;O�1��, and considers the (nodal) quintic
Y0 � ff0 � 0g, where

f0 � aq� b`

for general a 2 G�P4;O�1�� and b 2 G�P4;O�4��.
In general, to construct a nodal complete intersection Calabi^Yau threefold of

type �b1; . . . ; brÿ3� in Pr, start with a smooth complete intersection K3 surface X
of type �a1; . . . ; arÿ2� in Pr, with

1W ai W bi for all i and
X

ai � r� 1:

(Note that several of the ai may well be 1.) Choose generators gi of degrees ai for the
ideal of X . By Theorems 3.1 or 3.2, we may assume that X contains a smooth curve
C0 of genus g and degree d, and that PicX is spanned by O�1� and L � O�C0�. Set

A :�
M
OPr �ai�:

For general aij 2 G�Pr;O�bi ÿ aj��, set

fi :�
X

aijgj

and let

Y0 :� V �f1; f2; . . . ; frÿ3�
be the corresponding complete intersection threefold. We will occasionally refer to
the fourfold

Z0 :� �f1 � � � � � frÿ4 � 0�:

PROPOSITION 3.3. If the �aij� are suf¢ciently general, Z0 is smooth, and Y0 has
` > 2 ordinary double points. The precise value of ` and some of the corresponding
equations for Y sing

0 in X are shown at the top of the next page.
Proof. The proposition must be established case-by-case, where it follows from

generality of the aij via repeated applications of Bertini's theorem and the Jacobian
criterion. &
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LEMMA 3.4. There are isomorphisms

N X=Pr � AX and N Y0=Pr 
OX � BX ; �3:1�

under which the usual map H0�X ;N X=Pr� ! H0�X ;N Y0=Pr 
OX � is given by the
matrix �aij�, where aij is the restriction of aij to X. Furthermore.

N X=Y0 � OX : �3:2�

Proof. The existence of the isomorphisms 3.1 is a special case of Lemma 1.2; the
description of the map on global sections is standard and follows from the same
description at the level of sheaves.

Finally, the isomorphism N X=Y0 � OX holds away from Y sing:
0 by the adjunction

formula. Locally, at the nodes, X � Y0 can be transformed by an analytic change
of coordinates to the inclusion

�x � y � 0� � �xzÿ yw � 0�

in af¢ne 4-space, where one checks directly that N X=Y0 is locally free. &

THEOREM 3.5. Suppose that the aij are general. Then for all C 2 jLj, h0�N C=Y0� � g

We shall interpret this to mean that most of the curves in jLj acquire no additional
deformations when they are considered as curves in Y0.

Proof. For any C 2 jLj we have the exact sequence of normal sheaves:

0ÿ!N C=Y0 ÿ!N C=Pr ÿ!N Y0=Pr 
OC; �3:3�

which we combine with (1.5) into a commutative diagram with exact rows and
columns:

�bi� �aj� ` Y sing
0

�5� �4; 1� 16 X \ �a11 � a12 � 0�
�5� �3; 2� 36 X \ �a11 � a12 � 0�
�4; 2� �4; 1; 1� 4 X \ �a22 � a23 � 0�
�4; 2� �3; 2; 1� 18 X \ �a11 � a12a23 ÿ a13a22 � 0�
�4; 2� �2; 2; 2� 32 X \ �a21a12 ÿ a22a11 � a21a13 ÿ a23a11 � 0�
�3; 3� �3; 2; 1� 12 X \ �a21a12 ÿ a22a11 � a21a13 ÿ a23a11 � 0�
�3; 3� �2; 2; 2� 32 X \ �a21a12 ÿ a22a11 � a21a13 ÿ a23a11 � 0�
�3; 2; 2� �3; 2; 1; 1� 6 X \ �a22a33 ÿ a23a32 � a22a34 ÿ a24a32 � 0�
�3; 2; 2� �2; 2; 2; 1� 16 X \ linear \ quadratic
�2; 2; 2; 2� �2; 2; 2; 1; 1� 8 X \ linear \ linear
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Given that h0�N C=X � � g while h0�N X=Y0 
OC� � 1 ((3.2) and Lemma 1.9), the
theorem will be proved if we can show that for any C 2 jLj, H0�m� is not surjective.
But a diagram chase reduces this to

Claim. Let the aij be general. Then for all C 2 jLj,

dC�ker H0�FC�� 6� 0;

where dC : H0�C;N X=Pr 
OC� ! H1�C;N C=X � is the connecting homomorphism.
To prove this claim, use Gaussian elimination to ¢nd a generatorN � N�aij� of the

null-space of the linear map Crÿ2 ÿ!�aij� Crÿ3. Keeping track of degrees, this can be

done in such a way that the ith coordinate of N is of degree ai. For example, if
�bi� � �4; 2� and �aj� � �3; 2; 1�, the vector N � �a12a23 ÿ a13a22;ÿa14a23; a11a22�.
Since N is well-de¢ned only up to scalar, we view it as a line in H0�Pr;A� or a point
of P�H0�Pr;A��.

Now each term of each coordinate of N is a term of a determinant of �aij�, so that
as �aij� varies, N hits a multiple of each element of the form �0; . . . ;

0; l1l2 . . . lai ; 0; . . . ; 0�, where the lk's are of degree 1. Since the image of the Segre
embedding of P�H0�Pr;O�1����ai in P�H0�Pr;O�ai��� is non-degenerate, the linear
span of the image of N includes the spaces

0� � � � � 0�H0�Pr;O�ai�� � 0� � � � � 0

and hence all of
L

i H
0�Pr;O�ai��.

Now in light of Lemma 3.4, the claim follows from Lemma 1.10 since
H0�Pr;A� ! H0�X ;AX � is surjective for any complete intersection X . &

(3.4)
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Let

S :� Y sing
0

be the set of nodes of Y0 so that ` � jSj. Let Y 00 :� Y ns
0 � Y0 n S and X 0 :� X n S.

COROLLARY 3.6. If C 2 jLj there is a commutative diagram with exact rows and
vertical isomorphisms:

Proof. For curves supported on X 0, all columns and rows of (3.4) are short exact.
Given the further cohomology calculations of Corollary 1.11 and taking into
account (3.1), the diagram of cohomology groups arising from (3.4) reduces to
the given one. &

The existence of rigid rational curves in quintic threefolds due to Clemens [5] and
Katz [14] has been generalized to type (4,2) threefolds by Oguiso [22] and recently
to all ciCY threefolds [7]:

THEOREM 3.7 (Ekedahl, Johnsen and Sommervoll). For any d > 0, a general,
smooth, Calabi^Yau complete intersection threefold admits a rigid degree d
embedding of P1.

Our methods provide an alternate proof:

Proof. Let g � 0. The existence of a smooth rational curve C0 of degree d on a
relevant K3 surface follows from Theorems 3.1 and 3.2. For general aij,
Theorem 3.5 implies immediately that C0 is in¢nitesimally rigid in Y0. So a general
ciCY threefold must also contain an in¢nitesimally rigid rational curve of
degree d. (For an elaboration of this last point, see the proof of Theorem 2.4 given
in the following section.)

3.2. GENUS ONE: DEFORMING Y0

In this section, we consider the case g � 1. Then X is elliptically ¢bered by

p:X ! L :� P�H0�X ;OX �C0��� � P1:
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By the generality of the aij , we may assume

Csing \ S � ; for all fibers C of p. �3:5�

Set

D :� L n p�S�:
The universal property of the Hilbert scheme shows that L! CHilbY0 is a closed
subscheme, and by Corollary 3.6, D! CHilbY0 is an open subscheme. Using
Proposition 2.2 one concludes

COROLLARY 3.8. D is an open subscheme of CHY0 � Z�p�q��f1; . . . ; frÿ3��.

To deform Y0 to a smooth threefold containing a rigid curve, we shall apply
Proposition 1.4. In our case, the sequence (1.1) is

0ÿ!N D=CHr !m VjD!
r Mÿ! 0 �3:6�

and g � rkM� 1. To ¢nd a section ofM with isolated zeros, we shall extend r to a
map of locally free sheaves on L. (See De¢nition 2.1 and (2.2) for notation.)

Recall that S denotes the singular scheme of Y0. Let eX � BlSX !b X with
exceptional divisor E � E1 � � � � � E`, and let ~p � p � b:eX ! L. De¢ne

M� R1 ~p�OeX�2E�:

PROPOSITION 3.9. The sheafM has the following properties:

(1) There exists a morphism �r:VjL !M extending r,
(2) M is invertible,
(3) The composition G�Pr;B�ÿ!G�X ;BX � ÿ!G�L;VjL�ÿ!G�L;M� is surjective,

and
(4) degM� `ÿ 2 > 0.

Proof of Theorem 2.4.A line bundle of degree n > 0 on L � P1 has a section with n
isolated reduced zeros at speci¢ed points, so by Proposition 3.9, there exists
f 2 G�Pr;B� such that r

ÿ
p�q��f �jD

�
has `ÿ 2 > isolated reduced zeros at points

in D over which p has smooth ¢bers. By Proposition 1.4, for general e,
Z�p�q���fi� � ef ��will have `ÿ 2 reduced isolated points representing smooth curves.
The scheme CHilbr

sm parameterizing smooth curves is an open subscheme of CHr,
and having a reduced isolated zero is an open condition on sections of a locally
free sheaf. Thus, if Y � V �F � for general F 2 G�Pr;B�, then CHY � Z�p�q��F ��
has `ÿ 2 reduced isolated points representing smooth curves. &
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Proof of Proposition 3.9. There is an exact sequence

0ÿ!N X=Y0 ÿ!N X=Pr ÿ!N Y0=Pr 
OX ÿ!OS ÿ! 0:

which, in light of (3.1), becomes

0ÿ!OX ÿ!AX ÿ!BX ÿ!OS ÿ! 0: �3:7�

Recall that we had b:eX � BlSX ! X and ~p � p � b. For all n, set
OeX �n� � b�OX �n�, and let AeX � b�AX and BeX � b�BX . Set

CeX :� O�b1� � � � � � O�brÿ4�;

so that BeX � CeX �OeX �brÿ3�. Then twisting the normal bundle sequence for the
regular embeddings eX ,!BlS Y0 ,!BlS Pr by O�2E�, we obtain the exact sequence

0ÿ!OeX �2E� ÿ!AeX �E� ÿ!CeX �E� � OeX �brÿ3� ÿ! 0: �3:8�

of OeX -modules.
If we de¢ne �r � j � d

VjL� ~p�B !
j

~p��C�E� � O�brÿ3�� !d R1 ~p�O�2E� � M
as the composition of the natural monomorphism with the morphism of derived
functors arising from (3.8), then part (1) of the proposition is a consequence of
Nakayama's lemma, Proposition 1.6 and Corollary 3.6.

Suppose C 2 jLjwith C \ S � fpg. In eX , let C be the proper transform ofC and let
E0 be the exceptional curve over p. Then

eC � pÿ1�C� � C � E0;

and since p is a non-singular point of C (3.5), C � E0 � 1; set C \ E0 � fqg.
There is an exact sequence

0ÿ!OC�ÿq� ÿ!OeC ÿ!OE0 ÿ! 0

of OeX -modules, which becomes

0ÿ!OC�q� ÿ!OeX �2E� 
 OeC ÿ!OE0 �ÿ2� ÿ! 0

upon tensoring with OeX �2E�.
Since p =2Csing, C � C, implying h0�OC�q�� � 1 and h1�OC�q�� � 0. We conclude

that

hi�OeX �2E� 
 OeC� � 1 � hi�OC� for i=0, 1:

The proof shows by induction on the order of C \ S that these equalities hold for
all C. Since ~p is £at and L reduced, semi-continuity implies that M is invertible,
which is assertion (2) of the proposition.
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LEMMA 3.10. For all n; i, there are isomorphisms

Hi�X ;OX �n�� !� Hi�eX ;O�n�� !� Hi�eX ;O�n� 
 O�E��:
Proof. E � E1 � � � � � E`. The Ei are pairwise disjoint �ÿ1�-curves, so there is an

exact sequence

0ÿ!OeX �n� ÿ!OeX �E� 
 OeX �n� ÿ!LOEi �ÿ1� ÿ! 0

ofOeX -modules. whence the second isomorphism. The ¢rst comes from the projection
formula and the degeneration of the Leray spectral sequence for the map
b:eX ! X . &

COROLLARY 3.11. h0�OeX �2E�� � 1, h1�OeX �2E�� � `ÿ 1 and h2�OeX �2E�� � 0.

Proof. E is a non-zero effective divisor on eX so h0�O�ÿE�� � 0. Since
oeX � b�oX 
O�E�, Serre duality shows that h2�O�2E�� � 0. The remaining
assertions are then immediate from the sequence

0ÿ!O�E� ÿ!O�2E� ÿ!LOEi �ÿ2� ÿ! 0

and the lemma. &

We return to the proof of Proposition 3.9. Consider the commutative diagram
with exact rows and columns

where vertical exactness is a consequence of the degeneration of the Leray spectral
sequence for ~p. By Lemma 3.10, the group at the right is 0. Since X is a complete
intersection, the restriction H0�Pr;B�ÿ!H0�X ;B� is a surjection, so the third
assertion of Proposition 3.9 follows from another application of Lemma 3.10.

By Hartogs's theorem, b�OeX �2E� � OX : From the degeneration of the Leray
spectral sequence of p, one easily shows

p�OX � OL;

so that

~p�OeX �2E� � OL:
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Finally, by Leray again, there is an extension

0ÿ!H1�L;O�ÿ!H0�eX ;O�2E��ÿ!H0�L;M�ÿ! 0;

and degM� `ÿ 2 follows from Corollary 3.11. &
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