
5

Less supersymmetry

Let us move towards less supersymmetric theories. In this chapter we will review
non-Abelian strings in four-dimensional gauge theories with N = 1. In Chapter 6
we will deal with N = 0.

As was discussed in the Introduction to Part II, the Seiberg–Witten mechanism of
confinement [2, 3] relies on a cascade gauge symmetry breaking: the non-Abelian
gauge group breaks down to an Abelian subgroup at a higher scale by condensation
of the adjoint scalars, and at a lower scale the Abelian subgroup breaks down to a
discrete subgroup by condensation of quarks (or monopoles, depending on the type
of vacuum considered). This leads to formation of the ANO flux tubes and ensures
an Abelian nature of confinement of the monopoles (or quarks, respectively). The
gauge group acting in the infrared, where the confinement mechanism becomes
operative, is Abelian.

On the other hand, non-supersymmetric QCD-like theories as well as N = 1
SQCD have no adjoint scalars and, as a result, no cascade gauge symmetry
breaking occurs. The gauge group acting in the infrared is non-Abelian. Confine-
ment in these theories is non-Abelian. This poses a problem of understanding
confinement in theories of this type. Apparently, a straightforward extrapola-
tion of the Seiberg–Witten confinement scenario to these theories does not
work.

The discovery of the non-Abelian strings [130, 131, 132, 133] suggests a novel
possibility of solving this problem. In the N = 2 gauge theory (4.1.7) the SU(N)
subgroup of the U(N) gauge group remains unbroken after the squark condensation;
the vacuum expectation value 〈aa〉 = 0, see (4.1.11). This circumstance demon-
strates that the formation of the non-Abelian strings does not rely on the presence of
adjoint VEVs. This suggests, in turn, that we can give masses to the adjoint fields,
make them heavy, and eventually decouple the adjoint fields altogether, without
losing qualitative features of the non-Abelian confinement mechanism reviewed
above.
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This program – moving towards less supersymmetry – was initiated in Ref. [189]
which we will discuss in this section. In [189] we considered N = 2 gauge theory
(4.1.7), with the gauge group U(N). This theory was deformed by a mass term μ

for the adjoint matter fields breaking N = 2 supersymmetry down to N = 1. The
breaking terms do not affect classical solutions for the non-Abelian strings. The
latter are still 1/2 BPS-saturated. However, at the quantum level the strings “feel”
the presence of N = 2 supersymmetry breaking terms. Effects generated by these
terms first show up in the sector of the fermion zero modes.

Upon breaking N = 2 supersymmetry in the bulk theory down to N = 1, the
fermionic sector of the world sheet theory modifies. The number of the fermion
zero modes on the string (and hence the number of the fermion fields in the world
sheet theory) does not change. It is determined by the index theorem [104] which
we discuss in Section 5.4. However, supersymmetry of the world sheet model
changes. The N = (2, 2) supersymmetry of the undeformed CP(N − 1) model is
broken down to N = (0, 2) by the bulk mass term μ [190, 191]. Moreover, the
superorientational sector of the model gets mixed with the supertranslational one.
The world sheet model emerging after deformation is called the heterotic CP(N−1)
model. We will review in this section how the heterotic world sheet model emerges,
as well as the physics of the heterotic CP(N − 1) model which happens to be
solvable in the large-N expansion [192]. The solution exhibits supersymmetry
breaking at the quantum level.

If the adjoint mass parameter μ is kept finite, the non-Abelian string in the
N = 1 model at hand is well-defined and supports confined monopoles. How-
ever, at μ → ∞, as the adjoint superfield becomes very heavy (i.e. we approach
the limit of N = 1 SQCD) an infrared problem develops. This is due to the
fact that in N = 1 SQCD defined in a standard way the vacuum manifold is
no longer an isolated point. Rather, a flat direction develops (a Higgs branch).
The presence of the massless states obscures physics of the non-Abelian strings.
In particular, the strings become infinitely thick [189]. Thus, one arrives at a
dilemma: either one must abandon the attempt to decouple the adjoint super-
field, or, if this decoupling is performed, confining non-Abelian strings cease to
exist [189].

A way out was suggested in [104]. A relatively insignificant modification of the
benchmark N = 2 model cures the infrared problem. All we have to do is to add
a neutral meson superfield M coupled to the quark superfields through a super-
potential term. Acting together with the mass term of the adjoint superfield, M
breaks N = 2 down to N = 1. The limit μ → ∞ in which the adjoint superfield
completely decouples, becomes well-defined. No flat directions emerge. The lim-
iting theory is N = 1 SQCD supplemented by the meson superfield. It supports
non-Abelian strings. The junctions of these strings present confined monopoles,
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or, better to say, what becomes of the monopoles in the theory where there are no
adjoint scalar fields. There is a continuous path following which one can trace the
monopole evolution in its entirety: from the ’t Hooft–Polyakov monopoles which
do not exist without the adjoint scalars to the confined monopoles in the adjoint-free
environment.

5.1 Breaking N = 2 supersymmetry down to N = 1

In Section 5.1 we will outline main results of Ref. [189, 190, 191] where non-
Abelian strings were considered in an N = 1 gauge theory obtained as a
deformation of the N = 2 theory (4.1.7) by mass terms of the adjoint matter.

5.1.1 Deformed theory and string solutions

Let us add a superpotential mass term to our N = 2 SQCD,

WN=1 =
√
N

2

μ1

2
A2 + μ2

2
(Aa)2 , (5.1.1)

whereμ1 andμ2 are mass parameters for the chiral superfields belonging to N = 2
gauge supermultiplets, U(1) and SU(N), respectively, while the factor

√
N/2 is

included for convenience. Clearly, the mass term (5.1.1) splits these supermultiplets,
breaking N = 2 supersymmetry down to N = 1.

The bosonic part of the SU(N)×U(1) theory has the form (4.1.7) with the
potential

V (qA, q̃A, aa , a)N=1 = g2
2

2

(
1

g2
2

f abcābac + q̄A T
a qA − q̃AT

a ¯̃qA
)2

+ g2
1

8

(
q̄Aq

A − q̃A ¯̃qA −Nξ
)2

+ g2
2

2

∣∣2q̃AT aqA + √
2μ2a

a
∣∣2 + g2

1

2

∣∣q̃AqA + √
Nμ1a

∣∣2
+ 1

2

N∑
A=1

{∣∣(a + 2T aaa)qA
∣∣2

+ ∣∣(a + 2T aaa) ¯̃qA
∣∣2} , (5.1.2)

where the sum over repeated flavor indicesA is implied. The potential (5.1.2) differs
from the one in (4.1.9) in two ways. First, we use SU(2)R invariance of the original
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N = 2 theory with the potential (4.1.9) to rotate the FI term. In Eq. (5.1.2) it is the
FI D term, while in Chapter 4 we considered the FI F term.

Second, there are N = 2 supersymmetry breaking contributions from F

terms in Eq. (5.1.2) proportional to the mass parameters μ1 and μ2. Note that
we set the quark mass differences at zero and redefine a to absorb the average value
of the quark mass parameters.

As in Eq. (4.1.9), the FI term triggers spontaneous breaking of the gauge
symmetry. The vacuum expectation values of the squark fields can be chosen as

〈qkA〉 = √ξ
⎛
⎝ 1 0 . . .

. . . . . . . . .

. . . 0 1

⎞
⎠ , 〈 ¯̃qkA〉 = 0,

k = 1, . . . ,N , A = 1, . . . ,N , (5.1.3)

while the adjoint field VEVs are

〈aa〉 = 0, 〈a〉 = 0, (5.1.4)

see (4.1.11).
We see that the quark VEVs have the color-flavor locked form (see (4.1.14))

implying that the SU(N)C+F global symmetry is unbroken in the vacuum. Much
in the same way as in N = 2 SQCD, this symmetry leads to the emergence of the
orientational zero modes of the ZN strings.

Note that VEVs (5.1.3) and (5.1.4) do not depend on supersymmetry breaking
parametersμ1 andμ2. This is due to the fact that our choice of parameters in (5.1.2)
ensures vanishing of the adjoint VEVs, see (5.1.4). In particular, we have the same
pattern of symmetry breaking all the way up to very large μ1 and μ2, where the
adjoint fields decouple. As in N = 2 SQCD we assume

√
ξ � �SU(2) to ensure

weak coupling.
Now, let us discuss the mass spectrum in the N = 1 theory at hand. Since both

U(1) and SU(N) gauge groups are broken by squark condensation, all gauge bosons
become massive. Their masses are given in Eqs. (4.1.16) and (4.1.17).

To obtain the scalar boson masses we expand the potential (5.1.2) near the vacuum
(5.1.3), (5.1.4) and diagonalize the corresponding mass matrix. Then, N2 compo-
nents of 2N2 (real) component scalar field qkA are eaten by the Higgs mechanism
for the U(1) and SU(N) gauge groups. Other N2 components are split as follows.
One component acquires mass (4.1.17) and becomes the scalar component of a mas-
sive N = 1 vector U(1) gauge multiplet. Moreover, N2 − 1 components acquire
masses (4.1.16) and become scalar superpartners of the SU(N) gauge bosons in
N = 1 massive gauge supermultiplets.
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Other 4N2 real scalar components of the fields q̃Ak , aa and a produce the follow-
ing states: two states acquire mass

m+
U(1) = g1

√
N

2
ξ λ+

1 , (5.1.5)

while the mass of other two states is given by

m−
U(1) = g1

√
N

2
ξ λ−

1 , (5.1.6)

where λ±
1 are two roots of the quadratic equation

λ2
i − λi(2 + ω2

i )+ 1 = 0 , (5.1.7)

for i = 1, where we introduced two N = 2 supersymmetry breaking parameters
ω1,2 associated with the U(1) and SU(N) gauge groups, respectively,

ω1 = g1μ1√
ξ

, ω2 = g2μ2√
ξ

. (5.1.8)

Other 2(N2 − 1) states acquire mass

m+
SU(N) = g2

√
ξλ+

2 , (5.1.9)

while the remaining 2(N2 − 1) states become massive, with mass

m−
SU(N) = g2

√
ξλ−

2 , (5.1.10)

where λ±
2 are two roots of the quadratic equation (5.1.7) for i = 2. Note that all

states come either as singlets or adjoints with respect to the unbroken SU(N)C+F .
When the SUSY breaking parameters ωi vanish, the masses (5.1.5) and (5.1.6)

coincide with the U(1) gauge boson mass (4.1.17). The corresponding states form
the bosonic part of a long N = 2 massive U(1) vector supermultiplet [35], see also
Section 4.1.2.

If ω1 �= 0 this supermultiplet splits into an N = 1 vector multiplet, with mass
(4.1.17), and two chiral multiplets, with masses (5.1.5) and (5.1.6). The same hap-
pens with the states with masses (5.1.9) and (5.1.10). In the limit of vanishing ω’s
they combine into bosonic parts of (N2 − 1) N = 2 vector supermultiplets with
mass (4.1.16). If ωi �= 0 these multiplets split into (N2 − 1) N = 1 vector mul-
tiplets (for the SU(N) group) with mass (4.1.16) and 2(N2 − 1) chiral multiplets
with masses (5.1.9) and (5.1.10). Note that the same splitting pattern was found in
[35] in the Abelian case.
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Now let us take a closer look at the spectrum obtained above in the limit of large
N = 2 supersymmetry breaking parameters ωi , ωi � 1. In this limit the larger
masses m+

U(1) and m+
SU(N) become

m+
U(1) = mU(1)ω1 = g2

1

√
N

2
μ1 , m+

SU(N) = mSU(N)ω2 = g2
2μ2 . (5.1.11)

In the limit μi → ∞ these are the masses of the heavy adjoint scalars a and aa . At
ωi � 1 these fields decouple and can be integrated out.

The low-energy theory in this limit contains massive gauge N = 1 multiplets
and chiral multiplets with the lower masses m−. Equation (5.1.7) gives for these
masses

m−
U(1) = mU(1)

ω1
=
√
N

2

ξ

μ1
, m−

SU(2) = mSU(2)

ω2
= ξ

μ2
. (5.1.12)

In particular, in the limit of infinite μi these masses tend to zero. This reflects the
presence of a Higgs branch in N = 1 SQCD. To see the Higgs branch and calculate
its dimension, please observe that our theory (4.1.7) with the potential (5.1.2) in
the limit μi → ∞ flows to N = 1 SQCD with the gauge group SU(N)×U(1) and
the FI D term. The bosonic part of the action of the latter theory is

S =
∫
d4x

{
1

4g2
2

(F aμν)
2 + 1

4g2
1

(Fμν)
2 + ∣∣∇μqA∣∣2 + ∣∣∇μ ¯̃qA∣∣2

+ g2
2

2

(
q̄A T

aq A − q̃AT
a ¯̃q A)2 + g2

1

8

(
q̄ Aq

A − q̃A ¯̃q A −Nξ
)2} .(5.1.13)

All F terms disappear in this limit, and we are left with theD terms. We have 4N2

real components of the q and q̃ fields while the number of the D term constraints
in (5.1.13) is N2. Moreover, N2 phases are eaten by the Higgs mechanism. Thus,
the dimension of the Higgs branch in Eq. (5.1.13) is

4N2 −N2 −N2 = 2N2 .

The vacuum (5.1.3) corresponds to the base point of the Higgs branch with q̃ = 0.
In other words, flowing from N = 2 theory (4.1.7), we do not recover the entire
Higgs branch of N = 1 SQCD. Instead, we arrive at a single vacuum – a base point
of the Higgs branch.

The scale of N = 1 SQCD
�N=1

SU(N)
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is expressed in terms of the scale�SU(N) of the deformed N = 2 theory as follows:

(
�N=1

SU(N)

)2N = μN2 �
N
SU(N) . (5.1.14)

To keep the bulk theory at weak coupling in the limit of large μi we assume that

√
ξ � �N=1

SU(N) . (5.1.15)

Now, considering the theory (4.1.7) with the potential (5.1.2), let us return to the
case of arbitraryμi and discuss non-Abelian string solutions. The BPS saturation is
maintained. By the same token, as for the BPS strings in N = 2 we use the ansatz

qkA ≡ ϕkA , q̃Ak = 0 . (5.1.16)

The adjoint fields are set to zero. Note that Eq. (5.1.16) is an SU(2)R-rotated version
of (4.2.1). The FI F term considered in Chapter 4 is rotated into the FI D term
in (5.1.2).

With these simplifications the N = 1 model (4.1.7) with the potential (5.1.2)
reduces to the model (4.2.2) which was exploited in Chapter 4 to obtain non-
Abelian string solutions. The reason for this is that the adjoint fields play no role in
the string solutions, and we let them vanish, see Eq. (5.1.4). Then N = 2 breaking
terms vanish, and the potential (5.1.2) reduces to the one in Eq. (4.1.9) (up to an
SU(2)R rotation).

This allows us to parallel the construction of the non-Abelian strings carried out
in Section 4.3. In particular, the elementary string solution is given by Eq. (4.4.4).
Moreover, the bosonic part of the world sheet theory is nothing but the CP(N − 1)
sigma model (4.4.9), with the coupling constant β determined by the coupling g2

of the bulk theory via Eq. (4.4.15) at the scale
√
ξ . The latter scale plays the role

of the UV cut off in the world sheet theory.
At small values of the deformation parameter,

μ2 � √
ξ ,

the coupling constant g2 of the four-dimensional bulk theory is determined by the
scale �SU(N) of the N = 2 theory. Then Eq. (4.4.15) implies (see (4.4.35))

�σ = �SU(N) , (5.1.17)

where we take into account that the first coefficient of the β function is N both in
the N = 2 limit of the four-dimensional bulk theory and in the two-dimensional
CP(N − 1) model, see (4.4.34).
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Instead, in the limit of large μ2,

μ2 � √
ξ ,

the coupling constant g2 of the bulk theory is determined by the scale �N=1
SU(N) of

N = 1 SQCD (5.1.13), see (5.1.14). In this limit Eq. (4.4.15) gives

�σ =
(
�N=1

SU(N)

)2
g2

√
ξ

, (5.1.18)

where we take into account the fact that the first coefficient of the β function in
N = 1 SQCD is 2N .

5.1.2 Heterotic CP(N − 1) model

In this section we will discuss the fermionic sector of the low-energy effective theory
on the world sheet of the non-Abelian string in the deformed bulk theory (4.1.7)
with the potential (5.1.2), as well as supersymmetry of the world sheet theory. First,
we note that our string is classically 1/2 BPS-saturated. Therefore, in the N = 2
limit (with N = 2 breaking parameters μi vanishing) four supercharges out of
eight present in the bulk theory are automatically preserved on the string world
sheet. They become supercharges in the CP(N − 1) model.

What happens when we break N = 2 supersymmetry of the bulk model by
switching on parameters μi (for simplicity we consider the case μ1 = μ2 ≡ μ

here)? The 1/2 “BPS-ness” of the string solution requires only two supercharges
on the world sheet. However, as we will show in Section 5.4, the number of the
fermion zero modes in the string background does not change. This number is fixed
by the index theorem. Thus, the number of (classically) massless fermion fields in
the world sheet model does not change.

It is well known that the N = (2, 2) supersymmetric sigma model with the
CP(N − 1) target space does not admit N = (0, 2) supersymmetric deformations
[156]. A way out was indicated in [190]: the world-sheet theory is in fact CP(N −
1)×C rather than the CP(N−1)model. The factorC comes from the translational
sector. In the N = 2 limit the translational and the orientational sectors of the
world-sheet theory are totally decoupled. Breaking N = 2 supersymmetry in the
bulk mixes fermions from these two sectors on the world sheet.

The translational sector of the effective theory on the string in the N = 2 limit
contains the bosonic field x0i , i = 1, 2 (position of string’s center in the (1,2) plane),
and two fermion fields ζL and ζR . Two supercharges that survive on the string world
sheet at non-zero μ protect x0i and ζL. The world-sheet fields x0i(t , z) and ζL(t , z)
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remain free fields decoupled from all others. This is no longer the case with regards
to ζR which gets an interaction with fermions of the orientational sector.

As a result, the heterotic N = (0, 2) model in the gauged formulation (see
(4.4.32)) takes the form [190]

S =
∫
d2x

{
1

2
ζ̄R i∂L ζR + [2√β i δ λ̄L ζR + H.c.

]
+ |∇knl|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2 + 1

2e2
D2 + 2|σ |2|nl|2 + iD(|nl|2 − 2β)

+ ξ̄lR i∇L ξ lR + ξ̄lL i∇R ξ lL + 1

e2
λ̄R i∂L λR + 1

e2
λ̄L i∂R λL

+ [
i
√

2 σ ξ̄lRξ
l
L + i

√
2 n̄l (λRξ

l
L − λLξ

l
R)+ H.c.

]+ 8β |δ|2 |σ |2
}

, (5.1.19)

where we omitted the fields x0i(t , z) and ζL(t , z) as irrelevant for the present
consideration, while ∂L,R = ∂0 ∓ i ∂3. Here ξ lR,L are fermionic superpartners of

the bosonic orientational fields nl . For convenience we change the normalization
of nl as compared with the one in (4.4.32) absorbing the coupling constant 2β in
the kinetic term for n’s.

Much in the same way as the N = (2, 2) CP(N − 1)model, this heterotic model
should be considered in the strong coupling limit e2 → ∞. The gauge multiplet
consists of the U(1) gauge field Ak , complex scalar σ , fermions λR,L and axillary
field D. Integrating over D gives constraint (4.4.3) modified due to the change of
normalization of n as follows:

|nl|2 = 2β . (5.1.20)

The terms in Eq. (5.1.19) containing the deformation parameter δ break N =
(2, 2) supersymmetry down to N = (0, 2). The parameter δ is complex and dimen-
sionless. It was calculated in terms of the deformation parameter μ of the bulk
theory in [191]. We review this result below.

Integrating over the axillary fields λ we arrive at the constraints

n̄l ξ
l
L = 0, ξ̄lR n

l = √2β δ ζR , (5.1.21)

replacing those in Eq. (4.4.24) (the latter equation in the gauged formulation for
arbitraryN takes the form n̄l ξ

l = 0). We see that the constraint (4.4.24) is modified
for the right-handed fermions ξR implying that the supertranslational sector of the
world sheet theory is no longer decoupled from the orientational one. The general
structure of the deformation in (5.1.19) is dictated by N = (0, 2) supersymmetry.

Integrating over Ak and σ produces four-fermion interactions in the model
(5.1.19). Once the coefficient in front of |σ |2 is modified by the N = 2 breaking
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deformation the coefficient in front of the four-fermion interaction is modified as
well (as compared with Eq. (4.4.31)).

The model (5.1.19) has a U(1) axial symmetry which is broken by the chiral
anomaly down to the discrete subgroup Z2N [159]. The σ field is related to the
fermion bilinear operator by the following formula:

σ = − i

2
√

2β(1 + 2|δ|2) ξ̄lLξ
l
R . (5.1.22)

Moreover, it transforms under the above Z2N symmetry as

σ → e
2πk
N
i σ , k = 1, . . . ,N − 1 . (5.1.23)

We will see below that theZ2N symmetry is spontaneously broken by a condensate
of σ , down to Z2, much in the same way as in the conventional N = (2, 2) model
[159]. This is equivalent to saying that the fermion bilinear condensate 〈ξ̄lLξ lR〉
develops, breaking the discrete Z2N symmetry down to Z2.

We can rewrite the indirect interactions between superorientational and super-
translational sectors of the theory coded in the constraint (5.1.21) by shifting the
field ξR as follows:

ξ̄R → ξ̄R − δ
1√
2β

n̄ ζR . (5.1.24)

Then we return to unmodified constraints

n̄l ξ
l
L = 0, ξ̄lR n

l = 0 . (5.1.25)

Performing a rather straightforward algebraic analysis based on the relation
between the gauged and O(3) formulations (see Appendix B.4) we get

S1+1 = β

∫
d2x

{
1

2

(
∂kS

a
)2 + 1

2
χaR i ∂L χ

a
R + 1

2
χaL i ∂R χ

a
L − c2

2
(χaRχ

a
L)

2

+ c

2
√

2β
χaR
(
i ∂L S

a (α ζR + ᾱ ζ̄R)+ iεabcSbi ∂L S
c (α ζR − ᾱ ζ̄R)

)
+ 1

2β
ζ̄R i ∂L ζR + |α|2 c

2

4β
ζ̄RζR iε

abcSaχbLχ
c
L

}
, (5.1.26)

where

c2 = 1

1 + |α|2 , (5.1.27)

we restrict ourselves to N = 2 and rename χa1,2 of Section 4.4.2, χa1,2 → χaR,L.
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The relation of the deformation parameter introduced here and the one in the
gauged formulation of the theory (see Eqs. (5.1.19)) is as follows:

δ = α√
1 − |α|2 . (5.1.28)

As a result of the shift (5.1.24), crucial bifermionic terms of the type χR∂LSζR
appear in the second line of Eq. (5.1.26).

Now the problem is to actually derive the heterotic world sheet CP(N − 1)
model from the bulk theory. The general structure of the theory (5.1.19) is fixed
by N = (0, 2) supersymmetry. In order to derive this theory as an effective low-
energy theory on the string we have to calculate the deformation parameter δ in
terms of the bulk parameters. The kinetic cross-terms χR∂SζR in the formula-
tion (5.1.26), bilinear in the fermion fields, allow us to do so. In Ref. [191] the
μ-deformation of the fermion zero modes was considered. Both supertranslational
and superorientational fermion zero modes on the string were found in the limits
of small and large μ by solving the Dirac equations. The overlap of the transla-
tional and orientational fermion zero modes gives the kinetic cross-term χ1∂SζR

in (5.1.19).
This derivation provides us with a relation between the bulk and world sheet

deformation parameters, namely [191],

δ =

⎧⎪⎪⎨
⎪⎪⎩

const
g2

2μ

MSU(N)
, small μ ,

const μ
|μ|

√
ln

g2
2 |μ|

MSU(N)
, large μ ,

(5.1.29)

where the mass of the gauge boson MSU(N) is given in Eq. (4.1.16). The constants
here are determined by the profile functions of the string solution [191].

The physical reason for the logarithmic behavior of the world sheet deformation
parameter at large μ is as follows. In the large-μ limit certain states in the bulk
theory become light [189, 191], see Section 5.1.1. This reflects the presence of the
Higgs branch in N = 1 SQCD to which our bulk theory flows in theμ → ∞ limit.
The argument of the logarithm in (5.1.29) is the ratio ofMSU(N) and the small mass
of the light states associated with this would-be Higgs branch [191].

To conclude this section, let us mention that more general deformations of N = 2
theory (4.1.7) preserving N = 1 supersymmetry were also considered in [190, 191].
In particular, deformations of (4.1.7) with unequal quark masses with a polynomial
superpotential

W = Tr
N∑
k=1

ck

k + 1
�k+1 (5.1.30)
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do not spoil the BPS nature of string solutions if the critical points of the super-
potential coincide with the quark mass parameters. Associated N = (0, 2) heterotic
deformations of the CP(N − 1) world-sheet theory were derived in [191]. For
polynomial deformations (5.1.30) a non-polynomial (logarithmic) response was
found in the world-sheet model. The heterotic CP(N − 1) model in the geometric
formulation is presented in Appendix B.5.

5.1.3 Large-N solution

The N = (2, 2)model as well as the non-supersymmetric CP(N − 1)model were
solved by Witten in the large-N limit [159]. The same method was used in [192] to
study the N = (0, 2) heterotic CP(N − 1) model. In this section we will briefly
review this analysis.

Since the action (5.1.19) is quadratic in the fields nl and ξ l we can integrate
out these fields and then minimize the resulting effective action with respect to
the fields from the gauge multiplet. The large-N limit ensures the corrections to
the saddle point approximation to be small. In fact, this procedure boils down to
calculating a small set of one-loop graphs with the nl and ξ l fields propagating in
loops. After integrating nl and ξ l out, we must check self-consistency.

Integration over nl and ξ l in (5.1.19) yields the following determinants:

[
det
(−∂2

k + iD + 2|σ |2)]−N [det
(−∂2

k + 2|σ |2)]N , (5.1.31)

where we dropped the gauge field Ak . The first determinant here comes from the
boson loops while the second from fermion loops. Note, that the nl mass is given
by iD+ 2|σ |2 while that of the fermions ξ l is 2|σ |2. If supersymmetry is unbroken
(i.e.D = 0) these masses are equal, and the product of the determinants reduces to
unity, as it should be.

Calculation of the determinants in Eq. (5.1.31) is straightforward. We easily get
the following contribution to the effective action:

N

4π

{(
iD + 2|σ |2) [ln

M2
uv

iD + 2|σ |2 + 1

]
− 2|σ |2

[
ln

M2
uv

2|σ |2 + 1

]}
, (5.1.32)

where quadratically divergent contributions from bosons and fermions do not
depend on D and σ and cancel each other. Here Muv is an ultraviolet cut off.
Remembering that the action in (5.1.19) presents an effective low-energy theory on
the string world sheet one can readily identify the UV cut off in terms of the bulk
parameters,

Muv = MSU(N) . (5.1.33)
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Invoking Eq. (4.4.15) we conclude that the bare coupling constant β in (5.1.19) can
be parameterized as

β = N

8π
ln
M2

uv

�2
σ

. (5.1.34)

Substituting this expression in (5.1.19) and adding the one-loop correction (5.1.32)
we see that the term proportional to iD ln M2

uv is canceled out, and the effective
action is expressed in terms of the renormalized coupling constant,

βren = N

8π
ln
iD + 2|σ |2

�2
σ

. (5.1.35)

Assembling all contributions together we get the effective potential as a function
of the D and σ fields in the form

Veff =
∫
d2x

N

4π

{
−
(
iD + 2|σ |2

)
ln
iD + 2|σ |2

�2
σ

+ iD

+ 2|σ |2 ln
2|σ |2
�2
σ

+ 2|σ |2 u
}

, (5.1.36)

where instead of the deformation parameter δ we introduced a more convenient
(dimensionless) parameter u which does not scale with N ,

u = 16π

N
β |δ|2. (5.1.37)

Minimizing this potential with respect to D and σ we arrive at the following
relations:

βren = N

8π
ln
iD + 2|σ |2

�2
σ

= 0 ,

ln
iD + 2|σ |2

2|σ |2 = u . (5.1.38)

Equations (5.1.38) represent the master set which determines the vacua of the
theory. Solutions can be readily found,

2|σ |2 = �2
σ e

−u , σ = 1√
2
�σ exp

(
−u

2
+ 2π i k

N

)
, k = 0, . . . ,N − 1,

iD = �2
σ (1 − e−u) . (5.1.39)

The phase factor of σ does not follow from (5.1.38), but we know of its existence
from the fact of the spontaneous breaking of the discrete chiral Z2N down to Z2,
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see the discussion in Section 5.1.2. Substituting this solution in Eq. (5.1.36) we get
the expression for the vacuum energy density [192],

Evac = N

4π
iD = N

4π
�2
σ (1 − e−u) . (5.1.40)

We see that the vacuum energy does not vanish! The N = (0, 2) supersymmetry
is spontaneously broken. The breaking of N = (0, 2) supersymmetry was first
conjectured in Ref. [193]. Of course, the large-N solution presented above is the
most clear-cut demonstration of its spontaneous breaking. However, even in the
absence of this solution one can present general arguments in favor of this scenario.
Indeed, addition of the extra right-handed field ζR in the CP(N−1)model changes
Witten’s index from N to zero [191].

Another argument comes from the bulk theory in the limit of large deformation
parameterμ. The breaking of supersymmetry for the N = (0, 2)world-sheet theory
could be argued from consistency with the absence of localized BPS solutions of
the required type in N = 1 gauge theories. The argument could go along the
following lines: If the N = (0, 2) world-sheet theory is to have supersymmetric
vacua, it would need to haveN degenerate vacua due to the breaking of the discrete
ZN symmetry. This is likely to imply the existence of BPS kinks preserving one
supercharge. From the bulk point of view, these configurations would be 1/4 BPS-
saturated confined monopoles. However, such solutions are not supported by the
allowed central charges in the N = 1 superalgebra and, therefore, are not expected.
Thus, the breaking of world sheet supersymmetry is consistent with the absence of
such bulk BPS configurations.

Needless to say, the linear N dependence of the vacuum energy we see in
Eq. (5.1.40) was expected.

It is instructive to discuss the first condition in (5.1.38). That βren = 0 was a
result of Witten’s analysis [159] too. This fact, βren = 0, implies that in quantum
theory (unlike the classical one)

〈 |nl|2 〉 = 0 , (5.1.41)

i.e. the global SU(N) symmetry is not spontaneously broken in the vacuum and,
hence, there are no massless Goldstone bosons. All bosons get a mass.

If the deformation parameter u vanishes, the vacuum energy vanishes too and
supersymmetry is not broken, in full accord with Witten’s analysis [159] and with
the fact that the Witten index is N in this case [123]. The σ field develops a
vacuum expectation value (5.1.39) breaking Z2N symmetry.1 As we switch on the

1 The vacuum structure (5.1.39) of the N = (2, 2) model at u = 0 was also obtained by Witten for arbitrary N
in [157] using a superpotential of the Veneziano–Yankielowicz type [194].
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deformation parameter u, the D component develops a VEV; hence, N = (0, 2)
supersymmetry is spontaneously broken. The vacuum energy density no longer
vanishes.

In the limit μ → ∞, the deformation parameter u behaves logarithmically
with μ,

u = const

(
ln
MSU(N)

�N=1
SU(N)

)(
ln

g2
2|μ|

MSU(N)

)
, (5.1.42)

where the constant above does not depend on N . At any finite u the σ -field con-
densate does not vanish, labeling N distinct vacua as indicated in Eq. (5.1.39). In
each vacuum Z2N symmetry is spontaneously broken down to Z2. As we explain
in Section 5.1.4 we cannot trust the world-sheet theory at very large values of μ
due to the presence of the Higgs branch in N = 1 SQCD. Therefore, the vacuum
structure outlined above persists in the whole window of the allowed values of the
deformation parameter u.

The mass spectrum of the heterotic CP(N−1)model was determined in Ref. [192]
in the large-N limit. In the regime of large u the masses of the nl bosons and ξ l

fermions become drastically different. They are

mn =
√
iD + 2|σ |2 = �σ , mξ = √

2|σ | = �σ exp
(
−u

2

)
, (5.1.43)

where we used Eqs. (5.1.39). The fermions are much lighter than their bosonic
counterparts.

Much in the same way as in the N = (2, 2) CP(N − 1) model [159], the fields
belonging to the U(1) gauge multiplet, introduced as axillary fields in (5.1.19),
acquire kinetic terms at one loop and become dynamical. Moreover, the photon
acquires mass proportional to the VEV of the σ field due to the chiral anomaly.
The σ field also becomes massive, with mass determined by 〈σ 〉 in (5.1.39).

Due to the spontaneous supersymmetry breaking the theory always has a mass-
less Goldstino. At small u its role is played by ζR with a small admixture of
other fermions, while in the large u limit the gaugino λR becomes massless. In
the large u limit when 〈σ 〉 is small the low-energy effective theory contains the
light (but massive!) photon, two light σ states and only one fermion: the massless
Goldstino λR .

As was shown above, in the N = (0, 2) theory supersymmetry is spontaneously
broken. The vacuum energy density does not vanish, see (5.1.40). This means that
strings under consideration are no longer BPS and their tensions get a shift (5.1.40)
with respect to the classical value Tcl = 2πξ . However, this shift is the same for
all N elementary strings. Their tensions are strictly degenerate; Z2N symmetry is

https://doi.org/10.1017/9781009402200.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.006


5.1 Breaking N = 2 supersymmetry down to N = 1 157

spontaneously broken down to Z2. The order parameter (the σ field VEV) remains
nonvanishing at any finite value of the bulk parameter μ.

The kinks that interpolate between different vacua of the world sheet theory are
described by the nl fields. Their masses are given in Eq. (5.1.43). In the N = (0, 2)
theory the masses of the boson and fermion superpartners are split. The bosonic
kinks have masses ∼ �σ in the large-μ limit, while the fermionic kinks become
light. Still their masses remain finite and nonvanishing at any finite μ.

We already know that, from the standpoint of the bulk theory, these kinks are
confined monopoles [189, 104, 192]. The fact that tensions of all elementary strings
are the same ensures that these monopoles are free to move along the string, since
with their separation increasing, the energy of the configuration does not change.
This means they are in the deconfinement phase on the string.2 The kinks are
deconfined both in N = (2, 2) and N = (0, 2) CP (N−1) theories. In other words,
individual kinks are present in the physical spectrum of (1+1) dimensional theory.
The monopoles, although attached to strings, are free to move on the strings. We
will see in Chapter 6 that this is not the case for monopoles in non-supersymmetric
theories. Kinks in non-supersymmetric CP(N − 1) models are in the confinement
phase on the string, therefore a monopole and an antimonopole attached to the
string come close to each other forming a meson-like configuration.

5.1.4 Limits of applicability

As was discussed above, both the string solution and the bosonic part of the world
sheet theory for the non-Abelian strings in N = 1 with the potential (5.1.2) are
identical to those in N = 2. However, the occurrence of the Higgs branch in
the limit μ → ∞ manifests itself at the quantum level [189]. At the classical
level light fields appearing in the bulk theory in the large-μ limit do not enter the
string solution. The string is “built” of heavy fields. However, at the quantum level
couplings to the light fields lead to a dramatic effect: an effective string thickness
becomes large due to long-range tails of the string profile functions associated with
the light fields. As a matter of fact, we demonstrated [189, 191] that in the fermion
sector this effect is seen already at the classical level. Some of the fermion zero
modes on the string solution acquire long-range tails and become non-normalizable
in the limit μ → ∞.

Below we will estimate the range of validity of the description of non-Abelian
string dynamics by the CP(N−1)model (5.1.19). To this end let us note that higher
derivative corrections to (5.1.19) run in powers of

�∂k , (5.1.44)

2 We stress that these monopoles are confined in the bulk theory being attached to strings.
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where � is the string transverse size (thickness). At small μ it is quite clear that
� ∼ 1/g

√
ξ . A typical energy scale on the string world sheet is given by the scale

�σ of the CP(N − 1) model which, in turn, is given by (5.1.17) at small μ. Thus,
∂ → �σ , and higher-derivative corrections run in powers of�σ/g

√
ξ . At small μ

the higher-derivative corrections are suppressed by powers of �σ/g
√
ξ � 1 and

can be ignored. However, with μ increasing, the fermion zero modes acquire long-
range tails [189, 191]. This means that an effective thickness of the string grows.
The thickness is determined by masses of the lightest states (5.1.12) of the bulk
theory,

� ∼ 1

m− = μ

ξ
. (5.1.45)

The higher-derivative terms are small if (��σ ) � 1. Substituting here the scale
of the CP(N −1)model given at large μ by (5.1.18) and the scale of N = 1 SQCD
(5.1.14) we arrive at the constraint

μ � μ∗ , (5.1.46)

where the critical value of μ is

g2
2μ

∗ = g2
2ξ

�σ
= M3

SU(N)(
�N=1

SU(N)

)2 . (5.1.47)

If the condition (5.1.46) is met, theN = 2 CP(N−1)model gives a good description
of world-sheet physics. A hierarchy of relevant scales in our theory is displayed in
Fig. 5.1.

If we increaseμ above the critical value (5.1.47) the non-Abelian strings become
thick and their world-sheet dynamics is no longer described by N = 2 CP(N − 1)
sigma model. The higher-derivative corrections on the world-sheet explode. Note
that the physical reason for the growth of the string thickness � is the presence of
the Higgs branch in N = 1 SQCD. Although the classical string solution (4.4.20)
retains a finite transverse size, the Higgs branch manifests itself at the quantum
level. In particular, the fermion zero modes feel the Higgs branch and acquire
long-range logarithmic tails.

Now, let us abstract ourselves from the fact that the theory (5.1.19) is a low-
energy effective model on the world sheet of the non-Abelian string. Let us consider

m*2ΛCP(1)

energy

xΛN=1

Figure 5.1. Relevant scale hierarchy in the limit μ � √
ξ .
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this model per se, with no reference to the underlying four-dimensional theory.
Then, of course, the parameter u can be viewed as arbitrary. One can address a
subtle question: what happens in the limit u → ∞? In this limit the σ field VEV
tends to zero (see Eq. (5.1.39)) and N degenerate vacua coalesce. Moreover, the
U(1) gauge field, σ and the fermionic kinks ξ become massless (in addition to
the λR field which, being the Goldstino in this limit, is necessarily massless). The
model seemingly becomes conformal. It is plausible to interpret this conformal
fixed point as a phase transition point from the kink deconfinement phase to the
Coulomb/confining phase.

A similar phenomenon occurs in two-dimensional conformal N = (4, 4) super-
symmetric gauge theory [195]. In this theory the same tube metric |dσ |2/|σ |2
appears (as in (5.1.19), see [192]) and the point σ = 0 is interpreted as a transition
point between two distinct phases.

5.2 The M model

In Section 5.1 we learned that the occurrence of the Higgs branch in N = 1 SQCD
obscures physics of the non-Abelian strings. Thus, it is highly desirable to get rid of
the Higgs branch, keeping N = 1. This was done in [104]. Below we will review
key results pertinent to the issue.

To eliminate light states we will introduce a particular N = 2 breaking defor-
mation in the U(N) theory with the potential (5.1.2). Namely, we uplift the quark
mass matrix mBA (see Eq. (4.1.9) where this matrix is assumed to be diagonal) to
the superfield status,

mBA → MB
A ,

and introduce the superpotential

WM = QMQ̃ . (5.2.1)
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The matrix M represents N2 chiral superfields of the mesonic type (they are color
singlets). Needless to say, we have to add a kinetic term for MB

A ,

SMkin =
∫
d4x d2θ d2θ̄

2

h
Tr M̄M , (5.2.2)

where h is a new coupling constant (it supplements the set of the gauge couplings).
In particular, the kinetic term for the scalar components of M takes the form∫

d4x

{
1

h

∣∣∂μM0
∣∣2 + 1

h

∣∣∂μMa
∣∣2} , (5.2.3)

where we use the decomposition

MA
B = 1

2
δAB M

0 + (T a)AB M
a . (5.2.4)

At h = 0 the matrix field M becomes sterile, it is frozen and in essence returns
to the status of a constant numerical matrix. The theory acquires flat directions
(a moduli space). With nonvanishing h these flat directions are lifted, and M is
determined by the minimum of the scalar potential, see below.

The uplift of the quark mass matrix to superfield is a crucial step which allows
us to lift the Higgs branch which would develop in this theory in the large-μ limit
if M were a constant matrix. We will refer to this theory as the M model.

The potential V (qA, q̃A, aa , a,M0,Ma) of the M model is

V (q A, q̃A, aa , a,M0,Ma) = g2
2

2

(
1

g2
2

f abc ābac + Tr q̄ T aq − Tr q̃ T a ¯̃q
)2

+ g2
1

8

(
Tr q̄q − Tr q̃ ¯̃q −Nξ

)2 + g2
2

2

∣∣2Tr q̃T aq + √
2μ2a

a
∣∣2

+ g2
1

2

∣∣Tr q̃q + √
Nμ1a

∣∣2 + 1

2
Tr

{∣∣∣∣(a + 2 T a aa)q + 1√
2
q(M0 + 2T aMa)

∣∣∣∣
2

+
∣∣∣∣(a + 2 T a aa) ¯̃q + 1√

2
¯̃q(M0 + 2T aMa)

∣∣∣∣
2
}

+ h

4
|Tr q̃q|2 + h|Tr qT aq̃|2 .

(5.2.5)

The last two terms here areF terms of theM field. In Eq. (5.2.5) we also introduced
the FI D-term for the U(1) field, with the FI parameter ξ .

The FI term triggers the spontaneous breaking of the gauge symmetry. The VEV’s
of the squark fields and adjoint fields are given by (5.1.3) and (5.1.4), respectively,
while the VEV’s of M field vanish,

〈Ma〉 = 0, 〈M0〉 = 0 . (5.2.6)
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The color-flavor locked form of the quark VEV’s in Eq. (5.1.3) and the absence of
VEVs of the adjoint fieldaa and the meson fieldsMa in Eqs. (5.1.4) and (5.2.6) result
in the fact that, while the theory is fully Higgsed, a diagonal SU(N )C+F symmetry
survives as a global symmetry, much in the same way as in μ-deformations of
N = 2 SQCD. Namely, the global rotation

q → UqU−1, aaT a → UaaT aU−1, M → U−1MU , (5.2.7)

is not broken by the VEVs (5.1.3), (5.1.4) and (5.2.6). Here U is a matrix from
SU(N ). As usual, this symmetry leads to the emergence of orientational zero modes
of the ZN strings in the theory with the potential (5.2.5).

At large μ one can readily integrate out the adjoint fields Aa and A. The bosonic
part of the action of the M model takes the form

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(Fμν)
2 + Tr |∇μq|2 + Tr |∇μ ¯̃q|2

+ 1

h
|∂μM0|2 + 1

h
|∂μMa|2 + g2

2

2

(
Tr q̄ T aq − Tr q̃T a ¯̃q)2

+ g2
1

8

(
Tr q̄q − Tr q̃ ¯̃q −Nξ

)2 + Tr|qM|2 + Tr| ¯̃qM|2

+ h

4

∣∣Tr q̃q
∣∣2 + h

∣∣Tr qT aq̃
∣∣2}. (5.2.8)

The vacuum of this theory is given by Eqs. (5.1.3) and (5.2.6). The mass spectrum
of elementary excitations over this vacuum consists of the N = 1 gauge multiplets
for the U(1) and SU(N ) sectors, with masses given in Eqs. (4.1.16) and (4.1.17).
In addition, we have chiral multiplets q̃ and M , with masses

mU(1) =
√
hNξ

4
(5.2.9)

for the U(1) sector, and

mSU(N) =
√
hξ

2
(5.2.10)

for the SU(N ) sector.
It is worth emphasizing that there are no massless states in the bulk theory. At

h = 0 the theory with the potential (5.2.5) develops a Higgs branch in the large-μ
limit (see Section 5.1). If h �= 0, M becomes a fully dynamical field. The Higgs
branch is lifted, as follows from Eqs. (5.2.9) and (5.2.10).
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The N = 1 SQCD with theM field, theM model, belongs to the class of theories
introduced by Seiberg [196] to provide a dual description of conventional N = 1
SQCD with the SU(Nc) gauge group and Nf flavors of fundamental matter, where

Nc = Nf −N

(for reviews see Refs. [197, 198]). There are significant distinctions, however.
Let us outline the main differences of theM model (5.2.8) from those introduced

[196] by Seiberg:
(i) The theory (5.2.8) has the U(N ) gauge group rather than SU(N );
(ii) It has the FI D term instead of a linear in M superpotential in Seiberg’s

models;
(iii) Following [104] we consider the case Nf = N which would correspond to

Seiberg’s Nc = 0 in the original SQCD. The theory (5.2.8) is asymptotically free,
while Seiberg’s dual theories are most meaningful (i.e. have the maximal predictive
power with regards to the original strongly coupled N = 1 SQCD) below the
left edge of the conformal window, in the range Nf < (3/2)Nc, which would
correspond to Nf > 3N rather than Nf = N . Note that at Nf > 3N the theory
(5.2.8) is not asymptotically free and is thus uninteresting from our standpoint.

In addition, it is worth noting that atNf > N the vacuum (5.1.3), (5.2.6) becomes
metastable: supersymmetry is broken [199]. The Nc = Nf − N supersymmetry-
preserving vacua have vanishing VEV’s of the quark fields and a non-vanishing
VEV of the M field.3 The latter vacua are associated with the gluino condensation
in pure SU(N ) theory, 〈λλ〉 �= 0, arising upon decoupling Nf flavors [197]. In the
case Nf = N to which we limit ourselves the vacuum (5.1.3), (5.2.6) preserves
supersymmetry. Thus, despite a conceptual similarity between Seiberg’s models
and ours, dynamical details are radically different.

Now, it is time to pass to solutions for non-Abelian BPS strings in the M model
[104]. Much in the same way as in Section 5.1 we use the ansatz (5.1.16). Moreover,
we set the adjoint fields and the M fields to zero. With these simplifications the
N = 1 model with the potential (5.2.5) reduces to the model (4.2.2) which we used
previously in the original construction of the non-Abelian strings.

In particular, the solution for the elementary string is given by (4.4.4). More-
over, the bosonic part of the effective world-sheet theory is again described by the
CP(N−1) sigma model (4.4.9) with the coupling constantβ determined by (4.4.15).
The scale of this CP(N − 1) model is given by Eq. (5.1.18) in the limit of large μ.

The full construction of the world-sheet theory in theM model has not been yet
carried out. One can conjecture as to what the fermion part of this theory is. There
are good reasons to expect that we will get the heterotic N = (0, 2) CP(N − 1)

3 This is correct for the version of the theory with the ξ -parameter introduced via superpotential.
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theory much in the same way as in Section 5.1.2 (see also Appendix B.5). The
relation between the bulk and world sheet deformation parameters are likely to
change, but all consequences (such as spontaneous SUSY breaking at the quantum
level) presumably will stay intact.

To conclude this section let us note a somewhat related development: non-BPS
non-Abelian strings were considered in metastable vacua of a dual description of
N = 1 SQCD at Nf > N in Ref. [200].

5.3 Confined non-Abelian monopoles

As was mentioned, the effective low-energy Lagrangian describing world-sheet
physics of the non-Abelian string in the M model, must be supersymmetric, pre-
sumably, N = (0, 2). The heterotic sigma model dynamics is known (see Section
5.1.3); in particular, we will have N degenerate vacua and kinks that interpolate
between them, similar to the kinks that emerge in N = 2 SQCD. These kinks are
interpreted as (confined) non-Abelian monopoles [165, 132, 133], the descendants
of the ’t Hooft–Polyakov monopole.

Let us discuss what happens with these monopoles as we deform our theory
and eventually end up with the M model. It is convenient to split this deformation
into several distinct stages. We will describe what happens with the monopoles
as one passes from one stage to another. Some of these steps involving deforma-
tions of N = 2 SQCD were already discussed in Section 4.5. Here we focus on
deformations of N = 2 SQCD leading to the M model.

A qualitative evolution of the monopoles under consideration as a function of
the relevant parameters is presented in Fig. 4.3.

(i) We start from N = 2 SQCD turning off the N = 2 breaking parameters
h and μ’s as well as the FI parameter in the potential (5.2.5), i.e. we start from the
Coulomb branch of the theory,

μ1 = μ2 = 0, h = 0, ξ = 0, M �= 0 . (5.3.1)
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As was explained in Section 5.2, the field M is frozen in this limit and can take
arbitrary values (the notorious flat direction). The matrix MA

B plays the role of a
fixed mass matrix for the quark fields. As a first step let us consider the diagonal
matrix M , with distinct diagonal entries,

MA
B = diag {M1, . . . ,MN } . (5.3.2)

Shifting the field a one can always make
∑
AMA = 0 in the limit μ1 = 0.

Therefore M0 = 0. If all MA’s are different the gauge group SU(N ) is broken
down to U(1)(N−1) by a VEV of the SU(N ) adjoint scalar (see (4.1.11)),

〈akl 〉 = − 1√
2
δkl Ml . (5.3.3)

Thus, as was already discussed in Section 4.5, there are ’t Hooft–Polyakov
monopoles embedded in the broken gauge SU(N ). Classically, on the Coulomb
branch the masses of (N − 1) elementary monopoles are proportional to

|(MA −MA+1) |/g2
2 .

In the limit (MA −MA+1) → 0 the monopoles tend to become massless, for-
mally, in the classical approximation. Simultaneously their size becomes infinite
[112]. The mass and size are stabilized by highly quantum confinement effects. The
monopole confinement occurs in the Higgs phase, at ξ �= 0.

(ii) Now let us make the FI parameter ξ non-vanishing. This triggers the squark
condensation. The theory is in the Higgs phase. We still keep N = 2 breaking
parameters h and μ’s vanishing,

μ1 = μ2 = 0, h = 0, ξ �= 0, M �= 0. (5.3.4)

The squark condensation leads to formation of the ZN strings. Monopoles become
confined by these strings. As we discussed in Section 4.5, (N − 1) elementary
monopoles become junctions of pairs of elementary strings.

Now, if we reduce |�MA|,

�CP(N−1) � |�MA| � √
ξ , (5.3.5)

the size of the monopole along the string ∼ |(MA − MA+1) |−1 becomes larger
than the transverse size of the attached strings. The monopole becomes a bona fide
confined monopole (the lower left corner of Fig. 4.3). At nonvanishing �MA the
effective theory on the string world sheet is the CP(N−1)model with twisted mass
terms [165, 132, 133], see Section 4.4.4. Two ZN strings attached to an elementary
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monopole correspond to two “neighboring” vacua of the CP(N − 1) model. The
monopole (a.k.a. the string junction of two ZN strings) manifests itself as a kink
interpolating between these two vacua.

(iii) Next, we switch off the mass differences �MA still keeping the N = 2
breaking parameters vanishing,

μ1 = μ2 = 0, h = 0, ξ �= 0, M = 0 . (5.3.6)

The values of the twisted masses in CP(N −1)model coincide with�MA while
the size of the twisted-mass sigma-model kink/confined monopole is of the order
of ∼ |(MA −MA+1) |−1 .

As we decrease �MA approaching �CP(N−1) and then getting below the scale
�CP(N−1), the monopole size grows, and, classically, it would explode. This is
where quantum effects in the world sheet theory take over. It is natural to refer to
this domain of parameters as the “regime of highly quantum dynamics.” While the
thickness of the string (in the transverse direction) is ∼ ξ−1/2, the z-direction size
of the kink representing the confined monopole in the highly quantum regime is
much larger, ∼ �−1

CP(N−1), see the lower right corner in Fig. 4.3.
In this regime the confined monopoles become non-Abelian. They no longer

carry average magnetic flux since

〈nl〉 = 0 , (5.3.7)

in the strong coupling limit of the CP(N − 1) model [159]. The kink/monopole
belongs to the fundamental representation of the SU(N )C+F group [159, 120].

(iv) Thus, with vanishing�MA we still have confined “monopoles” (interpreted
as kinks) stabilized by quantum effects in the world sheet CP(N − 1) model. Now
we can finally switch on the N = 2 breaking parameters μi and h,

μi �= 0, h �= 0, ξ �= 0, M = 0 . (5.3.8)

Note that the last equality here is automatically satisfied in the vacuum, see
Eq. (5.2.6).

As was discussed in Section 5.2 the effective world sheet description of the non-
Abelian string is given by a heterotic deformation of the supersymmetric CP(N−1)
model. This two-dimensional theory has N vacua which should be interpreted as
N elementary non-Abelian strings in the quantum regime, with kinks interpolating
between these vacua. These kinks should be interpreted as non-Abelian confined
monopoles/string junctions.

Note that although the adjoint fields are still present in the theory (5.2.5) their
VEV’s vanish (see (5.1.4)) and the monopoles cannot be seen in the semiclassical
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approximation. They are seen solely as world sheet kinks. Their mass and inverse
size are determined by �σ which in the limit of large μi is given by Eq. (5.1.18).

(v) At the last stage, we take the limit of large masses of the adjoint fields in
order to eliminate them from the physical spectrum altogether,

μi → ∞, h �= 0, ξ �= 0, M = 0 . (5.3.9)

The theory flows to N = 1 SQCD extended by the M field.
In this limit we get a remarkable result: although the adjoint fields are eliminated

from our theory and the monopoles cannot be seen in any semiclassical descrip-
tion, our analysis shows that confined non-Abelian monopoles still exist in the
theory (5.2.8). They are seen as kinks in the effective world sheet theory on the
non-Abelian string.

(vi) The confined monopoles are in the highly quantum regime, so they carry
no average magnetic flux (see Eq. (5.3.7)). Thus, they are non-Abelian. Moreover,
they acquire global flavor quantum numbers. In fact, they belong to the fundamen-
tal representation of the global SU(N )C+F group (see Refs. [159, 120] where this
phenomenon is discussed in the context of the CP(N − 1)-model kinks).

It is quite plausible that the emergence of these non-Abelian monopoles can
shed light on mysterious objects introduced by Seiberg: “dual magnetic” quarks
which play an important role in the description of N = 1 SQCD at strong coupling
[196, 197].

5.4 Index theorem

In this section we will discuss an index theorem establishing the number of the
fermion zero modes on the string. For definiteness we will consider the M model
[104]. Similar theorems can be easily proved for ordinary N = 1 SQCD (5.1.13)
as well as for theories with potentials (5.1.2) or (5.2.5) at intermediate values of μ.
They generalize index theorems obtained long ago for simple non-supersymmetric
models [201].
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The fermionic part of the action of the model (5.2.8) is

Sferm =
∫
d4x

{
i

g2
2

λ̄aD̄/ λa + i

g2
1

λ̄∂̄/λ+ Tr
[
ψ̄i∇̄/ψ]+ Tr

[
ψ̃i∇/ ¯̃

ψ
]

+ 2i

h
Tr
[
ζ̄ ∂̄/ζ
]+ i√

2
Tr
[
q̄(λψ)− (ψ̃λ) ¯̃q + (ψ̄λ̄)q − q̃(λ̄

¯̃
ψ)
]

+ i√
2

Tr
[
q̄ 2T a (λaψ)− (ψ̃λa) 2T a ¯̃q + (ψ̄λ̄a) 2T a q − q̃ 2T a (λ̄a ¯̃

ψ)
]

+ i Tr
[
q̃(ψζ )+ (ψ̃qζ )+ (ψ̄ ¯̃qζ̄ )+ q̄(

¯̃
ψζ̄ )

]
+ i Tr

(
ψ̃ψM + ψ̄

¯̃
ψM̄

)}
, (5.4.1)

where the matrix color-flavor notation is used for the matter fermions (ψα)kA

and (ψ̃α)Ak , and the traces are performed over the color-flavor indices. Moreover,
ζ denotes the fermion component of the matrix M superfield,

ζAB = 1

2
δAB ζ

0 + (T a)AB ζ
a . (5.4.2)

In order to find the number of the fermion zero modes in the background of the
non-Abelian string solution (4.4.4) we have to carry out the following program.
Since our string solution depends only on two coordinates xi (i = 1, 2), we can
reduce our theory to two dimensions. Given the theory defined on the (x1, x2) plane
we have to identify an axial current and derive the anomalous divergence for this
current. In two dimensions the axial current anomaly takes the form

∂iji5 ∼ F ∗ , (5.4.3)

where F ∗ = (1/2)εijFij is the dual U(1) field strength in two dimensions.
Then, the integral over the left-hand side over the (x1, x2) plane gives us the

index of the 2D Dirac operator ν coinciding with the number of the 2D left-handed
minus 2D right-handed zero modes of this operator in the given background field.
The integral over the right-hand side is proportional to the string flux. This will
fix the number of the chiral fermion zero modes4 on the string with the given flux.
Note that the reduction of the theory to two dimensions is an important step in this
program. The anomaly relation in four dimensions involves the instanton charge
F ∗F rather than the string flux and is therefore useless for our purposes.

4 Chirality is understood here as the two-dimensional chirality.
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Table 5.1. The U(1)R and U(1)
R̃

charges of fields of the two-dimensional reduction
of the theory.

Field ψ+ ψ− ψ̃+ ψ̃− λ+ λ− ζ+ ζ− q q̃

U(1)R charge −1 1 −1 1 −1 1 −1 1 0 0
U(1)

R̃
charge −1 1 1 −1 −1 1 1 −1 0 0

The reduction of N = 1 gauge theories to two dimensions is discussed in detail
in [157] and here we will be brief. Following [157] we use the rules

ψα → (ψ−,ψ+), ψ̃α → (ψ̃−, ψ̃+),
λα → (λ−, λ+), ζ α → (ζ−, ζ+). (5.4.4)

With these rules the Yukawa interactions in (4.4.22) take the form

LYukawa = i
√

2 Tr
[−q̄(λ̂−ψ+ − λ̂+ψ−)+ (ψ̃−λ̂+ − ψ̃+λ̂−) ¯̃q + H.c.

]
− i Tr

[
q̃(ψ−ζ+ − ψ+ζ−)+ (ψ̃−qζ+ − ψ̃+qζ−)+ H.c.

]
, (5.4.5)

where the color matrix λ̂ = (1/2) λ+ T aλa .
It is easy to see that LYukawa is classically invariant under the chiral U(1)R

transformations with the U(1)R charges presented in Table 5.1. The axial current
associated with this U(1)R is not anomalous [157]. This is easy to understand. In
two dimensions the chiral anomaly comes from the diagram shown in Fig. 5.2.
The U(1)R chiral charges of the fields ψ and ψ̃ are the same while their elec-
tric charges are opposite. This leads to cancellation of their contributions to this
diagram.

It turns out that for the particular string solution we are interested in the clas-
sical two-dimensional action has more symmetries than generically, for a general
background. To see this, please note that the field q̃ vanishes on the string solution
(4.4.4), see (5.1.16). Then the Yukawa interactions (5.4.5) reduce to

i
√

2 Tr
[−q̄(λ̂−ψ+ − λ̂+ψ−)

]− i Tr
[
ψ̃−qζ+ − ψ̃+qζ−

]+ H.c. (5.4.6)

The fermion ψ interacts only with λ’s while the fermion ψ̃ interacts only with ζ .
Note also that the interaction in the last line in (5.4.1) is absent because M = 0 on
the string solution. This property allows us to introduce another chiral symmetry
in the theory, the one which is relevant for the string solution. We will refer to this
extra chiral symmetry as U(1)

R̃
.
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Figure 5.2. Diagram for the chiral anomaly in two dimensions. The solid lines
denote fermionsψ , ψ̃ , the dashed line denotes the photon, while the cross denotes
insertion of the axial current.

The U(1)
R̃

charges of our set of fields are also shown in Table 5.1. Note that
ψ and ψ̃ have the opposite charges under this symmetry. The corresponding current
then has the form

j̃i5 =
(

ψ̄−ψ− − ψ̄+ψ+ − ¯̃
ψ−ψ̃− + ¯̃

ψ+ψ̃+ + · · ·
−iψ̄−ψ− − iψ̄+ψ+ + i

¯̃
ψ−ψ̃− + i

¯̃
ψ+ψ̃+ + · · ·

)
, (5.4.7)

where the ellipses stand for terms associated with the λ and ζ fields which do not
contribute to the anomaly relation.

It is clear that the U(1)
R̃

symmetry is anomalous in quantum theory. The con-
tributions of the fermions ψ and ψ̃ double in the diagram in Fig. 5.2 rather than
cancel. It is not difficult to find the coefficient in the anomaly formula

∂i j̃i5 = N2

π
F ∗ , (5.4.8)

which can be normalized e.g. from [202]. The factorN2 appears due to the presence
of 2N2 fermions ψkA and ψ̃Ak .

Now, taking into account the fact that the flux of the ZN string under con-
sideration is ∫

d2x F ∗ = 4π

N
, (5.4.9)

(see the expression for the U(1) gauge field for the solution (4.2.6) or (4.4.4)) we
conclude that the total number of the fermion zero modes in the string background5

ν = 4N . (5.4.10)

This number can be decomposed as

ν = 4N = 4(N − 1)+ 4 , (5.4.11)

5 Equations (5.4.9) and (5.4.10) are very similar in essence to analogous four-dimensional relations connecting
the instanton topological charge with the number of the fermion zero modes in the instanton background. For a
review see [203].
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where 4 is the number of the supertranslational modes while 4(N−1) is the number
of the superorientational modes. Four supertranslational modes are associated with
four fermion fields in the two-dimensional effective theory on the string world sheet,
which are superpartners of the bosonic translational moduli x0 and y0. Furthermore,
4(N−1) corresponds to 4(N−1) fermion fields in the N = 2 CP(N−1)model on
the string world sheet. CP(N − 1) describes dynamics of the orientational moduli
of the string. For N = 2 the latter number (4(N − 1) = 4) counts four fermion
fields χa1 , χa2 in the model (4.4.31).

A similar theorem can be formulated for N = 1 theory with the potential (5.1.2)
as well; it implies 4(N − 1) orientational zero modes in this case too, i.e. the
doubling of the number of the fermion zero modes on the string as compared with
the one which follows from “BPS-ness.”

In [189] and [104] four orientational fermion zero modes were found explicitly
in N = 1 SQCD and the M model, by solving the Dirac equations in the string
background. Note that these fermion zero modes in the M model are perfectly
normalizable provided we keep the coupling constant h non-vanishing. Instead, in
conventional N = 1 SQCD without the M field the second pair of the fermion
zero modes (proportional to χa1 ) become non-normalizable in the large-μ limit
[189]. This is related to the presence of the Higgs branch and massless bulk states
in conventional N = 1 SQCD. As was already mentioned more than once, in the
M model, Eq. (5.2.8), we have no massless states in the bulk.

Note that in both translational and orientational sectors the number of the fermion
zero modes is twice larger than the one dictated by 1/2 “BPS-ness.” Fermion
supertranslational zero modes of the non-Abelian string in N = 1 theory with
the potential (5.1.2) were found in [191]. Just like superorientational modes, they
acquire long-range tails in the large-μ limit and become non-normalizable.
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