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Abstract
We present a detailed discussion of the implementation strategies for a recently developed w-stacking w-projection hybrid algorithm used
to reconstruct wide-field interferometric images. In particular, we discuss the methodology used to deploy the algorithm efficiently on a
supercomputer via use of a Message Passing Interface (MPI) k-means clustering technique to achieve efficient construction and application
of non-coplanar effects. Additionally, we show that the use of conjugate symmetry can increase the w-stacking efficiency, decrease the
time required to construction, and apply w-projection kernels for large data sets. We then demonstrate this implementation by imaging
an interferometric observation of Fornax A from the Murchison Widefield Array (MWA). We perform an exact non-coplanar wide-field
correction for 126.6 million visibilities using 50 nodes of a computing cluster. The w-projection kernel construction takes only 15 min prior
to reconstruction, demonstrating that the implementation is both fast and efficient.
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1. Introduction

The advent of wide-field interferometers such as the Murchison
Widefield Array (MWA; Tingay et al. 2013; Wayth et al. 2018),
Long Wavelength Array (Ellingson et al. 2009) and the Low-
Frequency Array (van Haarlem et al. 2013) has created a number
of imaging challenges. These challenges include the large number
of measurements in each observation, the instrumental effects that
are measurement dependent, and the large image sizes due to high
resolution and wide-field of view. Additionally, these telescopes
have a variety of science goals, including high-priority science such
as probingGalactic and extra-galacticmagnetic fields (especially in
low mass galaxy clusters; Johnston-Hollitt et al. 2015), and detect-
ing the redshifted 21 cm spectral line of the Epoch of Reionoisation
(Koopmans et al. 2015). Furthermore, the wide-field of view pro-
vides the advantage of observing many objects in a single pointing,
reducing the observation time needed to survey the radio sky.
If the imaging challenges are overcome, it will herald an era of
unprecedented sensitivity and resolution for the low-frequency
sky, over extremely wide-field of views.

Non-coplanar baselines, (u, v,w), in the presence of wide-fields
of view produce measurement dependent effects, i.e. a directional-
dependent effect (DDE) that is different for each measurement.
Each w value provides a complex exponential, known as a chirp,
that needs to be modelled in the image domain and applied during
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image reconstruction. This has been through the use of two algo-
rithms, the w-stacking algorithm, where average w corrections are
applied in the image domain to groups of measurements, and the
w-projection algorithm, where average w-corrections are applied
when degridding in the (u, v,w) domain. The w-stacking algo-
rithm (Humphreys & Cornwell 2011) has the trade off that a Fast
Fourier Transform (FFT) needs to be applied for each w group.
The w-projection algorithm (Cornwell, Golap, & Bhatnagar 2005)
has the trade off that kernel construction can be expensive and the
support size is large for large w values. Both algorithms have been
limited to correcting individual groups of measurements for large
data sets (Cornwell et al. 2005; Offringa et al. 2014).

Two recent developments have allowed individual correction
for each data sample. The first is the use of adaptive quadrature
and radial symmetry to calculate w-projection kernels’ orders of
magnitude faster than the full 2d calculation (Pratley, Johnston-
Hollitt, & McEwen 2019c, hereafter Paper I). The second is the
developments in distributed image reconstruction from state-of-
the-art convex optimisation algorithms, which provide a natural
framework for theMessage Passing Interface (MPI) distribution of
FFTs and degridding for radio interferometric imaging. Recently,
an MPI hybrid w-stacking w-projection algorithm demonstrating
these developments was applied on a super computing cluster,
where 17.5 million measurements were individually corrected
over a 25 by 25 degrees field of view from an MWA observa-
tion (Paper I). Such individual correction has not been previously
possible.

After reviewing thew-stackingw-projection algorithm, we pro-
vide the algorithmic details of how to distribute the measurements
through a k-means clustering algorithm to improve computational
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performance, the use of conjugate symmetry to reduce the range of
w values, and show the application of these algorithms to a larger
data set to demonstrate the improvement. We end with a discus-
sion of future strategies for kernel calculation and adapting the
algorithm to model other DDEs.

The paper is laid out as follows. Section 2 introduces the wide-
field interferometric measurement equation. Section 3 describes
the distributed k-means clustering algorithm used to create the
w-stacks and the reconstruction algorithm used to generate a sky
model of the observed data. Section 4 times and compares the
w-stacking w-projection algorithm before and after using conju-
gate symmetry, as a function of image size,w-range, and number
of visibilities. Section 5 demonstrates the application of the algo-
rithm for this implementation on an observation of Fornax A.
Section 6 proposes possible improvements in kernel calculation
for large data sets and discusses how other DDEs can be included
into the algorithm. The work is concluded in Section 7.

2. Wide-field imaging measurement equation

The non-coplanar wide-field interferometric measurement equa-
tion is

y(u, v,w′)=
∫

x(l,m)a(l,m)
e−2π iw′(

√
1−l2−m2−1)

√
1− l2 −m2

×e−2π i(lu+mv) dldm , (1)
where (u, v,w′) are the baseline coordinates and
(l,m,

√
1− l2 −m2) are directional cosines restricted to the

upper unit sphere. In this work, we define w′ =w+ w̄, where w̄ is
the average value ofw-terms,w is the effectivew-component (with
zero mean), x is the sky brightness, and a includes DDEs such as
the primary beam. The measurement equation is a mathematical
model of the measurement process, i.e. signal acquisition, that
allows one to calculate model measurements y when provided
with a sky model x.

A number of methods can be used to solve for x given sam-
ples y, such as CLEAN (Högbom 1974), Maximum Entropy (Ables
1974; Cornwell & Evans 1985), and Sparse Regularisation algo-
rithms (McEwen & Wiaux 2011; Onose et al. 2016; Pratley et al.
2018; Dabbech et al. 2018; Pratley et al. 2019c). Ultimately, all
interferometric measurement equations are derived from the van
Cittert-Zernike theorem (Zernike 1938), and the measurement
equation can be extended to include general DDEs and polarisa-
tion and to solve for x natively on the sphere (McEwen & Scaife
2008; Smirnov 2011; Price & Smirnov 2015).

To make use of the FFT, the measurement equation is tradi-
tionally calculated and approximated using degridding (Fessler
& Sutton 2003; Thompson, Moran, & Swenson 2008). The mea-
surement equation can be represented by the following linear
operations

y=WGCFZSx . (2)
S represents a gridding correction and correction of baseline
independent effects such as w̄, Z represents zero padding of the
image, F is an FFT, G represents a sparse circular convolution
matrix that interpolates measurements off the grid and the com-
bined GC includes baseline-dependent effects such as variations
in the primary beam and w-component in the interpolation, and
W are weights applied to the measurements. This linear opera-
tor is typically called a measurement operator � =WGCFZS with
� ∈C

M×N , where there are N pixels and M visibilities.

Furthermore, xi = x(li,mi) and yk = y(uk, vk,wk) are discrete vec-
tors in R

N×1 and C
M×1 in this setting. The measurement operator

has an adjoint operator �†. The dirty map can be calculated by
�†y, and the residual map by �†y− �†�x.

3. Distributed wide-field imaging

In this section, we briefly describe the algorithmic details for the
distributed w-projection w-stacking hybrid algorithm.

We use the interferometric image reconstruction software
package PURIFYa (version 3.0.1, Pratley et al. 2019a) devel-
oped in C++ (Carrillo, McEwen, & Wiaux 2014; Pratley et al.
2018), where the authors have implemented an MPI-distributed
measurement operator. The authors have also developed MPI-
distributed wavelet transforms, along with MPI variations of the
alternating directionmethod of multipliers (ADMM) algorithm in
the software package SOPTb (version 3.0.1, Pratley et al. 2019b).

This is not the first time that sparse image reconstruction has
been used for wide-fields of view. In particular, the w-term is
known to spread information across visibilities, increasing the
effective bandwidth in what is known as the spread spectrum effect
(Dabbech et al. 2017; McEwen & Wiaux 2011; Wiaux et al. 2009;
Wolz et al. 2013), increasing the possible resolution of the recon-
structed sky model. But these previous works have been restricted
to proof-of-concept studies. One of the advantages of sparse image
reconstruction algorithms, such as ADMM, is that they can allow
direct reconstruction of an accurate sky model, unlike CLEAN-
based algorithms that produce a restored image (Pratley et al.
2018).

3.1. w-projection w-stackingmeasurement operator

In the MPI w-stacking w-projection algorithm, the measurement
operator corrects for the average w-value in each w-stack, then
applies an extra correction to each visibility with the w-projection.
Each w-stack yk has the measurement operator of

�k =WkGCkFZS̃k , (3)

the gridding correction, S̃k, has been modified to correct for the
w-stack-dependent effects, such as the average w̄k or the primary
beam

[
S̃k

]
ii
= ak(li,mi)e

−2π iw̄k

(√
1−l2i −m2

i −1
)

g
(√

l2i +m2
i

) √
1− l2i −m2

i

. (4)

We choose no primary beam effects within the stack ak(li,mi).
g(

√
l2i +m2

i ) is the window for the anti-aliasing filter. This grid-
ding correction shifts the relative w value in the stack. This can
reduce the effective w value in the stack, especially when the stack
is close to the mean w̄k, i.e. the value of wi − w̄k is small for all
i in stack k. This reduces the size of the support needed in the
w-projection gridding kernel for each stack,

[GCk]ij = [GC]
(√

(ui/�u− qu,j)2 + (vi/�u− qv,j)2,

wi − w̄k,�u
)
. (5)

ahttps://github.com/astro-informatics/purify
bhttps://github.com/astro-informatics/sopt
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(qu,j, qv,j) represents the nearest grid points, and we use adaptive
quadrature to calculate

[GC]
(√

u2pix + v2pix,w,�u
)

= 2π
�u2

∫ α/2

0
g(r)

× e−2π iw
(√

1−r2/�u2−1
)
J0

(
2πr

√
u2pix + v2pix

)
rdr , (6)

where g(r) is the radial anti-aliasing filter, �u is the resolution of
the Fourier grid of the field of view zero padded by the oversam-
pling ratio α = 2, and (upix, vpix) are the pixel coordinates on the
Fourier grid. More details can be found in Paper I.

For each stack yk ∈C
Mk , we have the measurement equation

yk = �kx. It is clear that each stack has an independent measure-
ment equation. However, the full measurement operator is related
to the stacks in the adjoint operators such that

xdirty =
[
�†

1, . . . , �†
kmax

]
⎡
⎢⎢⎢⎣

y1
...

ykmax

⎤
⎥⎥⎥⎦ = �†y . (7)

We use MPI all reduce to sum over the dirty maps generated from
each node. The full operator � is normalised using the power
method.

3.2. Clustering w-stacks

It is ideal to minimise the kernel sizes across all stacks, minimis-
ing the memory and computation costs of the kernel. We develop
an MPI k-means clustering algorithm which greatly improves
performance by reducing the values of |wi − w̄k|2 across the w-
stacks. Each MPI node finds the w-stack to which a visibility
belongs, updating the cluster centres across all MPI nodes with
each iteration. This is then followed by an all-to-all MPI opera-
tion to distribute the visibilities to their w-stacks. There already
exist parallel and distributed k-means clustering algorithms for
big data (Aggarwal & Reddy 2013; Stoffel & Belkoniene 1999).
The k-means w-clustering algorithm is presented in Algorithm 1.
This algorithm is necessary to reduce computation and operating
memory when applying the w-projection kernels by reducing the
support size of each kernel.

3.3. Conjugate symmetry

Prior to w-stacking with the k-means algorithm, conjugate sym-
metry may be used to restrict the w-values onto the positive
w-domain. The origin of the w-effect stems from the 3d Fourier
transform of a spherical shell and a horizon window, with the w
component probing the Fourier coefficient of the signal along the
line of sight. The sky, the horizon window, the spherical shell, and
the primary beam can all be interpreted as a real-valued signal.
This provides a conjugate symmetry between−|w| and+|w|, i.e.

y∗(u, v,−|w|)= y(− u,−v, |w|) . (8)
Properties of noise remain unchanged under conjugate symme-
try, meaning that measurements can be restricted to positivew, i.e.
w ∈R+. Other modelled instrumental effects may need to be con-
jugated, which is only important when they are complex-valued
signals. In particular, polarised signals, e.g. Stokes Q,U, and V ,
are independent real-valued signals. Thus, linear polarisation has
a slightly different relation

y∗
P(u, v,−|w|)= yQ(− u,−v, |w|)− iyU(− u,−v, |w|) , (9)

Algorithm 1. k-means w-stacking: The k-means algorithm sorts
the visibilities into clusters (w-stacks) byminimizing the averagew
deviation, (w̄−w)2, within each cluster. We use bold variables to
denote an array, subscript to denote the array element and super-
script to denote the iteration. The algorithm returns two arrays: n
is the array of indices that labels the w-stack for each visibility; w̄
is the average w value within each w-stack. The algorithm requires
a starting w-stack distribution w̄(0), which we choose to be evenly
distributed between the minimum and maximum w-values. The
algorithm should iterate until w̄(t) has converged, which we choose
to be a relative difference of 10−3. Note p is the index of visibility, q
is the index forw-stacks, and c is the place holder for theminimum
deviation for the visibility at index p. The AllSumAll(x) operation
is an MPI reduction of a summation followed by broadcasting the
result to all compute nodes.

1: given w̄(0), n(0),wtotal, ntotal,wsum,wcount

2: repeat for t = 1, . . .
3: wsum = 0
4: wcount = 0
5: repeat for p= 1, . . .
6: m= 2(wmax −wmin)2
7: repeat for q= 1, . . .
8: c= (w̄(t)

q −wp)2
9: if c<m then
10: m= c
11: n(t+1)

p = q
12: end if
13: until q> ntotal
14: wsumn(t+1)

p
=wsumn(t+1)

p
+wp

15: wcountn(t+1)
p

=wcountn(t+1)
p

+ 1
16: until p>wtotal

17: repeat for q= 1, . . .
18: w̄(t+1)

q = 0
19: if AllSumAll(wcountq)> 0 then
20: w̄(t+1)

q =AllSumAll(wsumq)/AllSumAll(wcountq)
21: end if
22: until q> ntotal
23: until convergence

suggesting that the reflection should be done to the Stokes Q and
U visibliities before combination into linear polarisation and then
combined with −i rather than +i. This combination is impor-
tant for accurate polarimetirc image reconstruction (Pratley &
Johnston-Hollitt 2016).

3.4. Distributed ADMM

As in Paper I, we use the alternating direction method of multi-
pliers (ADMM) algorithm implemented in PURIFY (Pratley et al.
2018) to solve the optimisation problem

min
x∈RN

∥∥�†x
∥∥

�1
subject to

∥∥y− �x
∥∥

�2
≤ ε , (10)

where � is a wavelet transform, the term
∥∥�†x

∥∥
�1

is a
penalty on the number of non-zero wavelet coefficients, while∥∥y− �x

∥∥
�2

≤ ε is the condition that the measurements fit within
a Gaussian error bound ε. MPI is used to distribute the wavelet
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transform and enforce fidelity constraints, in conjunction with
w-stacking.

PURIFY (version 3.0.1, Pratley et al. 2019a) has been updated
to implement the w-stacking w-projection measurement oper-
ator with MPI, k-means clustering, and conjugate symmetry to
efficiently reduce the effective w-value within a compute cluster.
We find that the use of conjugate symmetry allows the k-means
algorithm to increase the density of the w-stack locations. This
in turn reduces the effective w values that are required to be cor-
rected for by the w-projection kernels and greatly decreases the
computational burden of the w-projection algorithm in the kernel
construction.

4. Efficiency ofw-stacking with conjugate symmetry

In this section, we compare the efficiency of the w-projection w-
stacking algorithm before and after applying conjugate symmetry
to the visibilities. By restricting w to be greater than zero through
conjugation, we increase the density of the w-stacks and decrease
the distance |w− w̄k| of each visibility from the centre of a given
w-stack k. When this distance is negligible, the correction required
by the w-projection algorithm is also negligible.

Each visibility in a w-stack has the remaining directional-
dependent complex-phase variation

e−2π i(w−w̄k)(
√
1−l2−m2−1) , (11)

this can be accounted for using the w-projection algorithm.
Otherwise, the remaining DDE oscillates across the field of view as
a multiplicative phase error that is not accounted for. We use the
inequality |1− eiq| = 2| sin (q/2)| < |q| to provide a linear bound
on the error within a w-stack

|1− e−2π i(w−w̄k)(
√
1−l2−m2−1)|

≤ |2π(w− w̄k)(
√
1− l2 −m2 − 1)| , (12)

where the error is bounded by |2π(wmax −wmin)(
√
1− l2 −m2 −

1)| for each stack. When the phase term is small, the bound
closely approximates the error; this follows the standard small
angle approximation commonly applied to the sin function. We
next use this error bound to estimate how many stacks are needed
for a phase error tolerance over a field of view during wide-field
corrections.We then show that application of conjugate symmetry
can increase w-stacking efficiency by decreasing the w range.

When the w-stacks are evenly spread (which is expected to
give rise to larger error than k-means for many of the stacks,
see Figure 1), we know that the w term is uniformly bounded
to be within a stack following the relation |w− w̄k| ≤ |(wmax −
wmin)/nd|, where nd is the number of w-stacks. The field of view
is limited through lmax ≥ √

l2 +m2; this is determined by the res-
olution of the Fourier grid directly by lmax = 1

2�u . We denote our
error tolerance for the multiplicative phase error across the field of
view as eiη. The number of w-stacks nd is then constrained by

nd ≥
∣∣2π(wmax −wmin)

(√
1− l2max − 1

)∣∣
η

. (13)

For example, if we allow for a multiplicative phase error of at most
of η = 2π × 0.1, then for a range of |wmax −wmin| = 300 wave-
lengths and a 30 degree radius of lmax = 0.5, we calculate that
approximately nd = 400 w-stacks are needed.

However, the bound on the multiplicative phase error η due
to the w-term might not be the greatest limitation. Long baselines

Figure 1. Thenumber of visibilities perw-stack in log scale logMk as a function ofmean
w compared between using the k-means algorithm and uniform binning for 16 stacks.
The horizontal error bars show the root-mean-squared w offset for the visibilities in a
w-stack; this is proportional to the phase error that needs to be corrected due to the
w-term. In particular, the k-means stacks show less residual w where there are more
visibilities. To generate this plot, we used the Phase I MWA configuration after apply-
ing conjugation to ensure that all w≥ 0. We used a coverage from 768 channels with
a width of 40 kHz centred at 87.68 MHz and a pointing centre 45 degree away from
zenith towards the horizon. The k-means algorithm places less bins at larger values
of w where there are less visibilities and conversely increases the number of bins at
smallw values where there aremore visibilities. This has two possible advantages that
the computational load is more balanced and that the w-offsets are reduced for the
majority of the visibilities.

at low frequencies can be limited by the ionospheric phase errors
introduced during an observation.

When we use conjugate symmetry to ensure that w≥ 0, we
find that the difference |wmax −wmin| is reduced to max(|w|)−
min(|w|). This reduces the number of w-stacks nd required to
reach a desired level of accuracy over the image, suggesting the
efficiency increase. For example, after applying conjugate sym-
metry to a uniform w coverage with wmax = −wmin, only half the
number of stacks are needed for the same phase error bound.
Furthermore, we note that the k-means algorithm can also pro-
vide more accuracy for less computation; this is shown in Figure 1
for an MWA uv-coverage.

We also estimate that the 2-dimensional support size within
a w-stack will be bounded by the maximum of (2�wk/�u)2 and
J2, where J is the number of kernel coefficients used. Thus, it
is clear that more efficient placements of w-stacks reduce mem-
ory and computation needed with the w-projection kernel. For
uniform coverage, we expect that the number of 2d kernel coef-
ficients is bounded by (2(wmax −wmin)/(nd�u))2. This bound on
support is further reduced to (2(max(|w|)−min(|w|))/(nd�u))2
when conjugate symmetry is applied.

Lastly, when η ≥ |2π(w− w̄k)(
√
1− l2max − 1)| for a chosen tol-

erance and given visibility, we suggest that there is little advantage
in using the w-projection kernel. There may be small gains in
kernel construction time by assuming w= w̄k to avoid calculat-
ing thew-projection kernel through adaptive quadrature when the
Hankel transform of g(r) has a closed form. From the work of
Pratley et al. (2019c), a safe choice to bound the error is η = 0.01
but we expect this to be very conservative for most science cases.
In the limit where the stacking density is high enough, this method
then reduces to the standard w-stacking algorithm.
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4.1. Comparison

In this section, we show the increase in efficiency of the con-
struction and application of the measurement operator using the
w-projection and w-stacking algorithm before and after applying
conjugate symmetry to the visibilities.

To compare the efficiency, we undertake a series of timing
experiments using a range of images sizes,w-stacks, and number
of visibilities.

To perform the reconstruction, we used the Grace computing
cluster at University College London. Each node of Grace contains
two 8 core Intel Xeon E5-2630v3 processors (16 cores total) and 64
Gigabytes of RAM.c

Each data point was generated using 25 compute nodes and
25 w-stacks (i.e. one w-stack per node). The coverage was gen-
erated randomly using a Gaussian sampling density in u, v, and
w. We choose the standard deviation of w to be 100 wavelengths,
making the full range to be approximately ±300 wavelengths. The
field of view was kept fixed to 25 by 25 degrees, while we vary
the range of w, number of pixels (N), and number of visibili-
ties (M). We repeated each timing measurement thrice and then
recorded the average time for each experimental configuration.
We used an oversampling ratio of α = 2, with a 2d kernel sup-
port size J2 = 16 at w= 0. The number of kernel coefficients used
for |w| > 0 is β(wi − w̄k)/�u along each dimension (Pratley et al.
2019c), where β is a constant of proportionality. Here, we choose
β = 2; however, Cornwell, Golap, & Bhatnagar (2008) suggest that
β = λ

D is a good choice because of its relation to the Fresnel zone
for a dish of size D. The choice of β is dependent on the obser-
vational regime under consideration,d and the total number of
coefficients scales as (2(wi − w̄k)/�u)2. The standard deviation of
the w sample density is determined by the value σw, which we
chose values of 50, 100, and 150 wavelengths, with maximum w
values of ±3σw. Figure 2 shows the time required to construct
the measurement operator � and apply �†� as a function of
image size, for N = 2562, 5122, 1 0242, 2 0482, and 4 0962 pixels,
andM = 106, 107, and 108 visibilities. All w-projection kernels are
stored across the cluster to be ready for application.

For constructing �, we find that kernel construction time is
independent of image size, which is clear when the kernel con-
struction dominates over the cost of planning the FFT. This
demonstrates the advantage of using adaptive quadrature during
kernel construction for high-resolution images, where the compu-
tation scales with the field of view andw only, leaving it completely
independent of number of pixels in the image.

For σw = 50, we find that there is little improvement when
applying conjugate symmetry, which is easily explained by sug-
gesting that 25 w-stacks are enough to efficiently cover the range
of w values over [− 150, 150] and [0, 150] wavelengths.

For the larger w ranges of σw = 100 and σw = 150, we find
that applying conjugate symmetry to the visibilities increases the

cMore details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_
technical_specs

dNote: we are considering the support size for the kernel convolved with the anti-
aliasing filter. Also, due to the wide-field of view regime, we find that the support size
is not completely determined by the Fresnel zone that is described for small fields of view
in Cornwell et al. (2008), where J ∝ √|w| < |w|. In Cornwell et al. (2011), it is mentioned
that the envelope scales as |w|, while the convolution function scales as

√
w. At large fields

of view, we find even the linear relation is not sufficient to describe the required kernel
support for very large w (see Figure 2 of Pratley et al. 2019c); however, for intermediate
cases such as here, the linear relation appears adequate.

efficiency of the w-stacking density. This reduces the w-projection
kernel size, improving the construction speed of the w-projection
kernels considerably. Kernel construction is approximately five
times faster after applying conjugation. The reduced w-kernel size
also reduces the time required to perform degridding and gridding
operations during image reconstruction. However, as mentioned
in the previous section, these performance gains are only seen if
there are many visibilities with w< 0.

For σw = 150 with M = 108, we found that not applying con-
jugation resulted in large kernel construction times of greater
than 140 min and we did not have the compute resources to
measure this as a function of N. However, applying conjugation
significantly reduced construction times to 30 min.

In Figure 3, we fixed the image size to be small N = 2562 and
measured construction and application times for M = 106, 107,
and 108. We find that there is linear scaling in construction time as
a function ofM. The application times also increase withM, but it
is not clear that it is linear.

We also find that in the time to apply the measurement oper-
ator, the FFT scales with image width

√
N, and the contribution

from the application of the gridding and degridding kernels that
grows withM. This is expected from the two contributions O(M)
and O(α2N log α2N) for the interpolation and FFT, respectively.
However, we expect that the application time is limited by the
node with the most measurements. Also the varying kernel sup-
port sizes make it difficult to expect a clear relation for application
time against the number of measurements.

4.2. Current implementation limitations

While we have shown performance improvements with this work,
there are still limitations with the current implementation. We
note that some of these limitations can be overcome. First, we
pre-compute and store all of the kernels for use during image
reconstruction. While this is fine for short snapshot observations,
it requires a large amount of working memory and we expect that
on-the-fly calculation methods proposed later in this work may
prove useful (see Section 6). Second, this implementation is bottle-
necked in working memory and CPU resources by the node with
the w-stack that contains the largest number of gridding kernel
coefficients.

5. Application to MWA observation of Fornax A

We use PURIFY (version 3.0.1, Pratley et al. 2019a) to perform
wide-field image reconstruction of an observation of Fornax A
taken with theMWA. The observation has a pointing centre of 03◦
22′ 41.7′′ −37◦ 12′ 30′′, and the integration time is 112 s. Fornax
A was observed using XX and YY polarisations, with the visibil-
ities transformed into Stokes I. The bandwidth was 30.72MHz
with a central frequency of 184.955 MHz and using 768 channels,
which is a standard observational mode for the MWA (Ord et al.
2015; Prabu et al. 2015). The data reduction, including flagging
and calibration, is as per McKinley et al. (2015).

To perform the reconstruction, we use 50 nodes of the Grace
computing cluster at University College London. Each node of
Grace contains two 8 core Intel Xeon E5-2630v3 processors (16
cores total) and 64 Gigabytes of RAM.e

eMore details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_
technical_specs
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Figure 2. The left column shows plots of measurement operator (�) construction times, and the right column shows plots of�†� application times, as a function of image size N.
The top, middle, and bottom rows show the times when using M= 106, 107, 108 visibilities. The standard deviation of the w sample density is determined by the value σw, which
we chose values of 50, 100, and 150wavelengths. We show results before and after applying conjugate symmetry to the visibilities. We find improvements in performance for large
w ranges due to an increase in w-stacking efficiency, as described in Section 4. The kernel construction time is independent of image size due to the use of adaptive quadrature;
this is clear for largeM in themiddle and bottom rows. For σw = 150 wavelengths withM= 108, we found that not applying conjugation resulted in large kernel construction times
of greater than 140 min (not shown). We found construction time reduces to 30 min after applying conjugation as shown in the figure.
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Figure 3. The left figure shows plots of measurement operator (�) construction times, and the right figure shows plots of�†� application times, as a function of the number of
visibilitiesM for N= 2562. The standard deviation of thew sample density is determined by the value σw, which we chose values of 50, 100, and 150 wavelengths. We find that the
kernel construction time increases linearly with M. We find that the applying the conjugate consistently reduces the time required to calculate the w-projection kernels and can
reduce the time for application.

The reconstructed image is of 2 048 by 2 048 pixels, with a pixel
width of 45 arcsec and a field of view of 25 by 25 degrees. The w
values range between 0 and approximately 600 wavelengths for the
total of 126.6million visibilites, after conjugating the visibilities for
negative w values, i.e. a range of 1 200 wavelengths originally.

Sorting the visibilities into 50 w-stacks (one per MPI node)
took a total time of under 5 s using the MPI-distributed k-means
algorithm described in Algorithm 1. If the average relative dif-
ference of each w-stack centre w̄i between k-means iterations is
less than 10−3, we consider the algorithm has converged. We do
not expect the w-projection algorithm performance to improve
beyond this level of accuracy in clustering as a function of the
number of iterations. In this case, the algorithm converged in six
iterations.

It took a total of 15 min to construct a w-projection kernel
for all visibilities, using quadrature accuracy of 10−6 in relative
and absolute error, as described in Paper I. The w-projection ker-
nel construction time in Paper I was 40 min for 50 w-stacks
(over 25 compute nodes), with the same field of view and same
image size, over the same range of w values, but for only 17.5
million visibilities. We find that the use of conjugate symmetry
before the k-means clustering algorithm allows for more efficient
computation of the w-projection kernels due to more efficient w-
stacking because of the reduced range of w-values, allowing for 2.6
times faster kernel construction for approximately 7 times asmany
measurements (126.6 million visibilities), i.e. an overall saving of
approximately 18 times.

Reconstruction time took 12 h, with a total of 2 475 iterations,
with the FFT and wavelet operations contributing to much of this
time due to the large image size. Note that we elected to run the
reconstruction for a much longer time than needed to produce an
acceptable image. We erred on the side of a higher number of iter-
ations than strictly necessary in order to get a very high-quality
reconstruction.

The reconstructed image can be seen in Figure 4, which also
shows the residual and dirty maps. The bright, extended source
Fornax A is visible at the field centre, with the rest of the field con-
sisting mostly of point sources. The residual map shows that the
reconstruction models many of the sources in the field of view;

however, the point spread function from bright sources outside
the region imaged is still present in the residuals. Despite out-
side sources disrupting the reconstruction, the root-mean-squared
(RMS) value of the residual map is 15 mJy beam−1, and the
dynamic range of the reconstruction (as calculated in Pratley et al.
2018) is 844,000. The dynamic range is calculated by

DR=
√
N‖�‖2

‖�† (
y− �x

) ‖�2

max{xk} , (14)

i.e. the ratio of the peak of the recovered image to the RMS of the
residuals for a normalised measurement operator. We note that
the squared operator norm ‖�‖2 is the largest eigenvalue of�†�.

Figure 5 shows a zoom in of Figure 4, with the colour scale
adjusted to show the reconstruction of Fornax A in greater detail.
From the scaled residuals, it is clear that this reconstruction
accurately models the extended structure of Fornax A.

6. Improvements for the future

We discuss two classes of possible improvements: kernel interpo-
lations and correction for non-standard DDEs.

6.1. Kernel interpolation

While we have shown that the use of k-means clustering and
complex conjugation can aid in kernel construction,w-projection
kernels can still be expensive in construction time due to the large
number of coefficients in GC. This construction overhead can
be further reduced using interpolation methods, such as bilinear
interpolation between 1dw-planes, or parametric fitting. This may
allow for on the fly calculation of kernels during imaging. We dis-
cuss how a radially symmetric kernel could affect such methods in
the future.

6.1.1. w-planes: Bilinear interpolation

The radially symmetric kernel allows fast and accurate calculation,
while reducing the dimensions of the kernel. This allows for fast
and accurate pre-sampling of the w-projection kernel directly in
the uvw-domain, in some cases to a sufficient pre-sampling den-
sity that the error from linear interpolation is negligible compared
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Figure 4. The dirtymap (Top Left), residuals (TopRight), and skymodel reconstruction (Bottom) of the 112 sMWAFornax A observation centred at 184.955MHz, using 126.6million
visibilities and an image size of 2 0482 (each pixel is 45 arcsec and the field of view is approximately 25 by 25 degrees). This image was reconstructed using the MPI-distributed
w-stacking-w-projection hybrid algorithm, exploiting conjugate symmetry and the k-means clustering algorithm for distribution ofw-stacks presented herein, and using the radial
symmetric w-projection kernels, in conjunction with the ADMM algorithm. The dynamic range of the reconstruction is 844,000. The RMS of the residuals is approximately 15 mJy
beam−1 over the entire field of view. The residuals are larger at the edges of the image due to side lobes of sources outside the field of view. The axes show the distance from
image centre at right ascension 3:22:41.7 and declination -37:12:30 in J2000.

to the aliasing error. While the mathematical basis for bilinear
interpolation is discussed in detail in Paper I, here we present the
implementation considerations.

First, we make it clear that a non-radially symmetric
kernel would mean pre-sampling in (upix, vpix,w), which is
a computational challenge. For Nu ×Nv, samples in (u, v), we
would haveNw w-projection planes. This requires in totalNuNvNw

samples. The total memory required in pre-samples is 16× 10−6 ×
NuNvNw[Megabytes].

With radial symmetry, we show in Paper I that thew-projection
kernel can be computed as a function of

(√
u2pix + v2pix,w

)
. For

Nuv radial samples in
√
u2pix + v2pix, and Nw samples in w, we have

only NuvNw samples. This can be thought of as pre-computing
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Figure 5. Same as Figure 4 zoomed view centred on Fornax A, showing the recovered structure of the double lobed radio galaxy. The residuals have been scaled to show the
details. The residuals over the zoomed region have an RMS of 1.2 mJy beam−1.

1d w-planes, rather than 2d w-planes. Additionally, each sample
only requires a 1d integral by quadrature, reducing the pre-
sampling time.

The 1d nature of the problem suggests better scaling of pre-
sampling computation time and memory, allowing extremely
accurate w-projection kernels. The total memory required in pre-
samples is 16× 10−6 ×NuvNw[Megabytes].

It is also worth noting that pre-sampling is only required for
positive (u, v,w), since the complex conjugate can be used to
estimate (u, v,−w) and radial symmetry can be used for negative
u and v. This leads to additional memory savings in pre-sampling.

Pre-sampling can be optimised for accuracy and storage by
using an adaptive sampling density. The pre-samples could be
stored permanently in cases where kernel construction is per-
formed repetitively.

Bilinear interpolation is computationally cheap and could
make accurate on-the-fly construction of w-projection kernels
possible, which could be needed for large data such as for the
Square Kilometre Array (Hollitt et al. 2017). In the case where
storing the gridding kernels consumes more memory than the
pre-sampled kernel, on-the-fly construction can be built into the
GC operator, where bilinear interpolation is used on application.
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However, memory layout of the pre-samples would be important,
since the sample look-up time could reduce the speed of the
calculation considerably.

6.1.2. Function fitting

Another powerful solution to improve kernel construction costs
can be found from the well-known prolate spheroidal wave func-
tion (PSWF) gridding kernels, which do not have a closed-form
expression.

PSWFs can be defined multiple ways, such as having optimal
localisation of energy in both image and harmonic space, making
them difficult to compute. They can be calculated directly through
Sinc interpolation after solving a discrete eigenvalue problem, but
this can be computationally expensive, or they can be calculated
using a series expansion. However, this has not stopped radio
astronomers using the PSWFs for decades, ever since the work
of Schwab (1978, 1980) described a custom made PSWF that has
been used in CASA (McMullin et al. 2007), AIPS (Greisen 2003),
MIRIAD (Sault, Teuben, & Wright 1995), and PURIFY (Carrillo
et al. 2014). In Schwab (1978, 1980), a rational approximation is
used to provide a stable and accurate fit to the PSWF, which has
stood the test of time.

A similar approach can be used to provide an accurate
fit to w-projection kernels. Put simply, it is possible to fit a
radially symmetric kernel as a function of three parameters(√

u2pix + v2pix,w,�u
)
, i.e. polynomial fitting. This has various

advantages over the pre-sampling method, such as reduced stor-
age, no pre-sampling time, and reduced look up time (which could
be critical for on-the-fly application). However, stability and reli-
ability of the fit are not guaranteed and would require further
investigation.

6.2. Additional direction dependent effects

The 1d radially symmetric kernel framework can be used in con-
junction with general 2d kernels that model DDEs. It is clear that
the 1d w-projection kernel derivation can be extended to other
analytic radially symmetric baseline-dependent effects, i.e. a func-
tion of r or

√
u2 + v2 only. But this does not stop the inclusion

of more general baseline-dependent effects, such as the spectral
and polarimetric primary beams and time-dependent ionospheric
models. Generating these models will require computation that
may or may not be worse than the non-coplanar baseline effects,
which are telescope dependent. Non-coplanar baseline effects are
a special case, where the effects need to be modelled on each base-
line and can bemodelled in stacks of visibilities. However, in many
cases, DDE models are station dependent, suggesting the compu-
tation is not as extreme as the non-coplanar case. Additionally,
these effects may apply to groups of visibilities in time, frequency,
and polarisation, reducing the number of effects that need to be
modeled.

In the worst case scenario, each baseline will have different
DDEs, which can be included by further convolutions (since
convolution is commutative)

[GC]
(√

u2pix + v2pix,w
)

→
Dij(u, v,w) � [GC]

(√
u2pix + v2pix,w

)
, (15)

where Dij(u, v,w) is a model of the DDEs in the uvw-domain
between two stations ij. Typically if D(u, v,w) is band limited, the

additional convolution can be performed with a discrete convolu-
tion, since [GC]

(√
u2pix + v2pix,w,�u

)
is also smooth. The discrete

convolution has computational complexity O(J2GCJ2D), where J is
the width of each kernel. IfD is separable in (u, v), then this can be
reduced greatly toO(J2GCJD).

The computation of D(u, v,w) may require modelling in the
image domain with an FFT for each baseline or it may be
known analytically in (u, v,w). In the case where Dij(u, v,w)=
Dj(u, v,w) �D�

i (u, v,w) is separable into station-dependent effects,
it greatly reduces the modelling computation from NAnt(NAnt −
1)/2→NAnt kernel constructions.

The w-stacking distribution structure can be applied to model
other effects, such as time-dependent primary beam and iono-
spheric models. Distributing the visibilities into (time) t, (fre-
quency) ν, and (polarisation) p DDE stacks could alleviate some
of the challenges of D �GC construction; this applies whenever
a DDE can naturally be applied to a group of baselines. For a
given DDE stack, we can apply the stack’s DDE model directly
in the image domain. This can be efficiently done using recent
developments in the work of van der Tol, Veenboer, & Offringa
(2018).

7. Conclusion

We have discussed details of the w-stacking w-projection algo-
rithm implementation, including details of the k-means clustering,
introduction of conjugate symmetry to improve the computa-
tional efficiency of the current algorithm, and possible extensions
to the current algorithms and code base to further improve effi-
ciency and accuracy of the reconstructions.

We measured the time to pre-compute and apply an imple-
mentation of the MPI w-stacking w-projection algorithm. We
found that the use of conjugate symmetry greatly improves the
w-stacking efficiency, which reduces the cost in w-projection ker-
nel construction and application. It is also clear that using adap-
tive quadrature allows kernel construction that is independent of
image size, making it efficient for large high-resolution images.

We use the MPI-distributed ADMM implementation in
PURIFY to reconstruct an MWA observation of Fornax A, recov-
ering accurate sky models of the complex source Fornax A and of
point sources over the entire 25 by 25 degrees field of view. We
find that we can construct w-projection kernels for 7 times the
number of measurements, 2.6 times faster than the time taken in
Paper I (an overall saving of approximately 18 times), using the
same image size, field of view, and range of w values.

In conclusion, we suggest to modifying the implementation of
the 1d radial w projection kernels for large data sets, via the use of
kernel interpolation and the inclusion of non-radially symmetric
DDEs. Accurate correction of wide-field and instrumental effects
is critical in the era of next-generation radio interferometers and
is vital to achieving science goals ranging from the detection of
the Epoch of Reionisation to accurately reconstructing cosmic
magnetic fields.
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