
Adv. Appl. Prob. (SGSA) 41, 1–12 (2009)
Printed in Northern Ireland

© Applied Probability Trust 2009
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Abstract

Let P be a Poisson process of intensity 1 in a square Sn of area n. For a fixed integer k,
join every point of P to its k nearest neighbours, creating an undirected random geometric
graph Gn,k . We prove that there exists a critical constant ccrit such that, for c < ccrit,
Gn,�c log n� is disconnected with probability tending to 1 as n → ∞ and, for c > ccrit,
Gn,�c log n� is connected with probability tending to 1 as n → ∞. This answers a question
posed in Balister et al. (2005).
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1. Introduction

Let P be a Poisson process of intensity 1 in a square Sn of area n. For a fixed integer k, we
join every point of P to its k nearest neighbours, creating an undirected random geometric graph
GSn,k = Gn,k in which every vertex has degree at least k. The connectivity of these graphs
was studied by the present authors in [1]. It is not hard to see that Gn,k becomes connected
around k = �(log n), and we proved in [1] that if k(n) ≤ 0.3043 log n then the probability that
Gn,k(n) is connected tends to 0 as n → ∞, while if k(n) ≥ 0.5139 log n then the probability
that Gn,k(n) is connected tends to 1 as n → ∞. However, we were unable to prove the natural
conjecture that there exists a critical constant ccrit such that, for c < ccrit,

P(Gn,�c log n� is connected) → 0 as n → ∞
and, for c > ccrit,

P(Gn,�c log n� is connected) → 1 as n → ∞.

In this paper we prove this conjecture.
Central to the proof is the observation that, while there are no isolated vertices in Gn,k ,

the obstructions to connectivity are nonetheless small. More precisely, we have the following
lemma, which is immediate from the proofs of Lemmas 2 and 6 of [1]. Throughout the paper,
we will have k = �(log n).
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Figure 1: Regions used in defining Ak , A′
k , Bk , and B ′

k .

Lemma 1. For fixed c > 0 and L, there exists c′ = c′(c, L) > 0, depending only on c and L,
such that, for any k ≥ c log n, the probability that Gn,k contains two components each of
(Euclidean) diameter at least c′√log n, or any edge of length at least c′√log n, is O(n−L).

This lemma enables us to restrict attention to ‘local’ events, whose probabilities we will
estimate. Although heuristics and numerical evidence suggest that the actual obstructions to
connectivity arise far from the boundary of Sn, we were unable to prove this in [1]. Therefore,
we must consider the following two pairs of families of events.

Let M be a large integer, which we will choose in a moment. For the first pair, we consider a
Poisson process PS of intensity 1 in the square S = [− 1

2M
√

k, 1
2M

√
k]2 of area M2k centred

at the origin, and construct the random graph GS,k = GM2k,k as above. The event Ak occurs
when GS,k contains a component all of whose vertices lie within the central square S′ = 1

2S =
{x/2 : x ∈ S} of area 1

4M2k, and the event A′
k occurs when GS,k contains a component all of

whose vertices lie within the central square S′′ = 3
4S = {3x/4 : x ∈ S} of area 9

16M2k.
For the second family, let PR be a Poisson process of intensity 1 in the square R =

[0, M
√

k] × [− 1
2M

√
k, 1

2M
√

k] of area M2k, and join every point of PR to its k nearest
neighbours to form the random geometric graph GR,k . The event Bk occurs when GR,k contains
a component all of whose vertices lie within the square R′ = 1

2R, and the event B ′
k occurs when

GR,k contains a component all of whose vertices lie within the square R′′ = 3
4R (see Figure 1).

We now discuss the choice of M . It should be large enough to ensure that the probability of
seeing a long edge or two large components (relative to the size of S or R) is much smaller than
the probabilities of the four events above. Specifically, we will choose M so that M ≥ 40 and

P
(
Gn,k contains two components with diameter greater than 1

8M
√

k
) = o(e−9k) (1)

(see Lemma 3 and Corollary 1, below). Now we may assume, from the results in [1], that
0.30 log n < k < 0.52 log n, so that

n−5 = o(e−9k) and 1
8

√
k > 1

15

√
log n.

Therefore, using the notation of Lemma 1, it will be enough to take

M = max{15c′(0.3, 5), 40}.
From now on, no more reference will be made to the choice of M .

Our first target is to estimate p1(k) = P(Ak) and p2(k) = P(Bk). Specifically, we will show
that

p1(k) = exp{−(c1 + ok(1))k} and max{p1(k), p2(k)} = exp{−(c2 + ok(1))k}.
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Defining

f1(k) = − log p1(k)

k
and f2(k) = − log p2(k)

k
,

we will prove the following.

Theorem 1. There exist

c1 = lim
k→∞ f1(k) and c2 = lim

k→∞ min{f1(k), f2(k)}.
The proof of this theorem, given in the next section, will occupy most of the paper. Having

established it, two straightforward tiling arguments will complete the proof of the conjecture.
The main idea in the proof of Theorem 1 is that, for a fixed ε > 0, there is a decomposition of the
probability space of GS,k (or GR,k) into a finite set F (ε) of disjoint events or configurations,
such that the knowledge of which configuration occurs almost always determines ‘up to ε’
whether or not Ak (or Bk) occurs. Once we have this set of configurations, we can accurately
estimate the probability of each one using the following lemma of [1]. (The proof of the lemma
is just a simple computation.)

Lemma 2. ([1, Lemma 1].) Let A1, . . . , Ar be disjoint regions of R
2 and let ρ1, . . . , ρr ≥ 0 be

real numbers such that ρi |Ai | ∈ Z. Then the probability that a Poisson process with intensity 1
has precisely ρi |Ai | points in each region Ai is then

exp

{ r∑
i=1

(ρi − 1 − ρi log ρi)|Ai | + O

(
r log+

∑
ρi |Ai |

)}
,

with the convention that 0 log 0 = 0, and where log+ x = max{log x, 1}.
One of the configurations for which Ak (or Bk) occurs will dominate, in the sense that it will

have the highest probability of all such configurations, and we will be able to read off the value
of c1 (or c2) from it.

Occasionally, we will need to make the dependence of our geometric graphs on P explicit,
writing, for instance, GS,k(P ) instead of simply GS,k . For the most part, however, we will
only use the abbreviated notation.

2. Proof of Theorem 1

Let us fix k, and estimate p1(k) = P(Ak) and p2(k) = P(Bk). We will consider very
fine discretizations of the square regions R and S (both of area M2k). In the following we
will frequently have to neglect certain ‘bad’ events. We must show that the probability of
each of these events is negligible compared to those of Ak and Bk . For this, we will need
lower bounds on p1(k) and p2(k), or, more precisely, upper bounds on lim supk→∞ f1(k) and
lim supk→∞ f2(k). Such bounds are provided below. We follow the method of [1], although a
version of this lemma (with larger constants) was obtained earlier in [2].

Lemma 3. We have

lim sup
k→∞

f1(k) ≤ 8 and lim sup
k→∞

f2(k) ≤ 8.

Proof. Consider a configuration of three concentric discs, D1, D3, and D5, of radii r , 3r ,
and 5r , respectively, where πr2 = k + 1 (see Figure 2). Since the diameter of D5 is at most
8
√

k and M ≥ 40, we can choose the centre of the discs so that all the discs lie entirely within
the central square S′ (or R′). Call the configuration bad if (i) D1 contains at least k + 1 points,
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Figure 2: The regions D1, D3, and D5 used in the proof of Lemma 3.

(ii) the annulus D3 \ D1 contains no points, and (iii) the intersection of D5 \ D3 with any disc
of radius 2r centred at a point on the boundary of D3 contains at least k + 1 points. Now
if the configuration is bad then Ak (or Bk) will occur, because the k nearest neighbours of a
point in D1 all lie within D1 and the k nearest neighbours of a point outside D3 all lie outside
D3. (Otherwise, there would be a point x outside D3 and a disc centred at x touching D1 that
contained fewer than k + 1 points. But this disc contains a disc of radius 2r about some point
on the boundary of D3, contradicting (iii).) Hence, there will be no edge connecting a point
inside D1 to a point outside D1. Condition (i) holds with probability about 1

2 (in fact, slightly
more than 1

2 ), and condition (ii) holds with probability e−8(k+1). Now consider condition (iii).
Note that there is an ε > 0 such that any disc of radius (2 − ε)r around any point x on the
boundary of D3 intersects the annulus D5 \ D3 in a region Dx of area 2(k + 1). It follows
from the concentration of the Poisson distribution (see, for instance, Lemma 4, below) that the
probability that Dx contains less than k + 1 points is ok(1). Pick points x1, . . . , xt around the
boundary of D3 so that any point of the boundary of D3 is within εr of some xi . Clearly, we
can choose t = �3π/ε�, so that t is independent of k. Hence, the probability that any Dxi

contains fewer than k + 1 points is ok(1), but any disc of radius 2r about x contains a disc of
radius (2 − ε)r about some xi . Thus, the probability that any such x exists with the disc of
radius 2r about x containing fewer than k + 1 points is ok(t) = ok(1), and so condition (iii)
holds with probability 1 −ok(1). Since the events corresponding to conditions (i), (ii), and (iii)
are independent, p1(k), p2(k) ≥ exp{−(8 + ok(1))k}, and the result follows.

Recall that in the last section we defined four families of events, Ak , A′
k , Bk , and B ′

k . We are
only really interested in Ak and Bk; the events A′

k and B ′
k arise only because of a technicality,

and it will be convenient to prove a lemma (Lemma 5, below) about them at the outset. In order
to do this, we first establish a simple lemma bounding the Poisson distribution, and deduce a
bound on the edge lengths in GS,k .

Lemma 4. If ρ > 1 then

P(Po(A) > ρA) ≤ e(ρ−1−ρ log ρ)A.

If ρ < 1 then
P(Po(A) < ρA) ≤ e(ρ−1−ρ log ρ)A.

Proof. Let X ∼ Po(A). Then

E(ρX) =
∞∑

n=0

ρn An

n! e−A = e(ρ−1)A.
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Therefore, if ρ > 1 then

P(X > ρA) ≤ E(ρX−ρA) = e(ρ−1−ρ log ρ)A,

and if ρ < 1 then
P(X < ρA) ≤ E(ρX−ρA) = e(ρ−1−ρ log ρ)A.

Corollary 1. For any m with M2k ≤ m ≤ n and 0.3 log n ≤ k, the probability that Gm,k

contains an edge of length at least 1
8M

√
k is o(e−9k).

Note that this does not quite follow from Lemma 1, since reducing the area of the square
and, hence, the number of vertices could in principle increase the number of long edges in the
remaining graph.

Proof of Corollary 1. If some vertex v of Gm,k has its kth-nearest neighbour at a distance
more than 1

8M
√

k ≥ 5
√

k, then there must be fewer than k points within a quarter-disc of area
(π/4)25k > 19k inside Sm. (We need to consider quarter-discs since v may be close to a
corner of Sm. The lower bound M2k ≤ m ensures that the quarter-disc fits.) By Lemma 4,
this occurs with probability at most exp{( 1

19 − 1 − 1
19 log( 1

19 ))19k} < e−15k . The expected
number of vertices where this will occur is thus O(me−15k) = o(e−9k) since m ≤ n ≤ ek/0.3.
Thus, the probability that Gm,k contains an edge of length at least 1

8M
√

k is o(e−9k).

Lemma 5. We have

P(Ak) ≤ P(A′
k) ≤ (4 + ok(1)) P(Ak),

P(Bk) ≤ P(B ′
k) ≤ (2 + ok(1))(P(Ak) + P(Bk)).

Proof. Both lower bounds are immediate. For the first upper bound, fix a Poisson process
with intensity 1 in the square Sn of area n centred at the origin. Let T be the square of side
length 5

4M
√

k, also centred at the origin. Note that, for sufficiently large k and 0.3 log n ≤ k ≤
0.52 log n, T ⊆ Sn, so we will assume this in the following.

Cover T with four translates S1, . . . , S4 of S as shown in Figure 3. We now define three
‘bad’ events. Let E1 be the event that Gn,k contains two components of diameter greater than
1
8M

√
k. By (1) we know that P(E1) = o(e−9k). Let E2 be the event that some edge in either

Gn,k or in one of the GSi,k is of length greater than 1
8M

√
k. By Corollary 1, P(E2) = o(e−9k).

Finally, let E3 be the event that there is no component in Gn,k with at least one vertex outside
of T and with diameter greater than 1

8M
√

k. Note that if we divide some square S̃ in Sn of area
M2k into (8M)2 small squares, each of side length 1

8

√
k, then, with probability bounded away

from 0 (independently of k), there will be at least one and at most k/37 vertices in each small
square. But then it is easy to see that every vertex in a small square is adjacent in Gn,k to every
vertex in any neighbouring small square, provided that the original square is at least a distance
3
8

√
k from the boundary of S̃ (see Figure 4). In this case, there will be a large component of

Gn,k intersecting S̃. Since we can place �(n/k) = ω(k) independent copies of S̃ in Sn, all
avoiding T , we see that P(E3) = e−ω(k). In particular, P(E3) = o(e−9k).

Assume that the event A′
k occurs, i.e. there is a small component C of GS,k inside S′′ = 3

4S.
Assume also that E = E1 ∪ E2 ∪ E3 does not hold. Then C must also be a component (or
a union of components) in Gn,k , since the addition of vertices outside of S will not cause any
new edge to form within S, and no vertex outside of S can be joined to a vertex in S′′, since
this edge would be of length greater than 1

8M
√

k in Gn,k . Since E3 and E1 do not hold, there
is no component of Gn,k of diameter greater than 1

8M
√

k entirely within T . Thus, C is of
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Figure 3: Left: square T is covered by squares S1, . . . , S4 aligned to the four corners of T (solid thin
line, only S1 shown). The smaller squares S′

i (solid thin line) then cover S′′ (dotted line). The square
S (dashed line) is also shown. Right: corresponding picture for B ′

k , with R′′ (dotted line) covered by
squares S′

1, S
′
2, R

′
1, and R′

2 (only S′
1 and R′

2 shown).

Figure 4: On the left, any point in the centre square is adjacent in GS,k to any other point in the same
square, provided there are not more than k points in the union of the 21 squares shown. On the right, any
point in the centre square is adjacent in GS,k to every point in its own square and every point in each of
the four adjacent squares, provided there are not more than k points in the union of the 37 squares shown.

diameter at most 1
8M

√
k. Since C lies inside S′′, it must lie entirely within at least one of the

four translates S′
i of S′ corresponding to the Si . (For example, if C contains any vertex in the

top-left quadrant of S′′ then the whole component must lie in S′
1 in Figure 3.) No edge occurs

in E(GSi,k) \ E(Gn,k) between vertices within S′′
i , since otherwise there would be an edge

from a vertex in S′′
i to Sn \ Si in Gn,k of length greater than 1

8M
√

k. Since no edge of GSi,k is
longer than 1

8M
√

k, no such edge joins a vertex in S′
i to a vertex outside S′′

i . Thus, C remains a
component in GSi,k and lies entirely within S′

i . Hence, one of the events Ak corresponding to
the four copies Si of S occurs. Thus, P(A′

k \ E) ≤ 4 P(Ak) and so P(A′
k) ≤ 4 P(Ak) + P(E).

But P(E) = o(e−9k), so, by Lemma 3, P(A′
k) ≤ (4 + ok(1)) P(Ak).

The upper bound for P(B ′
k) is similar. In this case, the squares T and Sn are both aligned so

as to share part of their leftmost boundaries with R (see Figure 3). The region R′′ is covered
by four central squares R′

1, R′
2, S′

1, and S′
2, of the four squares R1, R2, S1, and S2, all of which

lie in T . There are two possibilities. Either our small component C in R′′ lies in the left half
of R and, hence, in one of the R′

i , an event which has probability at most (2 + ok(1)) P(Bk)
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by an argument similar to the one above. The other possibility is that the small component
strays into the right half of R, and so lies in one of the S′

i , an event with probability at most
(2 + ok(1)) P(Ak). This proves the lemma.

Now we will restrict attention to Ak , p1(k), and f1(k). Fix 0 < ε < 1
2 and M , and choose

N = N(ε, M) � M2/ε. Now tile the M
√

k × M
√

k square S, centred at 0, with (MN)2 cells
of side length � = √

k/N and, hence, area �2 = k/N2.
Next we wish to define a configuration. For a fixed instance of PS , we label each cell Qi

with the approximate density d(Qi) of points in Qi , where d(Qi) is defined precisely by the
formula

d(Qi) =

⎧⎪⎪⎨
⎪⎪⎩

0 if Qi contains no points of PS ,
�N3r/k�

N
if Qi contains r points of PS , where r ≤ k,

∞ if Qi contains more than k points of PS .

We call such a labelled square S a configuration F , and we say that PS has (or belongs to) type F .
Note that the total number of configurations is exactly

(N3 + 2)(MN)2
.

The aim is that the configuration F should contain enough information about PS to determine
whether or not Ak occurs up to a small error, while the set of all possible configurations is
nevertheless finite.

The next step is to identify a set of undesirable, or bad, configurations and discard them. Of
course, we are really discarding all instances of PS which belong to a bad configuration, but we
will think of discarding the configurations themselves, and speak, for instance, of the measure
of a set F of configurations when we mean the probability that PS belongs to some F ∈ F .

For an instance PS of the Poisson process in S, let F(PS) be the configuration it belongs to.
There will be two types of bad configuration in total.

Type A. These are configurations which contain a cell Qi with d(Qi) > N2/21. (We may
assume that 21 divides N so that N2/21 is an integer.) In this case, Qi contains at least k/21
points. Lemma 4 shows that the probability pA that we have such a cell anywhere in S is
bounded by

pA ≤ (MN)2 P

(
Po

(
k

N2

)
≥ k

21

)

≤ (MN)2 exp

{
k

N2(N2/21 − 1 − (N2/21) log(N2/21))

}

< (MN)2 exp

{
k(1 − log(N2/21))

21

}

= o(e−9k),

as long as N > (21e190)1/2.
Type B. We consider the set � of circles whose centres are centres of cells and which pass

through at least one other centre of a cell of our tiling. Clearly, � contains at most (MN)4

circles. For each 	 ∈ �, let R	 be the set of cells Qi that lie entirely within distance 5
2�

√
2

of 	, where � = √
k/N is the side length of the cells. Type B configurations are those for

which, for some 	 ∈ �,
k

N2

∑
Qi∈R	

d(Qi) ≥ εk

2
. (2)
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Write c(	) and r(	) for the centre and radius of 	, and let 	t be the circle with centre c(	)

and radius r(	) + t . Then, since length |S ∩ 	t | ≤ |∂S| = 4M
√

k for all t ≥ −r(	), we see
that the area |R	| of each R	 is at most

|R	| ≤
∫ +5�/

√
2

−5�/
√

2
(S ∩ 	t) dt ≤

∫ +5�/
√

2

−5�/
√

2
4M

√
k dt = (5�

√
2)(4M

√
k) <

30Mk

N
.

Thus, each R	 contains at most 30MN cells. Therefore, if (2) holds for some R	 then R	

contains at least
εk

2
− 30Mk

N2 = k

(
ε

2
− 30M

N2

)

points. Thus, for N ≥ N1(ε, M) = (180M/ε)1/2, the R	 chosen above must contain at least
εk/3 points. Thus, by Lemma 4, the probability pB that PS belongs to a type B configuration
is bounded by

pB ≤ (MN)4 P

(
Po

(
30Mk

N

)
≥ εk

3

)

≤ (MN)4 exp

{
30Mk

N

(
εN

90M
− 1 − εN

90M
log

(
εN

90M

))}

< (MN)4 exp

{
εk

3

(
1 − log

(
εN

90M

))}

= o(e−9k),

as long as N ≥ N2(ε, M). We will also assume that N > N3(ε, M) = 2M2/ε for the next
lemma.

Lemma 6. Suppose that F is a good configuration, that Q1 and Q2 are two cells in S, and that
P and P ′ are two point sets belonging to F . If there is no edge in GS,k(P ) from any vertex in
Q1 to any vertex in Q2, then there is no edge in GS,k(1−ε)(P

′) from any vertex in Q1 to any
vertex in Q2.

Proof. If either Q1 or Q2 is empty in P then the same cell will be empty in P ′, so that
in both cases there will be no edges from Q1 to Q2. Otherwise, pick x1 ∈ P ∩ Q1 and
x2 ∈ P ∩ Q2. Suppose, for a contradiction, that there are y1 ∈ P ′ ∩ Q1 and y2 ∈ P ′ ∩ Q2
such that y1y2 ∈ E(Gk(1−ε)(P

′)). Without loss of generality, y2 is one of the k(1 − ε)-nearest
neighbours of y1. Let z1 and z2 be the centre points of Q1 and Q2, respectively, and let
� = √

k/N be the side length of the cells. Let d = ‖z1 −z2‖ be the distance between z1 and z2.
Now ‖zi − yi‖ ≤ 1

2�
√

2 and ‖zi − xi‖ ≤ 1
2�

√
2, so

B(x1, ‖x2 − x1‖) ⊆ B(x1, d + �
√

2) ⊆ B
(
z1, d + 3

2�
√

2
)

and
B(y1, ‖y2 − y1‖) ⊇ B(y1, d − �

√
2) ⊇ B

(
z1, d − 3

2�
√

2
)
,

where B(x, r) denotes the disc of radius r about the point x. Now, every cell that meets
B(z1, d − 5

2�
√

2) lies inside B(z1, d − 3
2�

√
2), and every cell that meets B(z1, d + 3

2�
√

2)

lies inside B(z1, d + 5
2�

√
2). Let R0 be the union of the cells meeting B(z1, d − 5

2�
√

2), and
let 	 ∈ � be the circle through z2 centred at z1. Recall that R	 consists of all the cells strictly
contained in B(z1, d + 5

2�
√

2) \ B(z1, d − 5
2�

√
2). Therefore,

R0 ⊆ B(y1, ‖y2 − y1‖) and B(x1, ‖x2 − x1‖) ⊆ R0 ∪ R	.
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But, B(y1, ‖y2 − y1‖) (and, hence, R0) contains at most k(1 − ε) points of P ′ and R	 contains
at most εk/2 points of P ′, since F is not of type B. Thus, R0 ∪R	 contains at most k(1 − ε/2)

points of P ′. Since no cell has d(Qi) = ∞ (because F is not of type A), this implies that
R0 ∪ R	 (and, hence, B(x1, ‖x2 − x1‖)) contains at most

k

(
1 − ε

2

)
+ 1

N
|R0 ∪ R	| ≤ k

(
1 − ε

2

)
+ 1

N
M2k < k

points of P . Thus, x2 is one of the k nearest neighbours of x1 in GS,k(P ), contradicting the
assumption that GS,k(P ) contains no edge between Q1 and Q2.

Let F be a set of configurations. Write I (F ) for the event that P belongs to some F ∈ F .
Also, let G be the set of good configurations.

Lemma 7. There is a subset Y ⊆ G of configurations such that

Ak ∩ I (G) ⊆ I (Y) ⊆ A′
k(1−ε) ∩ I (G).

Proof. Set
Y = {F ∈ G : Ak ∩ I ({F }) �= ∅},

so that
Ak ∩ I (G) ⊆ I (Y)

automatically holds. Suppose that P belongs to a good configuration F . If Ak occurs then
A′

k(1−ε) occurs for every P ′ belonging to the same F . Suppose that P is a point set for which Ak

occurs, and let T be the set of cells of S containing a point of the component C lying within S′.
Since F is not of type A, there are fewer than k points within distance �

√
2 = √

2k/N of any
point of P , and, hence, any point of P in any cell of our tiling is connected to all other points
of P in the same cell (see Figure 4). Hence, there is no edge in GS,k(P ) from any cell of T to
any cell of S \T . By Lemma 6, for any P ′ belonging to F there is thus no edge in Gk(1−ε)(P

′)
from any cell of T to any cell of S \ T . Therefore, there is some component contained in T in
Gk(1−ε)(P

′). This component lies within the enlarged central region S′′ for the event A′
k(1−ε),

since 3
4

√
k(1 − ε) > 1

2

√
k + �

√
2 for ε < 1

2 and large N . Therefore, A′
k(1−ε) occurs for any

P ′ belonging to F .

Lemma 8. For any good configuration F , P(I ({F })) = exp{−(θF + o(1))k} as k → ∞,
where θF is some constant depending on F .

Proof. By Lemma 2, the probability of there being exactly ρi(k/N2) points in each cell
Qi is

exp

{∑
(ρi − 1 − ρi log ρi)|Qi | + O((MN)2 log((MN)2k))

}
,

where we have used the fact that ρi(k/N2) < k. To calculate the probability of the configuration
F occurring, we sum over all possible values of each ρi consistent with the specified value
of d(Qi). Since there are at most N2k values of ρi for each i, we obtain

P(I ({F })) = exp

{∑
(ρ̃i − 1 − ρ̃i log ρ̃i )|Qi | + O((MN)2 log((MN)2kN2k))

}
,

where ρ̃i is the value of ρi that maximizes ρi −1−ρi log ρi . (The sum is at least the maximum
and at most the number of terms (N2k)(MN)2

times the maximum.) Now let ρ′
i be the real
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number that maximizes ρi − 1 − ρi log ρi in the range of densities consistent with d(Qi)

for any k, so ρ′
i = d(Qi) when d(Qi) ≤ 1 and d(Qi) − 1/N when d(Qi) > 1. Now

|ρi − ρ̃i | ≤ N2/k, which tends to 0 as k → ∞. Thus, the difference between ρ̃i −1− ρ̃i log ρ̃i

and ρ′
i − 1 − ρ′

i log ρ′
i is ok(1). Hence,

P(I ({F })) = exp

{∑
(ρ′

i − 1 − ρ′
i log ρ′

i )|Qi | + o(M2k)

}
.

Setting θF = −∑
(ρ′

i − 1 − ρ′
i log ρ′

i )(1/N2) gives the result.

Lemma 8 implies that
P(I (Y)) = e−(θ+o(1))k,

where
θ = min

F∈Y
θF ,

since, loosely speaking, the sum of a finite number of (essentially) exponential functions is
(essentially) equal to the one among them with the least decay rate. Therefore, by Lemma 3,
Lemma 5, and Lemma 7,

(4 + o(1))p1(k(1 − ε)) ≥ e−(θ+o(1))k ≥ p1(k) − o(e−9k) = p1(k)(1 − o(1)).

Finally,

lim sup
k→∞

f1(k) = lim sup
k→∞

− log((4 + o(1))p1(k(1 − ε)))

k(1 − ε)
≤ θk

k(1 − ε)
= θ

1 − ε

and

lim inf
k→∞ f1(k) = lim inf

k→∞ − log(p1(k))

k
≥ θk

k
= θ.

By letting ε → 0 we see that f1(k) converges to a limit c1.
Now we turn to c2. We may reuse the same configurations and good configurations to obtain

a version of Lemma 7 (with an almost identical proof) with Ak and A′
k(1−ε) replaced by Bk and

B ′
k(1−ε), respectively. Lemma 3, Lemma 5, and Lemma 7 now give, for some θ ′ = θ ′(ε),

(2+o(1))(p1(k(1−ε))+p2(k(1−ε))) ≥ e−(θ ′+o(1))k ≥ p2(k)−o(e−9k) = p2(k)(1−o(1)).

Hence,
(4 + o(1)) max{p1(k(1 − ε)), p2(k(1 − ε))} ≥ p2(k)(1 − o(1)),

and so

lim sup
k→∞

min{f1(k), f2(k)} ≤ min

{
θ ′

1 − ε
, c1

}

and
lim inf
k→∞ min{f1(k), f2(k)} ≥ min{θ ′, c1}.

By letting ε → 0 we see that min{f1(k), f2(k)} converges to a limit c2.
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3. Proof of the main theorem

Write ccrit = max{1/c1, 1/2c2}.
Theorem 2. If c < ccrit and k = �c log n� then P(Gn,k is connected) → 0 as n → ∞. If
c > ccrit and k = �c log n� then P(Gn,k is connected) → 1 as n → ∞.

Proof. We prove the lower bound first. Suppose that c < ccrit and that k = �c log n�.
We place �(n/log n) disjoint squares S (of area M2k) in the interior of Sn, and we place
�(

√
n/log n) disjoint squares R (also of area M2k) along the boundary of Sn, with the squares

R′ lying along the boundary of Sn. Let P be a Poisson process of intensity 1 in Sn, and
consider the restriction of P to one of the squares S1. With probability exp{−(c1 + o(1))k},
S1 now contains a small component near its centre, and, by the choice of M , such a component
would almost certainly remain a component in Gn,k . The probability that none of the squares
S contains a small component (in the respective restricted graph) near its centre is

pfail = (1 − exp{−(c1 + o(1))k})An/log n

< exp

{
−A

(
n

log n

)
exp{−(c1 + o(1))k}

}

≤ exp{−An1−o(1)−(c1+o(1))c}
→ 0,

by independence, if cc1 < 1.
Note that, if c1 = c2, we are done. Suppose then that c2 < c1, and consider the restriction

of P to one of the squares R1. With probability exp{−(c2 + o(1))k}, R1 now contains a small
component in its region R′

1, and, again by the choice of M , such a component would remain a
component in Gn,k . The probability that none of the squares R contains a small component (in
the respective restricted graph) lying in R′ is

pfail = (1 − exp{−(c2 + o(1))k})B(n/log n)1/2

< exp

{
−B

(
n

log n

)1/2

exp{−(c2 + o(1))k}
}

≤ exp{−Bn1/2−o(1)−(c2+o(1))c}
→ 0,

by independence, as long as cc2 < 1
2 . Hence, if either cc1 < 1 or cc2 < 1

2 , i.e. for c < ccrit,
Gn,k will be asymptotically almost surely disconnected.

For the upper bound, suppose that c > ccrit and that k = �c log n�. For notational simplicity,
we assume that c2 < c1. From the proof of Theorem 13 of [1], the probability that Gn,k contains
a component of geometric diameter O(

√
log n) within distance O(

√
log n) of a corner of Sn is

no(1)3−k , which tends to 0 as n → ∞. Suppose then that there exists such a small component
H far from a corner. We can tile Sn with �(n/log n) overlapping squares S and the boundary of
Sn with �(

√
n/log n) overlapping squares R such that H lies in one of the regions S′ or R′ of

these tiles. (In the overlapping scheme, the centres of the S-tiles form a lattice with horizontal
and vertical spacing 1

4M
√

k, and the boundary of the R-tiles that contain 0 lie on the perimeter
of Sn, at intervals of 1

4M
√

k.) Therefore, the probability of such a component H arising is at
most the expected number of tiles for which Ak (for an S-tile) or Bk (for an R-tile) occurs. But,
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for c > ccrit, this expectation is equal to

A

(
n

log n

)
exp{−(c1 + o(1))k} + B

(
n

log n

)1/2

exp{−(c2 + o(1))k} = o(1).

Hence, Gn,k is asymptotically almost surely connected.
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