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Abstract

We consider a generalised symmetric eigenvalue problem Ax = XMx , where A
and M are real n by n symmetric matrices such that M is positive semidefi-
nite. The purpose of this paper is to develop- an algorithm based on the homotopy
methods in [9, 11) to compute all eigenpairs, or a specified number of eigenvalues,
in any part of the spectrum of the eigenvalue problem Ax = XMx . We obtain a
special Kronecker structure of the pencil A - XM, and give an algorithm to com-
pute the number of eigenvalues in a prescribed interval. With this information,
we can locate the lost eigenpair by using the homotopy algorithm when multiple
arrivals occur. The homotopy maintains the structures of the matrices A and M
(if any), and the homotopy curves are n disjoint smooth curves. This method can
be used to find all/some isolated eigenpairs for large sparse A and M on SIMD
machines.

1. Introduction

Consider a generalised symmetric eigenvalue problem

Ax = XMx, (1.1)

where A G R , x e l " , A and M are real n by n symmetric matrices, and
M is positive semidefinite. We shall always assume that the nullspace of A
and M intersect trivially, i.e.

Jr(A)njT(M) = {0}. (1.2)

This kind of problem, for instance, arises from vibration mode analysis when
a finite element method is used. In that case A is the stiffness matrix and
M is the mass matrix.
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Our goal is to find all or some eigenpairs (A, x) of (1.1). In practice,
the matrices A and M are large and sparse (e.g. band structure) so that it
is not practical to perform equivalence transformations using the methods
from [5], [13], [2] which destroy the band structure of A and M.

The homotopy continuation method has been used to solve eigenvalue
problems for the past few years. Kalaba et al. [7, 8] suggested an algorithm
to find all eigenpairs of a family of matrices y(t), which are parameterised
by t. Chu [3] first applied the homotopy method to the symmetric eigenvalue
problem Ax = kx. Recently, Li and Rhee [9] gave an elegant algorithm for
this problem, while Lin and Lutzer [11] gave an algorithm for the problem
(1.1) with positive definite M. Moreover, in [4] and [10] they proposed some
important theoretical results by using a homotopy continuation method for
generalised eigenvalue problems and A-matrix problems. In [11] the approach
was to solve an ODE by using an adequate ODE-solver, which is expensive
when the eigenpath is ill-conditioned. In this paper we would like to extend
the ideas of [9, 11] to solve the problem (1.1) without destroying the sparsity
of A and M. The method is globally convergent and starting vectors are
readily available [7, 8]. It can also be shown that there exist n disjoint
smooth homotopy curves characterised by a system of differential equations.
A standard approach is to use a predictor-corrector method [9] to follow the
continuation curve (x^t), ... , xn{t), k(t), t) in K"+1 x [0, 1] constructed
by the homotopy equation H(x, A, t) = 0 (see Section 2) from t = 0 to
t = 1. We first predict an approximate eigenpair on the eigenpair curve,
and then apply the inverse power method and Rayleigh quotient iteration
to correct the eigenpair. The homotopy method has the order-preserving
property. But, in practice, when we follow the fcth eigenpath, it is possible
to jump into the neighbouring eigenpath. To make sure we have obtained
the correct number of eigenpairs at t = 1, a reliable checking algorithm is
needed. Unfortunately, for the positive semidefinite matrix M, in contrast
to a positive definite or identity matrix M, there is no convenient checking
algorithm such as the Sturm sequence method used in [9]. We give the special
Kronecker structure of the pencil A - XM and develop a useful checking
algorithm to compute the number of eigenvalues in a given interval. With
this information, we can locate the lost eigenpairs by using the homotopy
method.

Each homotopy curve is completely independent of the others. As a con-
sequence, curves can be followed simultaneously on SIMD machines. Hence
the homotopy algorithm could be attractive for exploiting the advantages of
parallel processing. The plan of this paper is as follows. In Section 2, we
construct a special homotopy equation and show that the conditioning of
the homotopy curve is independent of the size of the matrices. Section 3
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describes a predictor-corrector technique. A checking algorithm and some
numerical results are given in Sections 4 and 5, respectively.

Throughout this paper we denote a positive definite (semidefinite) matrix
E by E > 0 (> 0), and the j-th column of a unit matrix In by ei. We
define by ||x||-£ := (xTEx)i/2 (E > 0) the £-norm of a vector x e R" , and
by \\-A\\E := max^ ,0 ||^4A:||£/||A:||£ the matrix .E-norm of a matrix A e R"x" .
The set of eigenvalues of the pencil A - XM is denoted by a {A, M).

2. Some main theorems and conditioning
of the eigenvalue curve

The problem in finding the eigenpairs in (1.1) can be expressed equiva-
lently as the problem of solving the system of nonlinear equations

Ax-XMx 1 A ,_ ..

where E is positive definite.
Let A — XM and D — XE be two symmetric pencils with M > 0 and

E > 0. To solve (2.1) we consider the following homotopy equation:

Ax-XMx 1
\

= \A(t)x-XM(t)x]
[ (l-xTEx)/2 \ '

where x e R", l e i , t 6 [0, 1], .4(0 = (1 - 0-D + tA and Af(0 =
(1 - t)E + tM. The pencil D-XE is chosen such that it has n distinct real
eigenvalues and all its eigenpairs are easily computed. If t runs from 0 to 1,
then the initial pencil D-XE passes to the final pencil A - XM. Let

r : = { ( x J , r ) € E " x l x [ 0 , \]\H{x,X,t) = Q). (2.3)

We claim

THEOREM 2.1. If the pencil A{i) - rjM(t) has no multiple eigenvalues for all
t e [0, 1), then the point 0 6 l " x R is a regular point of H i. e., the Jacobian
matrix

\A{t)-XM{t) -M(t)x

is nonsingular for each (x,X,t)eT. Furthermore, the set F is a one dimen-
sional smooth manifold and can be parameterised by the variable t.
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PROOF. By a slight modification of the proofs in [11, 12].
Differentiating (2.2) with respect to t, using Theorem 2.1, we obtain

-x{t)}_\ C(t) -MitMtW-U-BW
A(t)\-[-x(t)TE 0 J [ 0

where C(t) := A(t) - k{t)M(t) and B(t) := (A-D)- k{t){M - E).
In the following we want to estimate the bounds of \X(t)\ and \x(t)\. If

rank(Af) = n — k, one can prove that (see Section 4) the pencil A - kM has
r finite eigenvalues, where n — 2k<r<n-k. Hence there are r bounded
curves k(t) := xT (t)A(t)x(t)/xT (t)M(t)x(t) in the homotopy equation (2.2).
Since A and M have no common nullspace (by (1.2)), for these r bounded
curves there exists a positive number 2fi such that xT(l)Mx(l) >2fi>0.
Here fi is chosen as large as possible. Since x(t) and M(t) are continuous
in t, there exists tQ e [0, 1) such that xT(t)M(t)x(t) > fi > 0 , for all
t e[t0, 1]. Let a{M,E) = {/n,,... , mn) with 0 < m, < •• • < mn. We
have a{M{t), E) = {(1 - t) + tmx, ...', (1 - t) + tmj . Define K by

l/K = min{l>fi, ( l - ^ + f o m J - m i n ^ , / ) ) . (2.6)

In order to simplify the notations in the following paragraph we use || || for
|| lljj (E is positive definite, defined in (2.2)). Now, for t € [0, 1) we have

xTB(t)x

xrM{t)x

\xTM(t)x
<K(\\A-D\\ + \k(t)\\\M-E\\).

Similarly,
xTA(t)x

WOI = xJM(t)x

So we obtain an upper bound of \k(t)\

\X(t)\<K(\\A-D\\ + K\\M-E\\). (2.7)

Now we want to estimate the upper bound of \\x(t)\\. For those curves
X(t) not tending to infinity at t = 1, the matrix

r c(t) -M(t)x(t)]C=[-x(t)TE 0 J
is invertible for t e [0, 1]. Given t fixed, let at e a(C{t),E) and y{

be the corresponding eigenvector with yt Eyi = 1, for i = \, ..., n . By
assumption the rank of C(t) is « - 1, we let an = 0 and yn = x. In
the following theorem we give a representation of the inverse of C and x ,
which cannot be directly derived by the proof in [9].
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THEOREM 2.2. Let

and

Then

b:=\ylM{t)x,...,yT
n_xM{t)x]J.

lYT -a~2YJ2~lbx

-a~2xT

-x
0

(2.8)

bxTB{t)x. (2.9)

PROOF. Let
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Then
C"1 =
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From (2.5) we have

x = - ^ X T 1 YTB(t)x + a~2Y^2~1 bxTB(t)x.
Now, we define

d(t) ^minila^, ... , I^.J),
• v:=[\\M(t)x\\2

E-i-{xrM{t)x)2]l/2, (2.10)
K:=ms\{K,d{t)\\M-.E\\).

It can be verified that v = ||6||2 . From (2.9) and YTEY = I it follows that

1 YTEll2E-lEl/2B(t)E-1/2Elf2xj

<d(t)-l[min(o(E,I))-l+KV]\\B(t)\\

< d(t)~l[min(a{E, / ) ) " ' + KV]{\\A - D\\ + K\\M - E\\).

Furthermore, from the definition of K in (2.6), we have

||*|| < d{t)~ V(l + u){\\A - D\\ + K\\M - E\\). (2.11)

Let
r,:=max(l,K(\+v)\\(M(t)\\). (2.12)

From (2.7), (2.10), (2.11) and the definition of r\ we then have

||*|| < d(t)-lr,(\\A - D\\ + K\\M - E\\) (2.13)

and
U\\<r,(\\A-D\\ + K\\M-E\\). (2.14)

By using (2.13), (2.14) and the representation of C"1 in (2.8) and by
repeatedly differentiating (2.5) with respect to t, we obtain the bounds of
the m-th derivatives of k{t) and x{t), which are good measures of the local
conditionings of eigenvalue and eigenvector curves.

THEOREM 2.3.

\lim\t)\<q(m)r,2m-l[(\\A-D\\+K\\M-E\\)m/d(t)m-1] (2.15)

||*(m)(0ll < Q(m)r,2""l[(\\A - D\\ +

where q{m) is a constant depending on m.

< Q(m)r,2""l[(\\A - D\\ + K\\M - E\\)m/d(t)m], (2.16)
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REMARK 2.1. (1) The bound of |A(m)(f)l indicates the smoothness of the
eigenvalue curve X(t). Therefore, the poorer the separation of the nonzero
eigenvalues {ff,}^,1 C o{C{t), E) from zero, the poorer the local condition-
ing of the eigenvalue curve can be. The closer D is to A and E is to M,
the better the local conditioning of the eigenvalue curve can be. Furthermore,
the bound for |A*m'(f)| is independent of the size of the matrix, so growth in
matrix size does not imply that the eigenvalue curve becomes ill-conditioned.

(2) For the special case M = E = I the quantity r\ in (2.12) is equal
to 1, and d{t) in (2.10) is just the separation of the eigenvalues of C{t).
Hence the bounds for |A(m)| and \\x{m)\\ in (2.15), (2.16) can be reduced to
the bounds in [9] for the special homotopy (2.2) with M = E = I.

3. Prediction and correction

In this section we shall use an approach similar to the Li-Rhee algorithm
[9]. Suppose that we have found {k{v), x{v)) for v e [0, 1). We compute
the eigenpair {X{v + h) ,x(v + h)) with the stepsize h > 0 by following the
eigenvalue curves and the corresponding eigenvector curves.

3.1 Eigenvalue prediction
As in [9], for a given v e [0, 1) and a given stepsize h > 0 such that

0 < v + h < l , w e compute X{v) by using (2.5) and predict kQ(v + h) by
Hermite interpolation P{t) at {k{n), \{n), A(i/), A(i/)} (fi is the previous
step). For the case v = 0 we use the third-order Taylor expansion to predict
A0(/r). Here A(2)(0) and A(3)(0) are easily computed by differentiating (2.5).

3.2 Stepsize updating
The stepsize prediction is somewhat difficult to handle in the homotopy

method. Here, we give another method to predict the stepsize, which is
different from the method in [9]. Although the eigenvalue curves have the
order preserving property, our final purpose is to find all/some eigenvalues
at t = 1. It is not necessary to cut the stepsize by half as does the method
in [9] and spend much more computational time by using the prediction and
correction checking algorithm to follow the eigenpair curve and preserve its
order (for A and M with general structure, the prediction and correction are
always the most expensive step in the whole homotopy algorithm). Indeed,
when two curves come near at some point t € [0, 1), a jump to a neighboring
curve may occur (see Section 5 Fig. 1, 2, 3). In practice, we only perform the
checking algorithm at t = 1 to check whether multiple arrival of eigenpair
curves occur (see Section 5 for details).
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The difference between the eigenvalue curve X(t) and the Hermite interpo-
lation P{t) is ( A + ( I / - / I ) ) 2 / I 2 A ( 4 ) ( £ ) / 2 4 , where Ze[/t,u] (see [16; page 52]).
For a given upper bound of this difference, we can compute h by a standard
stepsize control technique [16, page 428] with the initial value |A(4)(0)|, and
update the approximate |A(4)(f)| by 24\X{v+ h)-P(u + h)\/{h + (t> - n)fh2

for the next step, where X(y + h) is available by the following correction
algorithm.

3.1 Correction
By using a similar method to that in [9] we can correct the predicted

eigenvalue to the desired eigenpair. Suppose that {X{v), x{v)) is an eigenpair
of the pencil A(y) — XM{v) (0 < v < 1). After the eigenvalue prediction
we have an approximate eigenvalue X0(u + h) of the pencil A(y + h) -
XM{u + h) and x{v) computed by (2.5) at t = v. In fact, x(u) satisfies
x(v)r Ex{v) = 1 and x{v)JEx(y) = 0. So if \\x{v)\\ is not too large,
then (x(v) + hx{v))TE(x(v) + hx(v)) « 1, i.e. x{v) + hx(v) is a good
approximation of the eigenvector of A{v + h)- XM(y + h). In this case, we
perform the generalised Rayleigh quotient iteration (GRQI) [14, page 317],
starting from the approximation x{v) + hx(v). If ||x(v)|| is large, then we
prefer to consider the approximation (XQ{v + h), x(v)). We first update the
eigenvector by the generalised inverse iteration [15]; secondly, we correct the
updated eigenvector by GRQI starting from the updated eigenvector.

REMARK 3.1. (1) The linear system of GRQI can be solved by the usual
sparse solver. When the eigenvalue X{v + h) is acceptable, we can use the
current L{/-factorisation of A{v + h) - X{v + h)M{v + h) and the formula
described in [11] to compute x{u + h) and X(v + h) for the starting vector
of the next step.

(2) The asymptotic rate of convergence of GRQI is cubic for a generalised
symmetric positive definite pencil A{v)-XM(y) (0 < v < 1) [14, page 317].

(3) When v = 1, convergence is no longer cubic because Af(l) = M
is positive semidefinite. But we still have quadratic convergence with the
generalised Rayleigh quotient xTMCAx/xTMCMx for a given vector x,
introduced by Geltner [6], where C is positive definite. Suppose that x is in
the range of M (i.e. Mx ± 0). If we choose C := U^' ° ) t /T > 0, where
U is unitary and satisfies UTMU = (£ Q) with F = diag(y,) > 0, then we
have the generalised Rayleigh quotient xTAx/xTMx. By Theorem 2 in [6],
GRQI converges quadratically, if x is sufficiently close to an eigenvector of
A-XM.
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Up to now, there are no effective theorems and algorithms to specify the
sign-preserving property of the eigenvalues of A - XM by congruent trans-
formations. In this section, we first show that the pencil A - XM has the
following special Kronecker structure, and then give a checking algorithm to
check the number of eigenvalues of A - XM in a prescribed interval.

THEOREM 4.1. Let A - XM be a n x n symmetric pencil as in (1.1) with
rank(Af) = n-k and yT(A)nJ/'(M) = {0}. Then A - XM is a regular
pencil and is real congruent to the pencil Ac - XMC with

and

J ,T7T?T7rV-i,..\,-i' j
(4.1)

where kx+ k2

}
(4.2)

k3 = k and 2k3 + r — n .

PROOF. Since JV(A) n JV{M) = {0} and rank(JW) = n - k, by the Fix-
Heiberger reduction algorithm [14, page 311] there exists a real nonsingular
matrix 5", such that Sj(A - XM)S} = Ax - XMX with the forms

*12
i22

sym.
21

<D

0
0
0
0

and Mx =
sym

}r
}kx+k2'
}k3

where 0 is a positive diagonal matrix, O is a nonsingular diagonal matrix
with kx positive and k2 negative diagonal entries, respectively.

0
/

0
0
0

0
0
0
0

Next, we zero out the blocks A23 Al3, Al3 and Ai2 2> An b y
row-column transformations using O and 0 as pivots, respectively. Now,
we reduce the diagonal entries of O and 0 to ±1 and preserve their signs.
Finally, transform A22 to diag{A,, ... , Xr} and perform some suitable per-
mutations; we then have a pencil Ac - XMC of the form (4.1), (4.2) which is
real congruent to A - XM.

For a given real number a e l w e denote the number of finite eigenval-
ues of A - XM which are larger and smaller than a by n{A - aM) and
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co(A — aM), respectively; the number of positive and negative eigenvalues
of a symmetric matrix A by #pos(/l) and #neg(A), respectively; and the
dimension of the nullspace of A by #n(A).

T H E O R E M 4.2. Let A - XM be the symmetric pencil as in {I. I). If A - aM
has a triangular factorisation A - aM = LaAaL^, where a € K and Aa is
diagonal, then

n(A-aM) = # pos(AJ - (fc, + *3), • (4.3)
Q)(A -aM) = # neg(AJ - {k2 + k3), (4.4)

where klt k2, and k3 are defined in (4.1) and (4.2).

PROOF. By Theorem 4.1 the pencil A - XM is real congruent to Ac - XMC .
There is a real nonsingular matrix 5 such that ST(A - XM)S = Ac - XMC .
Since A - aM = LaAj7a , we have Ac - aMc = ST{La&aL

J
a)S. By the

well-known Sylvester's inertia theorem for symmetric matrices we have the
following equalities

#pos(Aa) = #pos(/l - aM) = #pos(Ac - aMc) (4.5)

and
#neg(AQ) = #neg(^ - aM) = #neg(^c - aMc). (4.6)

The matrix

Ac - aMc = diag < A, - a , ... , Xr - a,

, 1 1 , - 1 , . . . , - 1

has the eigenvalues

I A, - a , . . . ,Xr-a,fil fi{ , n 2 , ... , f i 2 , l , . . . , 1 , - 1 , ••• , - 1 , >
^ ^ X3 k, k, >

where m = ( -« + ("2 + 4)1/2)/2 and fi2 = (-a - (a2 + 4)1 / 2)/2.
It has been shown in Theorem 4.1 that {X{, . . . , Ar} are the finite eigen-

values of A—XM and from above, fi{ has the opposite sign of n2 . It follows
from (4.5), (4.6) that

# pos(Aa) = # pos(/lc - aMc) = n(A- aM) + (k, + k3) (4.5)

and
# neg(AQ) = # neg(^c - aMc) = <o(A - aM) + {k2 + k3).
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COROLLARY 4.3. Let (a, fi) be an open interval in R. Suppose that A-aM
and A — fiM have the following triangular factorisations

A-aM = La\L
T

a, A-fiM = LpApL
T

p, (4.7)

where AQ and A* are diagonal. Then the pencil A-kM has exactly #pos(AQ)
- #pos(A») - #«(A») finite eigenvalues in (a, fi).

PROOF. It is clear that the pencil A - kM has exactly n(A - aM) -
n{A - fiM) - dimyViA - fiM) finite eigenvalues in (a, fi). From (4.3)
this quantity is equal to #pos(AQ) - #pos(AJ - #«(A«).

REMARK 4.1. (1) We frequently choose n = n*eps or y/eps, where eps is
the machine precision, as a criterion for negligibility of the diagonal entries
of Aa and A^ in the triangular factorisations (4.7).

(2) If some diagonal entries of A - aM and A - fiM in (4.7) are close to
zero, then the factors can have arbitrarily large magnitudes. Bunch and Kauf-
man [1] proposed a stable method for calculating the inertia of a symmetric
matrix H, that is, there exists a permutation n, such that nHnT = LDLT ,
where D is block diagonal with 1 by 1 and 2 by 2 blocks and L is unit lower
triangular. In practice, one can use this stable diagonal pivoting method to
modify the unstable triangular factorisations in (4.7).

(3) If A and M in Corollary 4.3 are both tridiagonal, then we can use a
Sturm sequence [14, page 131] to calculate the inertia of a symmetric tridiag-
onal matrix, which is much cheaper than the above triangular factorisation.

Now, we assume that the initial eigenpairs {di, z() for i = I, ..., n of
the pencil D - kE in (2.2) are arranged in the order <$, < • • • < Sn . As
we mentioned in the stepsize updating algorithm in Section 3, for a given
interval (a, /?) we want to check all eigenvalues in (a, 0) and locate the
lost eigenvalues by using Corollary 4.3.

Checking algorithm
Given an open interval (a, ft), where a , /? are not eigenvalues of A -
kM.
Given a number 0 < n0 < n .
Comment: In general, the final order (at t = 1) of an eigenvalue is close
to its initial order (at t = 0), while some jumps occur. If we check
some kj > /? or k} < a, we guarantee that kt > fi or ki < a for
i>j + n0 or i < j -nQ. Calculate the number of eigenvalues of A — kM
in (a, /?): r0 := #pos(AQ) - #pos(AJ as in Corollary 4.3.
Choose an index m e {1, . . . , « } (0 < m < 1) (e.g. bisect the set
{ ! , . . . ,«}) so that km e (a, fi), where {km, xm) is achieved by follow-
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ing the homotopy (2.2) using the method in Section 3 with initial vector

Continue.
For j = m + k and j = m — k,

If m̂in — J — ^max' l ^ e n f°N°w t n e homotopy curve in (2.2) until t = 1
using the method in Section 3 with initial vector (<5., z). Let (A , x ) be
the acceptable eigenpair of A - XM. If Xj e (a, /?) then r := r + 1.

Else if Xj > /? then /max := min{«, j + nQ} .
Else if Xj < a then /min := max{ 1, j - nQ} .

k := k + 1, go to continue.
Arrange all eigenvalues A, e (a, 0) in the order Xx < • • • < Xr (say!).
If r = r0 then stop.
Else comment: Multiple arrival of the same eigenpairs occurs.

For i = \, ... , r
Compute the triangular factorization A - XtM = L^LJ .

For i = I, ... , r- I
If (#pos(A,) - #pos(A;+1) - #n(Aj+i)) > 1 then use bisection tech-

nique on (A;, AJ+1) to approach the lost eigenvalues between A( and
AJ+1, and then compute the corresponding eigenvectors by generalised
inverse iteration starting from a randomly chosen vector q satisfying

(i = qTMxi+l=0.

5. Numerical results

A program based on the methods developed in the last two sections has
been implemented on a CDC Cyber 184/840 with machine precision 2~49 .
A typical example is first given to illustrate how our algorithm follows these
homotopy curves (see Tables 1, 2, 3). Then we present two tables, which
record the execution times needed to solve pencils A — XM with various di-
mensions by our algorithm and the QZ algorithm [13], respectively. Finally,
we give a short discussion about storage and parallel processing.

EXAMPLE. A and M are tridiagonal generated by a random number gen-
erating program. In addition, M is positive semidefinite. Let

A = a.

a 40 fl40 J

M =

m,

fi.40

»40 m 40
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Initial matrices D and E are taken as follows.

449

D,

'10

and E =

'10-1

where

a a•jj
j ak

ak Oil
and Et =

m, Pj

fit
fik

Pi
fi,

Subscripts j , k, I and n are denned by j = 4(i — 1) + 1, k =
4(i - 1) + 2 , / = 4(i - 1) + 3 , n = Ai and ms = ms + C, s e[j,k,l,n].
C is chosen to avoid E being singular and the initial pencil D -XE having
multiple eigenvalues. The error tolerance e in stepsize updating is given by
max(0.05, 0.05A(i/)). The approximate eigenpair (A, x) is corrected until

f o r r < 1

and

\\Ax-XMx\\ < 1 0 - 5 for / = 1

The results of the homotopy method are shown in Tables 1 and 2. Table 3
gives the eigenvalues obtained by the QZ algorithm with the error tolerance
10~10 (for eigenvalues).
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TABLE 1. The computational results by the homotopy algorithm to H{X, x, i) ,s&in (2.2).

00

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

01

2

4

3

5

8

6

9

11

10

12

7

14

13

19

15

17

16

18

21

20

24

22

23

25

26

27

28

30

29

32

31

EV (T = 0)

-.2814061774^ + 01

-.1706459761£ + 01

-.1434691579E + 01

-.1404593349£ + 01

-.1225833240£ + 01

-.1134789968E + 01

-.9179918930£ + 00

-.8954478872£ + 00

-.8511456577£ + 00

-.6299535768£+00

-.5103918388J5+00

-.4224461853£+00

-.4170917332£+00

-.4098700913£ +00

-.4005574983£+00

-.3285497166£ +00

-.3117386178£ + 00

-.1575037581£ + 00

-.8954804091£-01

-.8652378417£-01

-.5894779789E-01

.1147081411£+00

.1557098669£+00

.2590070041E+00

.3235740702£ + 00

.4143842806£ + 00

.4695831546£ + 00

.4940888909E + 00

.6486366274£ + 00

.8272829203E+00

.8471829777£+00

EV(r=l)

-.1632964183£ + 05

-.1750285450£ + 01

-.2260152378£ + 01

-.1404013320£ + 01

-.1187072310£ + 01

-.1333516093£: + 01

-.11O58165O5£ + O1

-.9154988779£ + 00

-.9328022950£ + 00

-.6380542267E + 00

-.1187072310E + 01

-.4293582916£ + 00

-.6013359554E + 00

-.2347505495£ + 00

-.4293582916£ + 00

-.3341348708£ + 00

-.3670701949£ + 00

-.3223850586f: + 00

-.5805549131E-01

-.8915593977£-01

.2072323002£ + 00

.9818751310£-01

.1135588505^ + 00

.2668755993E + 00

.3218884632£ + 00

.3978408154£ + 00

.4808380128E + 00

.7060273880£ + 00

.6670577309£ + 00

.8417961699£ + 00

.7110036092£ + 00

S

4

1

4

3

1

3

3

1

3

1

3

1

3

3

2

1

3

3

3

2

3

1

1

1

1

2

3

3

1

1

2

L

5

1

7

5

5

5

4

1

3

1

8

2

5

5

3

2

5

6

5

4

6

2

2

3

3

2

4

4

1

1

6

M

N

N

N

N

N

N

N

N

N

N

Y

Y

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

CPU

.160

.056

.186

.145

.114

.145

.141

.051

.116

.051

.185

.072

.146

.146

.102

.068

.147

.158

.145

.120

.166

.078

.070

.091

.081

.085

.129

.128

.058

.051

.151
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Table 1. (Continued)

00

32

33

34

35

36

37

38

39

40

01

35

33

34

39

37

36

38

40

1

TOTAL

EV(r = 0)

.9266450995£ + 00

.9575987247£ + 00

.1136005187£ + 01

.1167424686JJ + 01

.1318443953£ + 01

.1333273350£ + 01

.1692829722£ + 01

.2022759455£ + 01

.7243980046£ + 01

EV(r= 1)

.1077463067£ + 01

.1059138240£ + 01

.1059138240£ + 01

.1928652319£ + 01

.1501230584£ + 01

.1366191023E + 01

.1719356313JS + 01

.2127556976£ + 01

-.7887234032£ + 05

S

1

1

5

4

3

1

1

1

4

88

L

2

2

11

8

4

1

1

1

5

151

M

N

Y

N

N

N

N

N

N

N

3

CPU

.073

.072

.263

.199

.128

.053

.055

.051

.166

4.602

AVERAGE STEPS/CURVE = 2.200

AVERAGE L-SYSTEM/STEP = 1.716

CPU OF SORTING AND REMOVING = .010

CPU OF LOCATING LOST E.V. = .360

TABLE 2. The lost eigenvalues computed by the bisection method.

BIS

5

5

6

II

4

4

4

RLQI

1

1

1

EV

-.1515427871£ + 01

-.5489866188£ + 00

.9378133725£ + 00

CPU OF COMPUTING LOST FINITE E.V. = .340

NOTATIONS.

00 :The order of increasing eigenvalues at t = 0.
01 :The order of increasing eigenvalues at t = 1.

E.V. Eigenvalues.
S :The total number of steps for finding an eigenpair.
L :The total number of linear systems solved.

M Multiple arrival (same eigenpairs)
CPU Execution time.

BIS :The total number of bisections used.
II :The total number of inverse power iterations

RLQI :The total number of generalised Rayleigh quotient iterations.

In this example, we have an average of 2.2 steps for one curve and solv-
ing 1.716 linear systems for one step. Checking and locating all the lost
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TABLE 3. The

-.5917182688£ + 05

-.1515427871£ + 01

-.11O58165O5£ + O1

-.6013359554£ + 00

-.3341348708E + 00

.5805549131£-01

.2668755993£ + 00

.6670577309£ + 00

.9378133725E + 00

.1501230584£ + 01

eigenvalues of A — XM

-.1238075896£ + 05

-.140401332OE + 01

-.932802295OiEt + 00

-.5489866188£ + OO

-.3223850586£ + 00

.9818751310£-01

.3218884632£ + OO

.7O6O27388O£ + 00

.1059138240£ + 01

.1719356313£ + Ol

computed by the CZ-algorithm.

-.116O152379£ + 01

-.1333516093£ + 01

-.9154988779£ + 00

-.4293582916£ + 00

-.2347505495£ + 00

.1135588404£ + 00

.3978408154£ + 00

.7110036092£ + 00

.1077463067£ + 01

.1928652319£ + 01

-.1750285450£ + 01

-.1187072310£ + 01

-.6380542267£ + 00

-.3670701949£ + 00

-.8915593977£-01

.2072323002£ + 00

.480838O128£ + 0O

.8417961699£ + 00

.1366191023£ + 01

.2127556976£ + 01

eigenvalues requires 0.36 sec. This is about one-twelfth of the total execu-
tion time of following all homotopy curves. Figures 1, 2 and 3 illustrate, for
homotopy curves 7-11, 9-23 and 35-38, that order preserving is not recom-
mended, because there are many places in which d(t) is very small (for some
0 < / < 1) and consequently, a large number of steps are needed to follow
these places if order preserving is required. In contrast to order preserving,
our algorithm will let the stepsize pass over the interval in which d(t) is very
small. Figures 1, 2 and 3 show how this idea is carried out. From Table
1 and Figures 1, 2, 3, we see that homotopy curves 8, 10, 37 and 38 lead,
respectively, to curves 10, 11, 35 and 37 and the corresponding eigenpairs are
obtained by solving only one linear system. Curves 22 and 23 lead, respec-
tively, to curves 21 and 22, and the eigenpairs are obtained one step which
involves solving two linear systems.

That some eigenvalues may be lost is a disadvantage of not preserving
the order. In this example we lose three eigenvalues. Fortunately, from
Tables 1 and 2, we see that almost the same execution time of following
one homotopy curve is needed to compute one lost eigenvalue by using the
checking algorithm. In addition, numerical experience shows that the ratio
of the number of lost eigenvalues and the dimension for tridiagonal and five-
diagonal matrices is in the range [0, 0.1]. This shows that the bisection
method applied to inverse iteration and GRQI is a good method to compute
the lost eigenvalues, by using the computed eigenvalues as lower and upper
bounds. Tables 1 and 3 show that the eigenvalues obtained by our method
and by the QZ algorithm coincide up to about 10 significant digits. In
general, the order of the eigenvalues at t = 0 and t = 1 for each homotopy
curve may not be the same, but they are very close. This fact is very useful
when we want to compute a specified number of eigenvalues in an interval
(a , /?). We introduce briefly this procedure, here. We first determine the
number of eigenvalues in (a, /?) and their orders, r, to r2, by the checking
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FIGURE 2. Curves 19 to 23.
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FIGURE 3. Curves 35 to 38.
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algorithm, and then follow homotopy curves whose initial orders are close to
the range r, to r2 . Finally, we locate the lost eigenvalues by the checking
algorithm and compute them by the bisection method.

Tables 4 and 5 record, respectively, execution times spent by our algorithm
and QZ algorithm [13] to find all eigenpairs for tndiagonal and five-diagonal
pencils. A and M are generated in the same way as the last example, but
A, here, is diagonally dominant. The other parameters are the same as in
the example. These two tables show that as the dimension gets larger, the
homotopy algorithm gets better.

TABLE 4. The ratio of execution times between
the homotopy method and the QZ-algorithm.

N

30

60

120

180

220

IE

2

3

3

4

4

IBS

3

4

4

4

4

CPU (HM)

2.215

10.125

50.984

151.918

252.716

CPU (QZ)

2.300

17.290

138.420

448.383

*******

RATIO(QZ/HM)

1.04

1.71

2.71

2.95

****
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NOTATIONS.

N : The dimension.
IE : The total number of infinite eigenvalues.

IBS : The dimension of initial submatrix.
CPU(HM) : Execution time spent by homotopy method.
CPU(QZ) : Execution time spent by QZ algorithm.

RATIO(HM/QZ) : Ratio of execution times.

TABLE 5. The ratio of execution times between the
homotopy method and the QZ-algorithm.

N

60

120

180

220

IE

3

4

4

4

IBS

4

4

4

4

CPU (HM)

14.225

77.652

210.418

351.041

CPU (QZ)

18.232

138.218

447.300

*******

RATIO(QZ/HM)

1.28

1.78

2.13

****

Since the storage for the QZ algorithm is at least 3M , the case n > 180
can not be dealt with on our machine. But for our algorithm, 2n2+O(n) stor-
age is needed. Moreover, only n2 + O{n) storage is necessary if the computed
eigenvectors are stored in the second storage. Essentially, the complexity of
following one homotopy curve is O(n). Hence the complexity of finding all
eigenpairs of a pencil by our algorithm is O(n ) . Because checking and bisec-
tion procedures can also be performed in parallel processing, the complexity
becomes O(n) if there are n parallel processors.
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