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Abstract

Lapkova [‘On the average number of divisors of reducible quadratic polynomials’, J. Number Theory 180
(2017), 710–729] uses a Tauberian theorem to derive an asymptotic formula for the divisor sum∑

n≤x d(n(n + v)) where v is a fixed integer and d(n) denotes the number of divisors of n. We reprove
this result with additional terms in the asymptotic formula, by investigating the relationship between this
divisor sum and the well-known sum

∑
n≤x d(n)d(n + v).
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1. Introduction

The problem of estimating the average number of divisors of a polynomial was first
investigated in the middle of the last century. For example, Erdös [5] proved that for
every irreducible polynomial P(n) with integer coefficients∑

n≤x

d(P(n)) � x log x,

where d(n) counts positive divisors of n. The exact asymptotic formula for the sum∑
n≤x d(P(n)) where P(n) is a polynomial of degree greater than two is still unknown

and seems to be a very difficult problem. However, the case of irreducible quadratic
polynomials of degree two has been thoroughly investigated and it is known that∑

n≤x

d(an2 + bn + c) ∼ λx log x (1.1)

for any irreducible polynomial ax2 + bx + c with integer coefficients, where λ depends
on a, b, c. This is an unpublished result (mentioned by Bellman in [1]) due to Bellman
and Shapiro, but the first published proof was given by Scourfield in [16]. For the
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case a = 1, b = 0, the precise dependence of λ on a, b, c was described by Hooley
in [8], and for other cases in the series of papers [12–14] by McKee. In general, λ
depends on the class number of the quadratic field defined by P, and hence does not
admit a completely elementary description.

Bellman [1] also mentioned that there is an unpublished result due to Bellman
and Shapiro that (1.1) holds with log x replaced by log2 x for reducible quadratic
polynomials. The first published proof for a = 1, b = 0 and c = −1 was given by
the first author [4], who proved that

∑
n≤x d(n2 − 1) ∼ (6/π2)x log2 x. The approach is

essentially based on the precise description of the function ρa,b,c(n) (in the case where
a = 1, b = 0 and c = −1) which denotes the number of solutions of the congruence
ax2 + bx + c ≡ 0 mod n in Zn, and the fact, inspired by the approach suggested by
Bellman in [1], that the left-hand side of (1.1) can be written as

2x
∑
n≤x

ρa,b,c(n)
n

+ O
(∑

n≤x

ρa,b,c(n)
)
.

Very recently, this approach was extended by Lapkova in [11] for the polynomial
P(x) = (x − b)(x − c) with b < c. Since in this case the polynomial is reducible over Z,
it is reducible modulo p for every p and so ρa,b,c(pn) = 2 for almost all p. As shown by
Lapkova, in this case the constant λ in (1.1) does not depend on the coefficients of the
given polynomial, and ∑

n≤x

d((n − b)(n − c)) ∼
6
π2 x log2 x. (1.2)

Moreover, by using a different method, Lapkova extended the recent result of Cipu
and Trudgian [2] concerning the case −b = c = 1 and gave the explicit upper bound
for the left-hand side of (1.2) with −b = c = 4s, s ≥ 0, where the fastest growing term
is exactly (6/π2)x log2 x and agrees with (1.2). The explicit upper bounds for these
kinds of sums with b = −c are important in searching for D(c2)-m-tuples, namely sets
of positive integers {a1, . . . , am} such that aia j + c2 is a perfect square for all i, j with
1 ≤ i < j ≤ m.

In this paper, we will derive a more precise asymptotic formula for the sum∑
n≤x d((n − b)(n − c)) and prove the following result. We use the standard notation,

that is, γ denotes the Euler–Mascheroni constant, ζ(s) denotes the Riemann zeta-
function, Λ = Λ1 and µ respectively denote the classical von Mangoldt and Möbius
multiplicative functions and

Λk(n) =
∑
d|n

µ(d)
(

log
n
d

)k
.

Theorem 1.1. For every positive integer v and every ε > 0,∑
n≤x

d(n(n + v)) =
6
π2 x(log2 x + A1(v) log x + A2(v)) + O(x2/3+ε)

where
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A1(v) = 4γ − 2 − 4
ζ′

ζ
(2) − 2

∑
e|v

Λ(e)
e

A2(v) =

(
2γ − 1 − 2

ζ′

ζ
(2)

)2
+ 1 − 4

ζ′′

ζ
(2) + 4

(
ζ′

ζ
(2)

)2

−

(
4γ − 2 − 4

ζ′

ζ
(2)

)∑
e|v

Λ(e)
e

+ 2
∑
e|v

Λ(e) log e
e

+
∑
e|v

Λ2(e)
e

.

To prove Theorem 1.1, we shall follow Hooley’s suggestion (see [8]) to find the
relation between the sums

∑
n≤x d(n(n + v)) and

∑
n≤x d(n)d(n + v). The latter sum is

well investigated and the problem of finding its asymptotic behaviour is known as the
binary additive divisor problem. It was first studied by Ingham in relation to the fourth
moment of the Riemann zeta function in [9]. Subsequently, in [10], Ingham proved
that ∑

n≤x

d(n)d(n + v) =
6
π2σ−1(v)x log2 x + O(x log x),

where σα(n) =
∑

d|n dα. Ingham’s result was improved by Estermann [6], who
showed that∑

n≤x

d(n)d(n + v) =
6
π2σ−1(v)x(log2 x + c1(v) log x + c2(v)) + O(x11/12 log3 x), (1.3)

where

c1(v) = 4γ − 2 − 4
ζ′

ζ
(2) − 4

σ(1)
−1

σ−1
(v)

c2(v) =

(
2γ − 1 − 2

ζ′

ζ
(2)

)2
+ 1 − 4

ζ′′

ζ
(2) + 4

(
ζ′

ζ
(2)

)2

− 2
(
4γ − 2 − 4

ζ′

ζ
(2)

)σ(1)
−1

σ−1
(v) + 4

σ(2)
−1

σ−1
(v)

and σ(k)
α (n) =

∑
d|n dα logk d. The best estimate for the error term in (1.3) is due to

Deshouillers and Iwaniec [3], who showed that the error term is O(x2/3+ε) for every
ε > 0. This error term, through the method of this paper, appears in Theorem 1.1,
because the proof of this theorem relies essentially on the following crucial lemma.

Lemma 1.2. For every v > 0,∑
n≤x

d(n)d(n + v) =
∑
e|v

∑
n≤x/e

d(n(n + v/e)) (1.4)

and, in consequence,∑
n≤x

d(n(n + v)) =
∑
e|v

µ(e)
∑

n≤x/e

d(n)d(n + v/e). (1.5)
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Remark 1.3. Thus, as noted, our proof relies on results from the binary additive divisor
problem. Similar problems about the self-correlations of arithmetic functions (such as
the left-hand side of (1.4)) can be very difficult. For the Möbius function, Chowla
conjectured

∑
n≤x µ(n + a1) · · · µ(n + at) = o(x). The case t = 1 is already equivalent

to the Prime Number Theorem. Larger t values are related to the recent Möbius
disjointness conjecture of Sarnak. For the von Mangoldt function, the asymptotic
formula

∑
n≤x Λ(n)Λ(n + 2) ∼ Ax is essentially the twin prime conjecture.

Remark 1.4. There is no serious obstacle to make the implied constant in (1.3) explicit.
One can easily obtain the following explicit upper bound∑

n≤x

d(n(n + v)) ≤
6
π2 x(log2 x + A1(v) log x + A2(v)) + A3(v)x11/12 log3 x,

where the constants A1 and A2 are defined as before and the constant A3 can be
explicitly computed from Estermann’s proof of (1.3). The above inequality improves
known upper bounds in the sense that it holds for general polynomials and, what
is more important, the first three leading terms agree with our asymptotic formula
in Theorem 1.1, whereas known results (see [2, Lemma 5.2], [11, Theorem 3 and
Corollary 4]) give an explicit upper bound where only the first leading term agrees
with the asymptotic formula.

2. The proof of Lemma 1.2

First, notice that for every multiplicative function f (n) and for all integers a, b,

f (a) f (b) = f (gcd(a, b)) f (lcm(a, b)).

To see this, it suffices to consider the case when a = pα, b = pβ and then use the fact
that {min(α, β),max(α, β)} = {α, β}.

Now let us assume that f (n) is a multiplicative function such that, for every prime
p and every positive integer n,

f (pn+1) = f (p) f (pn) − f (pn−1). (2.1)

We now prove by induction on α that for such a multiplicative function,

β∑
m=0

f (pα+β−2m) = f (pα) f (pβ) (2.2)

for all integers α, β with 0 ≤ β ≤ α. If α = 0, then β = 0 and (2.2) holds trivially. If
α = 1, then β = 0 or β = 1. In the former case, (2.2) holds trivially, whereas the latter
case needs (2.1) with n = 2.

Now, let us assume that (2.2) holds for α ≤ A and all nonnegative integers β ≤ α,
and consider α = A + 1. If β ≤ A − 1, then our assertion is implied by using (2.1)
twice along with our inductive hypothesis. So it remains to consider the cases (α, β) =

(A + 1, A) and (α, β) = (A + 1, A + 1). In the first case, it suffices to write the left-hand
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side of (2.2) as f (p) +
∑A−1

m=0 f (p2A+1−2m) and apply (2.1). In the second case, we firstly
apply (2.1) for n = 1 to write the left-hand side of (2.2) as f (p)2 +

∑A−1
m=0 f (p2A+2−2m),

and then apply (2.1) again for n = 2A + 1.
Next, let us observe that for every multiplicative function satisfying (2.1),

f (a) f (b) =
∑

e|gcd(a,b)

f
(ab

e2

)
.

Indeed, the above equation holds trivially when gcd(a, b) = 1, so let us assume that
gcd(a, b) =

∏k
j=1 pα j

j for some positive integers α j, and ab = q
∏k

j=1 pβ j

j for some
β j ≥ 2α j and some integer q coprime with the p j. Then (2.2) gives

∑
e| gcd(a,b)

f
(ab

e2

)
= f (q)

∑
(a1,...,ak)∈Z

0≤a j≤α j

k∏
j=1

f (pβ j−2a j

j ) = f (q)
k∏

j=1

α j∑
a j=0

f (pβ j−2a j

j )

= f (q)
k∏

j=1

f (pα j

j ) f (pβ j−α j

j ) = f (gcd(a, b)) f (lcm(a, b))

= f (a) f (b).

Since the multiplicative function d(n) satisfies (2.1), one obtains the following
lemma.

Lemma 2.1. Let v be a positive integer. Then

d(n)d(n + v) =
∑

e| gcd(n,v)

d
(n(n + v)

e2

)
.

Now we are ready to prove (1.4). Lemma 2.1 implies (1.4), since∑
f |v

∑
n≤ x

f

d
(
n
(
n +

v
f

))
=

∑
f |v

∑
n≤x
f |n

d
(n(n + v)

f 2

)

=
∑
e|v

∑
n≤x

gcd(n,v)=e

∑
f |e

d
(n(n + v)

f 2

)
=

∑
e|v

∑
n≤x

gcd(n,v)=e

d(n)d(n + v)

=
∑
n≤x

d(n)d(n + v).
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On the other hand, one can easily deduce from (1.4) that∑
e|v

µ(e)
∑

n≤x/e

d(n)d(n + v/e) =
∑
e|v

µ(e)
∑
f |v/e

∑
n≤x/e f

d(n(n + v/e f ))

=
∑
e′ |v

∑
n≤x/e′

d(n(n + v/e′))
∑
e|e′

µ(e)

=
∑
n≤x

d(n(n + v)).

Remark 2.2. The crucial property of a multiplicative function f (n) for the above
reasoning is that it satisfies (2.1). In the literature there are many well-known
multiplicative functions satisfying the similar identity

f (pn+1) = f (p) f (pn) − g(p) f (pn−1) (2.3)

for a suitable completely multiplicative function g. Obviously, from our point of view,
the case g ≡ 0 is not interesting as it implies that f is completely multiplicative, so
let us assume that g . 0. Then, for example, σα satisfies the above identity with
g(p) = pα. Moreover, it was noticed by Ramanujan, and proved by Mordell [15], that
Ramanujan’s τ function satisfies this identity with g(p) = p11, and more generally,
(2.3) is true for normalised eigenforms of weight 2k with g(p) = p2k−1.

Using a similar argument as above, one can easily show that for every multiplicative
function f (n) satisfying (2.3),∑

n≤x

f (n) f (n + v) =
∑
e|v

g(e)
∑

n≤x/e

f (n(n + v/e))

and, in consequence, since every nonzero completely multiplicative function g is
inverse to µg with respect to the Dirichlet convolution,∑

n≤x

f (n(n + v)) =
∑
e|v

µ(e)g(e)
∑

n≤x/e

f (n) f (n + v/e).

Hence, the asymptotic behaviour of
∑

n≤x f (n(n + v)) can be deduced from the
behaviour of

∑
n≤x f (n) f (n + v) and vice-versa. For example, one can easily deduce

from [7] that for α > 0,∑
n≤x

σα(n(n + v)) =
1

2α + 1
ζ(α + 1)2

ζ(2α + 2)
x2α+1

∑
d|v

d−2α−1
∑
e|d

µ(e)eα + O(xω logc x),

where ω = 2α + 1 −min(α, 1) and c =


0, α > 1,
1, α < 1,
2, α = 1.
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3. The proof of Theorem 1.1

First let us note that ∑
e|v

µ(e)
e
σ(k)
−1

(v
e

)
=

∑
d|v

Λk(d)
d

(3.1)

and
n∑

k=0

(
n
k

)∑
e|v

µ(e)
e
σ(k)
−1

(v
e

)
(log e)n−k =

∑
d|v

(log d)n

d

∑
e|d

µ(e) =

1, n = 0,
0, n ≥ 1.

(3.2)

Note that (1.3) together with (1.5) and (3.2) for n = 0 gives∑
n≤x

d(n(n + v)) ∼
6
π2

∑
e|v

µ(e)σ−1

(v
e

) x
e

log2 x =
6
π2 x log2 x.

Next, combining (1.3) with (1.5) yields

A1(v) =
6
π2

∑
e|v

µ(e)
e
σ−1

(v
e

)(
c1

(v
e

)
− 2 log e

)
=

6
π2

(
4γ − 2 − 4

ζ′

ζ
(2) − 4

∑
e|v

µ(e)
e
σ(1)
−1

(v
e

)
− 2

∑
e|v

µ(e)
e
σ−1

(v
e

)
log e

)
.

Thus, (3.1) and (3.2) for n = 1 give

A1(v) =
6
π2

(
4γ − 2 − 4

ζ′

ζ
(2) − 2

∑
e|v

µ(e)
e
σ(1)
−1

(v
e

))
=

6
π2

(
4γ − 2 − 4

ζ′

ζ
(2) − 2

∑
e|v

Λ(e)
e

)
.

Similarly, one can compute A2(v). First let us note that

A2(v) =
6
π2

∑
e|v

µ(e)
e
σ−1

(v
e

)(
log2 e − c1

(v
e

)
log e + c2

(v
e

))
=

6
π2

((
2γ − 1 − 2

ζ′

ζ
(2)

)2
+ 1 − 4

ζ′′

ζ
(2) + 4

(
ζ′

ζ
(2)

)2

+
∑
e|v

µ(e)
e
σ−1

(v
e

)
log2 e + 4

∑
e|v

µ(e)
e
σ(1)
−1

(v
e

)
log e + 4

∑
e|v

µ(e)
e
σ(2)
−1

(v
e

)
−

(
4γ − 2 − 4

ζ′

ζ
(2)

)∑
e|v

µ(e)
e
σ−1

(v
e

)
log e

− 2
(
4γ − 2 − 4

ζ′

ζ
(2)

)∑
e|v

µ(e)
e
σ(1)
−1

(v
e

))
.
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Then, as in the case of A1(v), we see that the last two summands give

−

(
4γ − 2 − 4

ζ′

ζ
(2)

)∑
e|v

Λ(e)
e

.

Finally, (3.2) for n = 2 together with (3.1) and the fact that∑
e|v

µ(e)
e
σ−1

(v
e

)
log2 e +

∑
e|v

µ(e)
e
σ(1)
−1

(v
e

)
log e = −

∑
e|v

Λ(e) log e
e

completes the proof.
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