ON THE PROBLEM OF R. DE VORE

BY
GEZA FREUD

I. Introduction. Let $f \in L_{p}(1 \leq p<\infty)$ be 2π-periodic,

$$
\begin{equation*}
\left\|\Delta_{t}^{r} f\right\|_{p}=\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{j=0}^{r}(-1)^{j}\binom{r}{j} f(x+j t)\right|^{p} d x\right]^{1 / p} \tag{1}
\end{equation*}
$$

and let us consider the r th order moduli of continuity of f

$$
\begin{equation*}
\omega_{r}\left(L_{p} ; f ; h\right)=\sup _{0 \leq t \leq h}\left\|\Delta_{t}^{r} f\right\|_{p} \tag{2}
\end{equation*}
$$

R. de Vore ${ }^{1}$ stated the following conjectures:
(a) Let $\eta_{v} \rightarrow 0$ decreasingly,

$$
\begin{equation*}
1>\eta_{v+1} / \eta_{v}>\theta_{1}>0 \quad(v=1,2, \ldots) \tag{3}
\end{equation*}
$$

and for some $\alpha<2$ let

$$
\begin{equation*}
\left\|\Delta_{\eta}^{2} f\right\|_{p}=\mathcal{O}\left(\eta^{\alpha}\right) \quad\left(\eta \in\left\{\eta_{v}\right\}\right) \tag{4}
\end{equation*}
$$

then for every $h \geq 0$

$$
\begin{equation*}
\omega_{2}\left(L_{p} ; f ; h\right)=\mathcal{O}\left(h^{\alpha}\right) \tag{5}
\end{equation*}
$$

(b) If for the sequence $\left\{\eta_{v}\right\}$ the condition (3) does not hold for at least one $\theta_{1}>0$ then there exists an $f \in L_{p}$ for which (4) is valid but (5) is violated.
R. de Vore himself settled problems (a) and (b) for the limiting case $p \rightarrow \infty$, i.e. for the space C.

In the present note we prove conjecture (a) for $p=2$ and conjecture (b) for all $1 \leq p \leq \infty$, in both cases also for higher order moduli of continuity.

II. Proof of conjecture (a) for $p=2$.

Lemma 1. Let $\tau(x)=x$ for $0 \leq x \leq 1$ and $\tau(x)=1$ for $x>1$. Let further $f(x) \sim a_{0} / 2+\sum\left(a_{k} \cos k x+b_{k} \sin k x\right)$
then

$$
\begin{equation*}
c_{1}(r)\left[\omega_{r}\left(L_{2} ; f ; h\right)\right]^{2} \leq \sum_{k=1}^{\infty}[\tau(k h)]^{2 r}\left(a_{k}^{2}+b_{k}^{2}\right) \stackrel{\text { def }}{\equiv} \phi_{2 r}(f ; h) \leq c_{2}(r)\left[\omega_{r}\left(L_{2} ; f ; h\right)\right]^{2} \tag{6}
\end{equation*}
$$

Lemma 1 was proved in our paper [1].

[^0]Lemma 2. We have

$$
\begin{equation*}
\left[\left\|\Delta_{t}^{r} f\right\|_{2}\right]^{2} \geq 2^{2 r-1} \pi^{-2 r} \sum_{k \leq \pi / t}\left(a_{k}^{2}+b_{k}^{2}\right)(k t)^{2 r} \tag{7}
\end{equation*}
$$

Proof. We refer to [1] for the relation

$$
\left\|\Delta_{t}^{r} f\right\|^{2}=2^{2 r-1} \sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right) \sin ^{2 r} k t / 2
$$

From this we obtain (7) by taking $\sin u>2 u / \pi(0 \leq u \leq \pi / 2)$ in consideration.
Lemma 3. We have for every $f \in L_{2}$ and all natural integers $\rho<r$

$$
\begin{align*}
& c_{3}(r, \rho) h^{2 \rho} \int_{h}^{\infty} u^{-2 \rho-1}\left[\omega_{r}\left(L_{2} ; f ; u\right)\right]^{2} d u \leq\left[\omega_{\rho}\left(L_{2} ; f ; h\right)\right]^{2} \leq \tag{8}\\
& \leq c_{4}(r, \rho) h^{2 \rho} \int_{h}^{\infty} u^{-2 \rho-1}\left[\omega_{r}\left(L_{2} ; f ; u\right)\right]^{2} d u \quad(h>0)
\end{align*}
$$

Lemma 3 was proved under the heading "Theorem 3" in our paper [1].
Lemma 4. Let $\left\{t_{v}\right\}$ be a sequence of positive numbers satisfying

$$
\begin{equation*}
1>t_{v+1} / t_{v}>\theta_{1}>0 \quad(v=1,2, \ldots) \tag{9}
\end{equation*}
$$

then for every natural r and every $f \in L_{2}$ we have

$$
\begin{equation*}
\left[\omega_{r}\left(L_{2} ; f ; t_{1}\right)\right]^{2} \leq c_{5}\left(r, \theta_{1}\right) \sum_{v=1}^{\infty}\left\|\Delta_{t v}^{r} f\right\|_{2}^{2} \tag{10}
\end{equation*}
$$

Proof. By (7) we have

$$
\begin{equation*}
\sum_{v=1}^{\infty}\left\|\Delta_{t_{v}}^{r} f\right\|_{2}^{2} \geq c_{6}(r) \sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right) k^{2 r} \sum_{k t_{v} \leq \pi} t_{v}^{2 r} . \tag{11}
\end{equation*}
$$

For $k t_{1} \leq \pi$ we have clearly

$$
k^{2 r} \sum_{k t_{v} \leq \pi} t_{v}^{2 r}>\left(k t_{1}\right)^{2 r} \geq\left[\tau\left(k t_{1}\right)\right]^{2 r} \quad\left(k t_{1} \leq \pi\right)
$$

In the case $k t_{1}>\pi$ there exists, as a consequence of (9), an index μ for which $\pi>k t_{\mu} \geq \theta_{1} \pi$. Consequently

$$
k^{2 r} \sum_{k t_{v} \leq \pi} t_{v}^{2 r}>k^{2 r} t_{\mu}^{2 r}>\left(\theta_{1} \pi\right)^{2 r} \geq\left(\theta_{1} \pi\right)^{2 r}\left[\tau\left(k t_{1}\right)\right]^{2 r}
$$

(We used here that $\tau\left(k t_{1}\right)=1$). Combining both cases

$$
\begin{equation*}
k^{2 r} \sum_{k t_{v} \leq \pi} t_{v}^{2 r}>c_{7}\left(r, \theta_{1}\right)\left[\tau\left(k t_{1}\right)\right]^{2 r} . \tag{12}
\end{equation*}
$$

We obtain (10) from (11), (12) and the first half of (0), Q.E.D.
Theorem 1. Let $\psi(\delta)$ be a nondecreasing function. For proper choices of $\theta_{2}>1$, $\theta_{3}>1$ let

$$
\begin{equation*}
\theta_{2} \psi(h) \leq \psi(2 h) \leq \theta_{3} \psi(h) \quad(h>0) \tag{13}
\end{equation*}
$$

and for an $f \in L_{2}$ let

$$
\begin{equation*}
\left\|\Delta_{\eta}^{r} f\right\|_{2} \leq \psi(\eta) \quad\left(\eta \in\left\{\eta_{v}\right\}\right) \tag{14}
\end{equation*}
$$

where $\left\{\eta_{v}\right\}$ is a positive nullsequence satisfying (3) then

$$
\begin{equation*}
\omega_{r}\left(L_{2} ; f ; h\right)<c_{8}\left(\theta_{1}, \theta_{2}, \theta_{3}, r\right) \psi(h) \quad\left(0<h \leq \delta_{1}\right) \tag{15}
\end{equation*}
$$

and for every $\rho<r$

$$
\begin{equation*}
\omega_{\rho}\left(L_{2} ; f ; h\right) \leq c_{9}\left(\theta_{1}, \theta_{2}, \theta_{3}, r, \rho\right) \cdot\left\{h^{2 \rho} \int_{h}^{\infty} u^{-2 \rho-1} \psi^{2}(u) d u\right\}^{1 / 2} \tag{16}
\end{equation*}
$$

Remark. In particular, if

$$
\left\|\Delta_{\eta}^{r} f\right\|_{2}=\mathcal{O}\left(\eta^{\alpha}\right) \quad\left(\eta \in\left\{\eta_{v}\right\}\right)
$$

then we have for every $\alpha<\rho \leq r$

$$
\omega_{\rho}\left(L_{2} ; f ; h\right)=\mathcal{O}\left(h^{\alpha}\right)
$$

This statement implies the case $p=2$ of conjecture (a).
Proof of Theorem 1. First we construct a suitable subsequence $\left\{n_{m}^{*}\right\} \subset\left\{\eta_{v}\right\}$. Let $\eta_{1}^{*}=\eta_{1}$. After η_{m}^{*} is constructed, let $\eta_{m+1}^{*}=\eta_{s}$ be the greatest η satisfying $\eta_{s}<\theta_{1} \eta_{m}^{*}$. Then clearly $\eta_{s-1} / \eta_{m}^{*}>\theta_{1}$ so that

$$
\begin{equation*}
1>\theta_{1}>\eta_{m+1}^{*} / \eta_{m}^{*}=\eta_{s} / \eta_{s-1} \cdot \eta_{s-1} / \eta_{m}^{*}>\theta_{1}^{2} \tag{17}
\end{equation*}
$$

We apply now Lemma 3 with $t_{v}=\eta_{n-1+v}^{*}(\nu=1,2, \ldots)$ and consider that $\left\{\eta_{m}^{*}\right\} \subset\left\{\eta_{v}\right\}$ so that by (14)

We obtain

$$
\left\|\Delta_{\eta^{*}}^{r} f\right\| \leq \psi\left(\eta^{*}\right) \quad\left(\eta^{*} \in\left\{\eta_{m}^{*}\right\}\right)
$$

$$
\begin{equation*}
\left[\omega_{r}\left(L_{2} ; f ; \eta_{n}^{*}\right)\right]^{2} \leq c_{3}\left(r, \theta_{1}^{2}\right) \sum_{m=n}^{\infty} \psi^{2}\left(\eta_{m}^{*}\right)=c_{3}\left(r, \theta_{1}^{2}\right)\left\{\psi^{2}\left(\eta_{n}^{*}\right)+\sum_{k=0}^{\infty} \sigma_{k}\right\} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{k}=\sum_{2^{-k-1} \eta_{n}^{*} \leq \eta_{m}^{*}<2^{-k} \eta_{n}^{*}} \psi^{2}\left(\eta_{m}^{*}\right) \tag{19}
\end{equation*}
$$

As a consequence of (3), the number of terms to which the sum (19) is extended does not exceed $-\log _{\theta_{1}} 2+1=c_{7}\left(\theta_{1}\right)$ so that

$$
\begin{equation*}
\sigma_{k} \leq c_{10}\left(\theta_{1}\right) \psi^{2}\left(2^{-k} \eta_{n}^{*}\right) \leq c_{10}\left(\theta_{1}\right) \theta_{2}^{-2 k} \psi^{2}\left(\eta_{n}^{*}\right) \tag{20}
\end{equation*}
$$

Here we made use of the facts that $\psi(\Delta)$ is nondecreasing and satisfies (13). We obtain from (18) and (20)

$$
\begin{equation*}
\omega_{r}\left(L_{2} ; f ; \eta_{n}^{*}\right) \leq c_{11}\left(r, \theta_{1}, \theta_{2}\right) \psi\left(\eta_{n}^{*}\right) . \tag{21}
\end{equation*}
$$

For an arbitrary $0<h \leq \eta_{1}^{*}$ let $\eta_{j+1}^{*} \leq h<\eta_{j}^{*}$ then by monotonicity of ω_{r}

$$
\begin{equation*}
\omega_{r}\left(L_{2} ; f ; h\right) \leq \omega_{r}\left(L_{2} ; f ; \eta_{j}^{*}\right) \leq c_{11}\left(r, \theta_{1}, \theta_{2}\right) \psi\left(\eta_{j}^{*}\right) . \tag{22}
\end{equation*}
$$

We fix a sufficiently great integer q so that $2^{-q}<\theta_{1}^{2}$. We obtain from (17)

$$
h / \eta_{j}^{*} \geq \eta_{j+1}^{*} / \eta_{j}^{*} \geq \theta_{1}^{2}>2^{-q}
$$

and from (13) follows, since $\psi(\delta)$ is nondecreasing,

$$
\begin{equation*}
\psi\left(\eta_{j}^{*}\right) \leq \theta_{3}^{q} \psi\left(2^{-q} \eta_{j}^{*}\right) \leq \theta_{3}{ }^{q} \psi(h) . \tag{23}
\end{equation*}
$$

From (22) and (23) we conclude that (15) is valid. We obtain (16) by combining (15) with Lemma 3. This ends our proof.

III. Proof of conjecture (b)

Lemma 5. Let $f_{k}(x)=\sin k x$ then we have

$$
\omega_{r}\left(L_{p} ; f_{k} ; h\right)= \begin{cases}2^{r} A_{p}\left(\sin \frac{k h}{2}\right)^{r} & (0 \leq h \leq \pi / k) \tag{24}\\ 2^{r} A_{p} & (h \geq \pi / k)\end{cases}
$$

where

$$
\begin{equation*}
A_{p}=\left\|f_{1}\right\|_{p} \tag{25}
\end{equation*}
$$

Proof. Lemma 5 is a trivial consequence of the relation

$$
\Delta_{t}^{r} f_{k}\left(x-\frac{r t}{2}\right)=2^{r} \sin \left(k x-r \frac{\pi}{2}\right) \sin ^{r} \frac{k t}{2}
$$

Let us observe that A_{p} is increasing, so that

$$
\begin{equation*}
\frac{2}{\pi}=A_{1} \leq A_{p} \leq A_{\infty}=1 \tag{26}
\end{equation*}
$$

Let r be an arbitrary integer and let $0<s<r$. We consider a system of nonoverlapping open intervals $\left(x_{v}, X_{v}\right)$ in $(0,1)$ and we assume that

$$
\begin{equation*}
\left(X_{v} / x_{v}\right)^{(r-s)^{s} / r}>4^{v} \quad(v=1,2, \ldots) \tag{27}
\end{equation*}
$$

Finally, let us consider the function

$$
\begin{equation*}
g(x)=\sum_{v=1}^{\infty} 2^{-v-1-r} X_{v}^{s} \sin \left[X_{v}^{-\alpha} x_{v}^{-1+\alpha}\right] x \tag{28}
\end{equation*}
$$

where $\left[X_{v}^{-\alpha} x_{v}^{-1+\alpha}\right] \geq 1$ is the integer part of $X_{v}^{-\alpha} x_{v}^{-1+\alpha}$ and $\alpha=s / r$.
Lemma 6. For every $1 \leq p \leq \infty$ and for every $h>0$ satisfying

$$
\begin{equation*}
h \notin\left(x_{v}, X_{v}\right) \quad(v=1,2, \ldots) \tag{29}
\end{equation*}
$$

we have for the function g defined as above

$$
\begin{equation*}
\omega_{r}\left(L_{p} ; g ; h\right) \leq h^{s} \tag{30}
\end{equation*}
$$

but we have

$$
\begin{equation*}
\varlimsup_{h \rightarrow 0} h^{-s} \omega_{r}\left(L_{p} ; g ; h\right)=\infty \tag{31}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
g_{h}(x)=\sum_{x_{v}>h} 2^{-v-1-r} X_{v}^{s} \sin \left[X_{v}^{-\alpha} x_{v}^{-1+\alpha}\right] x \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{h}(x)=\sum_{X_{v}<h} 2^{-v-1-r} X_{v}^{s} \sin \left[X_{v}^{-\alpha} x_{v}^{-1+\alpha}\right] x . \tag{33}
\end{equation*}
$$

If $h \leq x_{v}$ then a fortiori $h<X_{v}^{\alpha} x_{v}^{1-\alpha}$ so that by Lemma 5 using the fact that $\alpha=s / r$

$$
\begin{align*}
\omega_{r}\left(L_{p} ; g_{h} ; h\right) & \leq \sum_{x_{v} \geq h} 2^{-v-1-r} X_{v}^{s} \cdot 2^{r} A_{p} \sin ^{r} \frac{1}{2} \frac{h}{X_{v}^{\alpha} x_{v}^{1-\alpha}} \leq \tag{34}\\
& \leq A_{p} \sum_{x_{v} \geq h} 2^{-v-1} X_{v}^{s}\left(\frac{h}{X_{v}^{\alpha} x_{v}^{1-\alpha}}\right)^{r}=A_{p} \sum_{x_{v}>h} 2^{-v-1}\left(h / x_{v}\right)^{r-s} h^{s} \\
& \leq \frac{1}{2} A_{p} h^{s} \leq \frac{1}{2} h^{s} \quad(1 \leq p \leq \infty)
\end{align*}
$$

In the last link of this chain of inequalities we applied (26).
In turn, we obtain from Lemma 5 and (26)

$$
\begin{equation*}
\omega_{r}\left(L_{p} ; G_{h} ; h\right) \leq \sum_{X_{v} \leq h} 2^{-v-1-r} X_{v}^{s} \cdot 2^{r} A_{p} \leq \sum 2^{-v-1} h^{s}=\frac{1}{2} h^{s} . \tag{35}
\end{equation*}
$$

Now if (29) holds then

$$
\begin{equation*}
g(x)=g_{h}(x)+G_{h}(x) \tag{36}
\end{equation*}
$$

so that (30) is a consequence of (36), (34) and (35). This proves the first half of our statement.

Let now $h_{k}=X_{k}^{\alpha} x_{k}^{1-\alpha} \in\left(x_{k}, X_{k}\right)$. Then

$$
\begin{equation*}
g(x)=g_{h_{k}}(x)+G_{h_{k}}(x)+2^{-k-1-r} X_{k}^{s} f_{\left[h_{k}^{-1}\right]}(x) . \tag{37}
\end{equation*}
$$

From Lemma 5 we get using (26)

$$
\begin{equation*}
\omega_{r}\left(L_{p} ; f_{\left[h_{k}^{-1}\right]} ; h_{k}\right)=2^{r} A_{p} \sin ^{r}\left(\left[h_{k}^{-1}\right] h_{k}\right) \geq 2^{r} \frac{2}{\pi} \sin ^{r} \frac{1}{2} \geq c_{12}(r) . \tag{38}
\end{equation*}
$$

We have in consequence of (37), (34), (35) and (38), taking (27) in consideration
(39) $h_{k}^{-s} \omega_{r}\left(L_{p} ; g ; h_{k}\right) \geq-1+c_{12}(r) 2^{-k-1-r} X_{k}^{s} h_{k}^{-s}=$

$$
=-1+c_{12}(r) 2^{-k-1-r}\left(X_{k} / x_{k}\right)^{(r-s)^{s} / r}>-1+c_{13}(r) 2^{k}
$$

This shows that (31) holds. Lemma 6 is proven.
Theorem 2. Let $\left\{\delta_{k} \rightarrow 0\right\}$ be a decreasing sequence and

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} \delta_{k+1} / \delta_{k}=0, \tag{40}
\end{equation*}
$$

then there exists for every $1 \leq p \leq \infty$, for every natural integer r, and for every
$0<s<r$ a function $g(x)$ for which we have

$$
\begin{equation*}
\omega_{r}\left(L_{p} ; g ; \delta_{k}\right) \leq \delta_{k}^{s} \quad(k=1,2, \ldots) \tag{41}
\end{equation*}
$$

but

$$
\begin{equation*}
\overline{\lim }_{h \rightarrow \infty} h^{-s} \omega_{r}\left(L_{p} ; g ; h\right)=\infty . \tag{42}
\end{equation*}
$$

Remark. Let $\rho<r$ be a natural integer. Applying the elementary relation we infer from (42) that $\omega_{r}\left(L_{p} ; g ; h\right) \leq 2^{r-\rho} \omega_{\rho}\left(L_{p} ; g ; h\right)$
we infer from (42) that

$$
\varlimsup_{h \rightarrow \infty} h^{-s} \omega_{\rho}\left(L_{p} ; g ; h\right)=\infty \quad(\rho=1,2, \ldots, r)
$$

Taking $r=\rho=2$ this shows that de Vore's conjecture (b) is true for every $1 \leq p \leq \infty$.
Proof. By (40) we can construct a sequence of nonoverlapping open intervals $\left\{\left(x_{v}, X_{v}\right)\right\}$ so that
(a) $X_{v}>x_{v}$ are two consecutive terms of the sequence $\left\{\delta_{k}\right\}$
(b) (27) is satisfied.

Let us consider the function $g(x)$, defined as in (28), which is related to this interval sequence $\left\{\left(x_{v}, X_{v}\right)\right\}$.

By our construction no δ_{k} is situated inside any of the open intervals (x_{v}, X_{v}). Applying the first half of Lemma 6 we see that (41) is valid. Moreover, (42) was proved as the second half of Lemma 6. Theorem 2 is proved.

Literature

1. G. Freud, On the L_{2}-continuity moduli of functions, Periodica Mathematica (Budapest), in print.
2. R. de Vore, Inverse theorems for approximation by positive linear operators; preprint, Edmonton, 1972.

[^0]: ${ }^{1}$ Oral communication in January 1972, at a time when both R. de Vore and the author were visiting professors at the University of Alberta, Edmonton (Canada). (See [2]).

