Canad. Math. Bull. Vol. 17 (1), 1974

ON THE PROBLEM OF R. DE VORE

BY GEZA FREUD

I. Introduction. Let $f \in L_p(1 \le p \le \infty)$ be 2π -periodic,

(1)
$$\|\Delta_t^r f\|_{\mathcal{P}} = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left|\sum_{j=0}^r (-1)^j \binom{r}{j} f(x+jt)\right|^p dx\right]^{1/p}$$

and let us consider the rth order moduli of continuity of f

(2)
$$\omega_r(L_p;f;h) = \sup_{0 \le t \le h} \|\Delta_t^r f\|_p.$$

R. de Vore¹ stated the following conjectures:

(a) Let $\eta_{\nu} \rightarrow 0$ decreasingly,

(3)
$$1 > \eta_{\nu+1}/\eta_{\nu} > \theta_1 > 0 \quad (\nu = 1, 2, ...)$$

and for some $\alpha < 2$ let

$$\|\Delta_n^2 f\|_p = \mathcal{O}(\eta^\alpha) \qquad (\eta \in \{\eta_v\})$$

then for every $h \ge 0$

(4)

(5)
$$\omega_2(L_p;f;h) = \mathcal{O}(h^{\alpha}).$$

(b) If for the sequence $\{\eta_v\}$ the condition (3) does not hold for at least one $\theta_1 > 0$ then there exists an $f \in L_p$ for which (4) is valid but (5) is violated.

R. de Vore himself settled problems (a) and (b) for the limiting case $p \rightarrow \infty$, i.e. for the space C.

In the present note we prove conjecture (a) for p=2 and conjecture (b) for all $1 \le p \le \infty$, in both cases also for higher order moduli of continuity.

II. Proof of conjecture (a) for p=2.

LEMMA 1. Let $\tau(x) = x$ for $0 \le x \le 1$ and $\tau(x) = 1$ for x > 1. Let further $f(x) \sim a_0/2 + \sum (a_k \cos kx + b_k \sin kx)$ then

(6)
$$c_1(r)[\omega_r(L_2;f;h)]^2 \leq \sum_{k=1}^{\infty} [\tau(kh)]^{2r} (a_k^2 + b_k^2) \stackrel{\text{def}}{=} \phi_{2r}(f;h) \leq c_2(r) [\omega_r(L_2;f;h)]^2.$$

Lemma 1 was proved in our paper [1].

¹ Oral communication in January 1972, at a time when both R. de Vore and the author were visiting professors at the University of Alberta, Edmonton (Canada). (See [2]).

LEMMA 2. We have

(7)
$$[\|\Delta_t^r f\|_2]^2 \ge 2^{2r-1} \pi^{-2r} \sum_{k \le \pi/t} (a_k^2 + b_k^2) (kt)^{2r}.$$

Proof. We refer to [1] for the relation

$$\|\Delta_t^r f\|^2 = 2^{2r-1} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \sin^{2r} kt/2.$$

From this we obtain (7) by taking $\sin u > 2u/\pi$ ($0 \le u \le \pi/2$) in consideration.

LEMMA 3. We have for every $f \in L_2$ and all natural integers $\rho < r$

(8)
$$c_3(r,\rho)h^{2\rho} \int_h^\infty u^{-2\rho-1} [\omega_r(L_2;f;u)]^2 du \le [\omega_\rho(L_2;f;h)]^2 \le \le c_4(r,\rho)h^{2\rho} \int_h^\infty u^{-2\rho-1} [\omega_r(L_2;f;u)]^2 du \quad (h>0).$$

Lemma 3 was proved under the heading "Theorem 3" in our paper [1].

LEMMA 4. Let $\{t_v\}$ be a sequence of positive numbers satisfying

(9) $1 > t_{\nu+1}/t_{\nu} > \theta_1 > 0 \quad (\nu = 1, 2, ...)$

then for every natural r and every $f \in L_2$ we have

(10)
$$[\omega_r(L_2; f; t_1)]^2 \le c_5(r, \theta_1) \sum_{\nu=1}^{\infty} \|\Delta_{t_\nu}^r f\|_2^2.$$

Proof. By (7) we have

(11)
$$\sum_{\nu=1}^{\infty} \|\Delta_{t_{\nu}}^{r}f\|_{2}^{2} \ge c_{6}(r) \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2}) k^{2r} \sum_{kt_{\nu} \le \pi} t_{\nu}^{2r}.$$

For $kt_1 \leq \pi$ we have clearly

$$k^{2r} \sum_{kt_{\nu} \leq \pi} t_{\nu}^{2r} > (kt_{1})^{2r} \geq [\tau(kt_{1})]^{2r} \qquad (kt_{1} \leq \pi).$$

In the case $kt_1 > \pi$ there exists, as a consequence of (9), an index μ for which $\pi > kt_{\mu} \ge \theta_1 \pi$. Consequently

$$k^{2r} \sum_{kt_{\nu} \leq \pi} t_{\nu}^{2r} > k^{2r} t_{\mu}^{2r} > (\theta_{1}\pi)^{2r} \geq (\theta_{1}\pi)^{2r} [\tau(kt_{1})]^{2r}$$

(We used here that $\tau(kt_1)=1$). Combining both cases

(12)
$$k^{2r} \sum_{kt_{\nu} \leq \pi} t_{\nu}^{2r} > c_{7}(r, \theta_{1}) [\tau(kt_{1})]^{2r}.$$

We obtain (10) from (11), (12) and the first half of (6), Q.E.D.

THEOREM 1. Let $\psi(\delta)$ be a nondecreasing function. For proper choices of $\theta_2 > 1$, $\theta_3 > 1$ let

(13)
$$\theta_2 \psi(h) \le \psi(2h) \le \theta_3 \psi(h) \qquad (h > 0),$$

https://doi.org/10.4153/CMB-1974-007-8 Published online by Cambridge University Press

40

and for an $f \in L_2$ let

$$\|\Delta_{\eta}^{r} f\|_{2} \leq \psi(\eta) \qquad (\eta \in \{\eta_{\nu}\})$$

where $\{\eta_v\}$ is a positive nullsequence satisfying (3) then

(15)
$$\omega_r(L_2; f; h) < c_8(\theta_1, \theta_2, \theta_3, r)\psi(h)$$
 $(0 < h \le \delta_1)$
and for every $\rho < r$

(16)
$$\omega_{\rho}(L_{2};f;h) \leq c_{\theta}(\theta_{1},\theta_{2},\theta_{3},r,\rho) \cdot \left\{h^{2\rho} \int_{h}^{\infty} u^{-2\rho-1} \psi^{2}(u) \, du\right\}^{1/2}.$$

REMARK. In particular, if

$$\|\Delta_{\eta}^{r}f\|_{2} = \mathcal{O}(\eta^{\alpha}) \qquad (\eta \in \{\eta_{\nu}\})$$

then we have for every $\alpha < \rho \leq r$

$$\omega_{\rho}(L_2; f; h) = \mathcal{O}(h^{\alpha}).$$

This statement implies the case p=2 of conjecture (a).

Proof of Theorem 1. First we construct a suitable subsequence $\{n_m^*\} \subset \{\eta_\nu\}$. Let $\eta_1^* = \eta_1$. After η_m^* is constructed, let $\eta_{m+1}^* = \eta_s$ be the greatest η satisfying $\eta_s < \theta_1 \eta_m^*$. Then clearly $\eta_{s-1}/\eta_m^* > \theta_1$ so that

(17)
$$1 > \theta_1 > \eta_{m+1}^* / \eta_m^* = \eta_s / \eta_{s-1} \cdot \eta_{s-1} / \eta_m^* > \theta_1^2.$$

We apply now Lemma 3 with $t_{\nu} = \eta_{n-1+\nu}^*$ ($\nu = 1, 2, ...$) and consider that $\{\eta_m^*\} \subset \{\eta_\nu\}$ so that by (14)

$$\|\Delta_{\eta^*}^r f\| \leq \psi(\eta^*) \qquad (\eta^* \in \{\eta_m^*\}).$$

We obtain

(18)
$$[\omega_r(L_2;f;\eta_n^*)]^2 \leq c_3(r,\theta_1^2) \sum_{m=n}^{\infty} \psi^2(\eta_m^*) = c_3(r,\theta_1^2) \{ \psi^2(\eta_n^*) + \sum_{k=0}^{\infty} \sigma_k \},$$

where

(19)
$$\sigma_k = \sum_{2^{-k-1} \eta_n^* \leq \eta_m^* < 2^{-k} \eta_n^*} \psi^2(\eta_m^*).$$

As a consequence of (3), the number of terms to which the sum (19) is extended does not exceed $-\log_{\theta_1} 2 + 1 = c_7(\theta_1)$ so that

(20)
$$\sigma_k \leq c_{10}(\theta_1)\psi^2(2^{-k}\eta_n^*) \leq c_{10}(\theta_1)\theta_2^{-2k}\psi^2(\eta_n^*).$$

Here we made use of the facts that $\psi(\Delta)$ is nondecreasing and satisfies (13). We obtain from (18) and (20)

(21)
$$\omega_r(L_2; f; \eta_n^*) \le c_{11}(r, \theta_1, \theta_2) \psi(\eta_n^*).$$

For an arbitrary $0 < h \le \eta_1^*$ let $\eta_{i+1}^* \le h < \eta_i^*$ then by monotonicity of ω_r

(22)
$$\omega_r(L_2; f; h) \le \omega_r(L_2; f; \eta_j^*) \le c_{11}(r, \theta_1, \theta_2) \psi(\eta_j^*).$$

1974]

(

We fix a sufficiently great integer q so that $2^{-q} < \theta_1^2$. We obtain from (17)

$$h/\eta_j^* \ge \eta_{j+1}^*/\eta_j^* \ge \theta_1^2 > 2^{-q}$$

and from (13) follows, since $\psi(\delta)$ is nondecreasing,

(23)
$$\psi(\eta_j^*) \le \theta_3^q \psi(2^{-q} \eta_j^*) \le \theta_3^{-q} \psi(h).$$

From (22) and (23) we conclude that (15) is valid. We obtain (16) by combining (15) with Lemma 3. This ends our proof.

III. Proof of conjecture (b)

LEMMA 5. Let $f_k(x) = \sin kx$ then we have

(24)
$$\omega_r(L_p; f_k; h) = \begin{cases} 2^r A_p \left(\sin \frac{kh}{2} \right)^r & (0 \le h \le \pi/k) \\ 2^r A_p & (h \ge \pi/k) \end{cases}$$

where

(25)
$$A_p = \|f_1\|_p.$$

Proof. Lemma 5 is a trivial consequence of the relation

$$\Delta_t^r f_k \left(x - \frac{rt}{2} \right) = 2^r \sin \left(kx - r \frac{\pi}{2} \right) \sin^r \frac{kt}{2} \,.$$

Let us observe that A_p is increasing, so that

(26)
$$\frac{2}{\pi} = A_1 \le A_p \le A_\infty = 1.$$

Let r be an arbitrary integer and let 0 < s < r. We consider a system of nonoverlapping open intervals (x_v, X_v) in (0, 1) and we assume that

(27)
$$(X_{\nu}/x_{\nu})^{(r-s)^{s}/r} > 4^{\nu} \quad (\nu = 1, 2, \ldots).$$

Finally, let us consider the function

(28)
$$g(x) = \sum_{\nu=1}^{\infty} 2^{-\nu - 1 - r} X_{\nu}^{s} \sin[X_{\nu}^{-\alpha} x_{\nu}^{-1 + \alpha}] x,$$

where $[X_{\nu}^{-\alpha}x_{\nu}^{-1+\alpha}] \ge 1$ is the integer part of $X_{\nu}^{-\alpha}x_{\nu}^{-1+\alpha}$ and $\alpha = s/r$.

LEMMA 6. For every $1 \le p \le \infty$ and for every h > 0 satisfying

(29)
$$h \notin (x_{\nu}, X_{\nu}) \quad (\nu = 1, 2, ...)$$

we have for the function g defined as above

(30)
$$\omega_r(L_p; g; h) \le h^s$$

but we have

(31)
$$\overline{\lim_{h \to 0}} h^{-s} \omega_r(L_p; g; h) = \infty.$$

1974]

Proof. Let

(32)
$$g_{h}(x) = \sum_{x_{v} > h} 2^{-v-1-r} X_{v}^{s} \sin[X_{v}^{-\alpha} x_{v}^{-1+\alpha}] x$$

and

(33)
$$G_{\hbar}(x) = \sum_{X_{\nu} < \hbar} 2^{-\nu - 1 - r} X_{\nu}^{s} \sin[X_{\nu}^{-\alpha} x_{\nu}^{-1 + \alpha}] x.$$

If $h \le x_v$ then a fortiori $h < X_v^{\alpha} x_v^{1-\alpha}$ so that by Lemma 5 using the fact that $\alpha = s/r$

(34)
$$\omega_{r}(L_{p}; g_{h}; h) \leq \sum_{x_{\nu} \geq h} 2^{-\nu - 1 - r} X_{\nu}^{s} \cdot 2^{r} A_{p} \sin^{r} \frac{1}{2} \frac{h}{X_{\nu}^{\alpha} x_{\nu}^{1 - \alpha}} \leq \leq A_{p} \sum_{x_{\nu} \geq h} 2^{-\nu - 1} X_{\nu}^{s} \left(\frac{h}{X_{\nu}^{\alpha} x_{\nu}^{1 - \alpha}}\right)^{r} = A_{p} \sum_{x_{\nu} > h} 2^{-\nu - 1} (h/x_{\nu})^{r - s} h^{s} \leq \frac{1}{2} A_{p} h^{s} \leq \frac{1}{2} h^{s} \qquad (1 \leq p \leq \infty).$$

In the last link of this chain of inequalities we applied (26).

In turn, we obtain from Lemma 5 and (26)

(35)
$$\omega_r(L_p; G_h; h) \leq \sum_{X_{\nu} \leq h} 2^{-\nu - 1 - r} X_{\nu}^s \cdot 2^r A_p \leq \sum 2^{-\nu - 1} h^s = \frac{1}{2} h^s.$$

Now if (29) holds then

$$g(x) = g_h(x) + G_h(x)$$

so that (30) is a consequence of (36), (34) and (35). This proves the first half of our statement.

Let now $h_k = X_k^{\alpha} x_k^{1-\alpha} \in (x_k, X_k)$. Then

(37)
$$g(x) = g_{h_k}(x) + G_{h_k}(x) + 2^{-k-1-r} X_k^s f_{[h_k^{-1}]}(x).$$

From Lemma 5 we get using (26)

(38)
$$\omega_r(L_p; f_{[h_k^{-1}]}; h_k) = 2^r A_p \sin^r([h_k^{-1}]h_k) \ge 2^r \frac{2}{\pi} \sin^r \frac{1}{2} \ge c_{12}(r).$$

We have in consequence of (37), (34), (35) and (38), taking (27) in consideration

(39)
$$h_k^{-s}\omega_r(L_p; g; h_k) \ge -1 + c_{12}(r)2^{-k-1-r}X_k^{s}h_k^{-s} =$$

= $-1 + c_{12}(r)2^{-k-1-r}(X_k/x_k)^{(r-s)^{s}/r} > -1 + c_{13}(r)2^{k}.$

This shows that (31) holds. Lemma 6 is proven.

THEOREM 2. Let $\{\delta_k \rightarrow 0\}$ be a decreasing sequence and

(40)
$$\overline{\lim_{k \to \infty} \delta_{k+1}} / \delta_k = 0,$$

then there exists for every $1 \le p \le \infty$, for every natural integer r, and for every

0 < s < r a function g(x) for which we have

(41)
$$\omega_r(L_p; g; \delta_k) \le \delta_k^s \qquad (k = 1, 2, \ldots)$$

but

(42)
$$\overline{\lim_{h\to\infty}} h^{-s} \omega_r(L_p; g; h) = \infty.$$

REMARK. Let $\rho < r$ be a natural integer. Applying the elementary relation

$$\omega_r(L_p; g; h) \le 2^{r-\rho} \omega_\rho(L_p; g; h)$$

we infer from (42) that

$$\overline{\lim_{h \to \infty}} h^{-s} \omega_{\rho}(L_{p}; g; h) = \infty \qquad (\rho = 1, 2, \dots, r)$$

Taking $r = \rho = 2$ this shows that de Vore's conjecture (b) is true for every $1 \le \rho \le \infty$.

Proof. By (40) we can construct a sequence of nonoverlapping open intervals $\{(x_v, X_v)\}$ so that

(a) $X_{\nu} > x_{\nu}$ are two consecutive terms of the sequence $\{\delta_k\}$

(b) (27) is satisfied.

Let us consider the function g(x), defined as in (28), which is related to this interval sequence $\{(x_v, X_v)\}$.

By our construction no δ_k is situated inside any of the open intervals (x_v, X_v) . Applying the first half of Lemma 6 we see that (41) is valid. Moreover, (42) was proved as the second half of Lemma 6. Theorem 2 is proved.

LITERATURE

1. G. Freud, On the L_2 -continuity moduli of functions, Periodica Mathematica (Budapest), in print.

2. R. de Vore, Inverse theorems for approximation by positive linear operators; preprint, Edmonton, 1972.

44