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1. Introduction

Let Fq denote the finite field with q elements, Zm the residue class ring
ZJmZ. It is known that the projective linear groups G = PSL2(Fg) and
PGL2(FQ) (g a prime-power ^ 4) are characterised among finite insoluble
groups by the property that, if two cyclic subgroups of G of even order inter-
sect non-trivially, they generate a cyclic subgroup (cf. Brauer, Suzuki,
Wall [2], Gorenstein, Walter [3]). In this paper, we give a similar character-
isation of the groups G — PSL2(Zpt+i) and PGL2(Zvt+i) (p a prime ^ 5,
t ^ 1).

These satisfy the weaker condition 1 that, if two cyclic subgroups of G
intersect in a group of even order, they generate a cyclic subgroup. If
x eG, let @G{X) denote the subgroup generated by the roots oi x, i.e. by the
elements of G of which a; is a power. Then this condition may also be expressed
as follows:

(1.0) ^G(W) is cyclic for every involution u eG.

A finite group G of even order which satisfies (1.0) will be called an 0t-group.
PGL2(Zpt+i) is an extension of a group, P0,t(P)> of order p3t by

PGL2(FP). lip^Bandt^l, PGL^Z^i) and PSL^Z^x) are insoluble
and neither splits over P0,t(P)- If /> = 3, however, both groups are soluble
and both split over Po t(3).

THEOREM 1. Let G be an insoluble ^-group with trivial centre. Suppose
that G does not split over its largest normal subgroup of odd order, O(G), and
further that, when GjO(G) s PSL2(FS) or PSL^F,), O(G) is a prime-power
group. Then G ~ PSL2(Zvt+l) or PGL2(Zpt+i) (p a prime ^ 5, t ^ 1).

Although Theorem 1 is actually deduced from the more general Theorem
3, the method of proof is, in effect, to establish successively that GjO(G),
O(G) and G are what they should be. The first and last steps present no
essential difficulties because the results are at hand for dealing with them
— for the former, the powerful theorems of Gorenstein, Walter [3] and Suzuki

1 I am indebted to Professor Z. Janko for suggesting this condition to me.
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[6] and for the latter, detailed information about the cohomology groups of
FV(PGL2(FP))-modules. The proof in the second step is based on the simple
observation that A4 is a subgroup of PSL2(FP). This, and the fact that G
is an ^-group, imply that Ai acts as a group of automorphisms on O(G)
in such a way that each involution in At has cyclic fixed-point group.
Theorem 2 takes care of this situation. Let Ps^t{p) (p prime, 0 ^ s 5S t)
denote the kernel of the naturally defined epimorphism PGL2(Zt>t+i) -»-

THEOREM 2. Let H be a group of odd order. Suppose that At acts as a group
of automorphisms on H in such a way that each involution in At has cyclic
fixed-point group. Then H is nilpotent and if S is Sylow subgroup of H, S is
either cyclic or a group PStt(p).

Theorem 2 points to the chief obstacle in determining all soluble 8%-
groups, viz. the determination of the groups of odd order which admit an
automorphism of order 2 with cyclic fixed-point group. The detailed
structure of such groups is not known, though it has been proved that they
have nilpotent derived groups (Kovacs, Wall [4]).

In Theorem 3, we determine all ^-groups which contain neither a
normal Sylow 2-subgroup nor a normal Sylow 2-complement. Some notation
is needed before stating the Theorem.

DEFINITION. An ^-group G is said to be reduced if it satisfies the follow-
ing two conditions:

(i) G has no non-trivial direct factor of odd order;
(ii) G does not contain two non-trivial normal subgroups of relatively prime
odd orders.

A direct product AxB (\A\ even, \B\ odd) is an ^-group if and only
if A is an ^-group, B is cyclic and (\B\, \&A{U)\) = * f°r every involution
u e A. A group G with normal subgroups Nlt 2V2 of relatively prime odd
orders is an ^-group if and only if G/Nlt GjN2 are both ^-groups (Lemma
2.3). Thus, in order to determine all ^"-groups, it is sufficient to determine the
reduced ones.

The notation G = (A; B) indicates that the group G is an extension
of the group B by the group A, i.e. G has a normal subgroup B such that
B ~ B, GIB ~ A. Such an extension is called holomorphic if B has a
complement A in G and ^G{B) ^ B. We denote the cyclic group of order
k by Ck, the direct product of n copies of Ck by (Q.)n and the dihedral group
of order 2k byD2k. Sn, An denote the symmetric and alternating groups on n
letters.

THEOREM 3. Let G be a group of even order which contains neither a
normal Sylow 2-subgroup nor a normal Sylow 2-complement. Then G is a
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reduced SH-group if and only if it is isomorphic to one of the following groups:

(1.1) PGL2(Fq), PSL2(FQ) (q a prime-power ^ 3);

(1.2) PGL2(ZP,+i), PSL2(Zvt+l) (pa prime ^ 3, t > 1);

(1.3) the unique holomorphic extensions (PGL2(FP); (Cp)
3), (PSL2(FP); (Cc)

3)
(p a prime 2i 5);

(1.4) the unique holomorphic extension (PSL2(F7); (Cpt)
3) (p an odd prime

= 1, 2 or 4 (mod 7), t^l);

(1.5) the unique holomorphic extension (As; PSyt(p)) (p a prime = ± 1
(mod 5), 0 ̂ s <Lt,t ^ 1);

(1.6) tte unique holomorphic extensions (At; Ps>t(p)), (S4 ; Ps>t(p)) (p a
prime ^ 3, 0 ̂  s ^t,t ^ 1);

(1.7) the direct product, amalgamating central subgroups of order 3, of C3t
(t 5̂  1) and the unique non-splitting central extension (A6; C3).

NOTE. A proof of existence of groups (1.3) —(1.6) may be constructed
along the following lines. Representation theory gives the monomorphisms:

(1.3) PGL2(FP) -> GL3(FP) = Aut

(1.4) PSL2(F7)-*GL3(FP),

(1.5), (1.6) S 4 , ^ 5 - ^ P G L 2 ( F J ,

where p satisfies the appropriate congruences in (1.4), (1.5). The last three
monomorphisms may be lifted (essentially by Schur's splitting theorem)
to monomorphisms:

(1.4)' PSL2(F7) -> GL3(Zpt) = Aut ((C,,)3),

(1.5'), (1.6)' SitA5-

(1.3), (1.4)' establish the existence of the corresponding groups directly.
(1.5)' (1.6)' provide them as subgroups of PGL2(Zvt+i). The uniqueness of
these groups follows from the proof of the Theorem. The verification that
they are ^-groups is straightforward.

Two problems arise naturally out of these results. The first is to charac-
terise the groups PSL2(i3/p'+1^) and PGL2(Qjp*+1Q), where Q is the ring
of integers in an algebraic number field and p a prime ideal of Q. The second
is to determine the groups satisfying suitable generalisations of (1.0).
E.g., Suzuki's simple groups have the property that the root groups of all
involutions are abelian.

Arrangement of the paper. The deduction of Theorems 1 and 2 from
Theorem 3 is described below. The remainder of the paper is devoted to
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proving Theorem 3. The main steps are as follows. After some preliminary
general results, it is shown, in Proposition 2.7, that every non 2-nilpotent
^-group G satisfies one of the following conditions:

(i) the Sylow 2-subgroup of G are elementary abelian of order >̂ 8;
(ii) GjO{G) ~ PSL2(FQ) or PGL2(FQ) for some odd prime-power q.

The Theorem is proved for groups of type (i) in § 3, for groups of type (ii)
in Proposition 2.8 (O(G) cyclic) and § 4 (O(G) non-cyclic). The last case is
the most complicated and an outline of the method is given at the beginning
of §4.

DEDUCTION OF THEOREM 1 FROM THEOREM 3. Let G satisfy the con-
ditions of Theorem 1. The list (1.1)-(1.7) shows that the Theorem is true
for reduced ̂ -groups. Thus, we have only to prove that G is reduced.

By Proposition 4.1.4 and the insolubility of G, 0(G) is nilpotent. Let
S(=£ 1) be a Sylow subgroup of 0(G), T the complement of S in 0(G) and
r = GjT. By Proposition 4.1.4, /"is a reduced ^-group and since 2£(G) = 1,
2£(F) n 0(F) = 1. Theorem 3 now shows that one of the following condi-
tions holds (notice that O(F) s S and rjO{r) s G/O{G)):

(a) GIO(G) s At or 54;
(b) GjO{G) ~ A5 or PSL2(F7);
(c) for some prime p, G/O(G) ~ PSL2(FV) or PGL2(FV) and S is a p-group.

Case (a) is excluded because G is insoluble. In case (b), the hypotheses
of the Theorem ensure that G = F, so that G is reduced. If (c) holds (but
neither (a) nor (b)), then every Sylow subgroup of 0(G) is a ^-group for
the one fixed p, so again G = F and G is reduced. This completes the proof.

DEDUCTION OF THEOREM 2 FROM THEOREM 3. Let H satisfy the condi-
tions of Theorem 2 and form the splitting extension G = (A4; H) correspond-
ing to the given action of At on H. Since the involutions in A4 have cyclic
fixed-point groups, G is an ^f-group. By Proposition 4.1.4., H = 0(G) is
nilpotent.' Let S, T, F be as in the previous proof. By Proposition 4.1.4.,
either 5 is cyclic or F is reduced. In the latter case, Theorem 3 shows that
5 ( s O(F)) is a group P,it(p). This completes the proof.

2. General results

We first consider the factor groups oi an. $!-group.

2.1 LEMMA. Let G be a group of even order, N a normal subgroup of odd
order. If u is an involution in G, then &G/N(uN) = ^G

PROOF. Clearly, uN is an involution and @G(u) NjN ^^G/N{UN). It
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remains to prove that, if xN is a root of uN, then x e SlG(u)N. Since xN has
even order, x has even order; let v be the involution in (Xs). Then vN is the
involution in <xiV>, so that viV = uN. By Sylow's theorem, a = nun'1

for some « e N. Therefore w"1 a;w e @tG(u) and so a; = n~xxn\n, x] e SlG(u)N,
as required.

2.2 COROLLARY. / / G is an Si-group and N a normal subgroup of odd
order, then GjN is an Si-group.

2.3 LEMMA. Let G be a group of even order and Nlt N2 normal subgroups
of relatively prime odd orders. Then G is an Si-group if (and only if) GjNj^,
GjN2 are ^-groups.

PROOF. Let u be an involution in G and write R = SiG(u), Rt = R n Nt.
We prove that R is cyclic by showing (a) that R is abelian and (b) that the
Sylow subgroup of R are cyclic.

(a) Since RjRt s RNJNi = ^6/N^uNf), RjRt is cyclic. Therefore,
since Rt n R2— 1, R is abelian.

(b) Let P be a Sylow ̂ -subgroup of R. Since (|JRI|, \R%\) = 1, we may
assume p\ \R-^. Then P ^ PR1/R1 ^ R/Ri, so that P is cyclic, as required.

Clearly, a group G of even order is an ^-group if and only if ^G(W) is an
^-group for each involution ueG. We now determine the structure of ^G(M)-

2.4 LEMMA. Let G be an Si-group, u an involution in G and x
If x has odd order or order 2A > 2, then x e 3tG{u)-

PROOF. If x has odd order, XU<B&G{U). Since ue&c:(u), X

If x has order 2A > 2, let v be the involution in <#>. Then x E&G(V) and
xu e ^G(Z>), SO that u e &G(V). Since ^G(v) is cyclic, w = u. Hence x e&G(u).

2.5 LEMMA. Z.e2 G 6e aw Si-group and u an involution in G. Then ^G(u)
has one of the following structures:

C2m;DimxCn((4m,n) = l); ((C8)«;Cn) ( » o d d , < ^ 3 ) .

PROOF. Write C = #<?(«), R = SiG{u) and let K be the subgroup of R
formed by its elements of odd order. By lemma 2.4, K < C and C = i£@,
where (? is a Sylow 2-subgroup of C. Again by lemma 2.4, Q n R is a cyclic
subgroup of ^ such that2 <?\(() n i?) consists entirely of involutions. It is
well known that this implies either

(a) Q n R = Q and Q is cyclic
or (b) 1£ : <£> n 221 = 2 and (? is dihedral

or (c) () is elementary abelian.

> If 7 c X, X \ y denotes the (set) complement of Y in X.
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In case (a), C = KQ = R is cyclic. In case (b), \C : R\ = 2 and
C = i? u ai? for some involution n e ^ . Let R^R^) be the product of those
Sylow subgroups of R whose generators are inverted (centralized) by v.
Then D = Rx u i*/^ is dihedral, i?2 is cyclic and C = DxR2; clearly Z), 7?2

have relatively prime orders. In case (c), C = i£@ is evidently an extension
((C2)*; Cn), w odd. This proves the lemma.

2.6 COROLLARY. The Sylow 2-subgroups of an Si-group are cyclic, dihedral
or elementary abelian.

2.7 PROPOSITION. Every &-group G satisfies one of the following con-
ditions:

(a) G has a normal Sylow 2-complement;
(b) the Sylow 2-subgroups of G are elementary abelian of order 2; 8;
(c) G is an extension (F; P), where P has odd order and F s PGL2(FQ) or

PSL2(F9) for some odd prime-power q.

PROOF. If neither (a) nor (b) holds, the Sylow 2-subgroups of G are
dihedral. By lemma 2.4, the centralizer of an involution in G has an abelian
2-complement. Therefore, by a theorem of Gorenstein and Walter [3], G is
an extension (F; P), where P has odd order and P s i , , PGL2(Fa) or
PSL2(Fa) (q an odd prime-power). The first case is excluded by corollary 2.2
because A7 is not an ^-group. This proves the proposition.

We now dispose of the easiest case arising in (c).

2.8 PROPOSITION. Let G be an extension (F; P), where P is a non-trivial
cyclic group of odd order and F s PGL2(Fq) or PSL2(F9) (q an odd prime-
power). Suppose G does not have a normal Sylow 2-subgroup. Then G is a
reduced &-group if and only if it is a group (1.7).

PROOF. It is easily verified that (1.7) is a reduced ^-group. Conversely,
let G be a reduced ^-group satisfying the conditions of the proposition.
Let G+ denote the subgroup (of index 1 or 2) such that G+/P s PSL2(Fq).
Since P is cyclic, G'P centralizes P. Now G'P/P ~ (C2)

2 if G = G+ and
9 = 3, and G'P = G+ otherwise. The former case is excluded because G
does not have a normal Sylow 2-subgroup. Therefore G+ centralizes P.
Suppose now that G > G+. Let u be an involution in G+. Since uP has a root
in (G/P)\(G+[P), it follows from lemma 2.1 that u has a root v in G\G+.
By lemma 2.4, v centralizes P and so <gG{P) = G. Thus, P^2£(G) in all
cases.

It is easy to see that, i f P n G ' = l , then either GjP £ At and G' s
(C2)

2 or P is a direct factor of G. Both cases are excluded by assumption.
Now P nG'is isomorphic to a subgroup of the Schur multiplicator £f(G/P)
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of G/P. It is known3 that \^(G[P)\ = 6 if G/P ~ PSL2{FQ) ~ A6 and
\ST{G{P)\ = 2 otherwise. Therefore G/P s 4 6 and \P n G'\ = 3. Since G
has no direct factor of odd order > 1, it follows that G' is the non-trivial
(central) extension4 (A6; C3) and P s C3». Thus G is the group (1.7).

Finally, we determine the structure of the Sylow 2-normalizers in an
^-group.

2.9 LEMMA. Let G be an Si-group, Q a Sylow 2-subgroup of G, N — ̂ VG{Q)
and C — ^G{Q)- Then C = QxK (K cyclic) and NjC acts as a group of
fixed-point free automorphisms5 on Q. Also N = C unless Q ~ (C2)

( (t ^ 2).

PROOF. The first and last statements follow at once from lemma 2.4
and corollary 2.6. To prove the second statement we must show that, if
x e N commutes with the involution u e Q, then x commutes with every
involution veQ. By lemma 2.4, ^ ( w ) has a cyclic normal Sylow 2-comple-
ment K Since »£?(;(«) and xeK, v normalizes <z>. Therefore [v,x] e
(x)> n Q — 1, so that v commutes with x, as required.

3. Elementary abelian Sylow 2-subgroups

In this section, we assume that

(A) G is an Si-group,
(B) G has a Sylow 2-subgroup Q s (C2)' (t ^ 3).

3.1 LEMMA. Either G has no subgroup of index 2 or G has a normal
2-complement.

PROOF. Lemma 2.9 shows that either Q 5S ^f{Ar(Q)) (in which case G
has a normal 2-complement by Burnside's theorem) or Q ^ ^V~{Q)' (in which
case G has no subgroup of index 2).

3.2 LEMMA. If G has a normal 2-complement P, then P is cyclic.

PROOF. By a theorem of Ward [7], P is nilpotent. We may therefore
assume that P is a p-group for some prime p. Since G/&(P) is an ^?-group
and since P is cyclic if P/0(P) is cyclic, we may further assume that P is
elementary abelian.

Let us regard P as a vector space over Fv on which Q acts as a group
of linear transformations. Since Q ~ (C2)*, the irreducible representations
of Q over Fv are all 1-dimensional. Since p ^ 2, P is a completely reducible

3 Schur [5].
4 The uniqueness of this extension follows from the fact that the "Darstellungsgruppe"

of a simple group is unique (Schur, I.e.).
s This implies that NjC is metacyclic with cyclic Sylow subgroups.
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^-module. Thus P is a direct sum of 1-dimensional submodules P1, • • •, P r .
Now, by lemma 2.4, no involution in Q centralizes more than one P t . On
the other hand, if r > 1,

because \Q:cSQ{Pi)\ = 1 or 2 and \Q\ ̂  23. Thus r = 1, i.e. P is cyclic as
required.

3.3 PROPOSITION. G satisfies one of the following conditions:

(a) Q^G;
(b) G has a cyclic normal 2-complement;
(c) G s PSL2(F2t) xC, (t ^ 3, s odd).

PROOF. Choose an involutions e@such that the order of ^(u) ( = < ^ G ( « ) )

is as large as possible. By lemma 2.4, ^(u) has a normal cyclic 2-comple-
ment K.

FIRST CASE: Q does not centralize K. Let P be a Sylow subgroup of K
which is not centralized by Q. Then Q1 = Q n ^(P) is a subgroup of () of
index 2 and every element of Q\QX inverts the elements of P.

We prove that ^V(Q) ^ ^V(P). It is sufficient to prove that, if x is an
element of JV(Q) of odd order, then P = Px. Since \Q\ ̂  8 and \Q : Qx\ = 2,
Qi n Qi > 1- An involution w in Qx n Q\ centralizes both P and Px, whence
by lemma 2.4, P = Px, as required.

Now, since Q does not centralize P, the cyclic group ^ (P) /9 ' (P ) has
even order. By lemma 3.1, ^V(P) has a normal 2-complement. Since
JT(Q) ^ ^ f ( P ) , it follows that Q ^ %(JT (Q)). Hence, by Burnside's
theorem, G has a normal 2-complement (which is cyclic by lemma 3.2).

SECOND CASE: Q centralizes K, i.e. <&(%) is abelian. If v is an involution
in Q, then clearly <g(u) ^ # » . Hence, by the choice of &(u), V(u) = %(v).
Thus every involution has abelian centralizer. By a theorem of Suzuki [6]
(and lemma 3.2), G satisfies one of the conditions in the proposition.

4. Dihedral Sylow 2-subgroups

In this section, we assume that

(A) G is a reduced 3%-group;
(B) P is a non-cyclic 6 normal subgroup of G of odd order;

(C) GjP s PGL2(FQ) or PSL2(FQ), where q is an odd prime-power.

Write F = GJP. Choose a subgroup HjP of F isomorphic to At and let

6 The case where P is cyclic was treated in lemma 2.8.
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T = {1, ux, u2, u3} be a Sylow 2-subgroup of H. Let r2(p*), r+(pl) denote
the groups PGL2(Zpt), PSL2(Zpt) (p an odd prime).

We prove, in 4.1, that P is a ̂ -group with each G-composition factor 7

'of order £3. Let \P\ = p3t, \P : P'\ = p3s (0 < s ^ *). We call G a split group
if P has a complement in G. Two groups satisfying (A)-(C) are said to be
of the same type if they have the same F, p, s, t and both are split groups or
both non-split groups. In 4.2, we show that G has the same type as some
group listed in Theorem 3. Then, in 4.3, we complete the proof by showing
that groups of the same type are isomorphic.

4.1. Structure of P.

4.1.1. LEMMA. / / X is an H-subgroup of P, then

X = X-^X2X3, X^ c\ X2
 = = X2 t~} X3 = A j ri A j = Xo,

where
Xi = «x("i) (* = 1. 2, 3), Xo = «X(T).

X-L, X2, X3 are cyclic groups conjugate in H. Xo is a cyclic Hall subgroup of X
andX0^ 2£{P).

PROOF. The first statement is a known general result (cf. Gorenstein,
Walter [3]). The Xi (i= 1, 2, 3) are cyclic because G is an ^-group, conjugate
in H because the ut are. Let 1 sg i, j ^ 3, i =£ j . Since u(Uj = utuit u}

normalizes Xt. Therefore, since Xt is cyclic and u2
t = 1, Xo ( = c^xi(

u^) ^s a

Hall subgroup of X{. This and the first part of the lemma show that Xo is
a cyclic central Hall subgroup of X. Xo jg Po ( = ^P{T)) and Po is central in
P, whence Xo is central in P.

4.1.2. COROLLARY. / / X is an H-subgroup of P of prime exponent p,
then either Xo = X ~ Cp or Xo = 1, I = X 1 X l 2 x I 3 ^ (C,,)3. X is the
unique minimal H-subgroup of P of p-power order.

PROOF. The lemma shows that Xo = X ^ Cvor Xo= 1, X = XtX2Xz,
\X\ = p3. In the second case, X' < X and (X')o ^ Xo = 1, so that X' = 1
and thus X = X1xX2xX3 ~ (Cj,)3. X is patently a minimal if-subgroup.
Let Y be any //-subgroup of P of exponent p. Since, X, Y are minimal
//-subgroups, the //-subgroup XY has exponent p. Hence XY is a minimal
//-subgroup and so XY = X = Y. Thus X is unique.

4.1.3. LEMMA. P is nilpotent.

PROOF. We prove the following result: if X is an //-subgroup of P of

' We shall often regard P as a G-group, i.e. a group on which G acts by conjugation.
Thus, the G-subgroups of P are those subgroups of P which are normal in G. Where convenient,
we will use additive notation and module terminology for abelian G-groups.
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prime exponent p and DjC an //-composition factor of P such that C
centralizes X, then D centralizes X. Since P is soluble, this implies that
3£{P) > 1. This last result and corollary 2.2 then show that the ascending
central series of P terminates at P. If Y is an //-subgroup of P, we write
Yo = Vr(T), Yt = Vr(ut) (i = 1, 2, 3).

Since Xo ^ &(P), we may assume that X > Xo. Then, by corollary
4.1.2, \X\ = p3 and Xlt X2, X3 are simple T-groups, no two of which are
r-isomorphic. Also, if v is an element of H which transforms the u{ cyclically,
then X is a simple (v, TD}-group. Hence, by Clifford's theorem, either Xlt

X2, X3 are T/?-groups or X is a simple TD-group. In the first case, TD
induces an abelian group of automorphisms of X, so that [T, D] centralizes
X. By lemma 4.1.1, D = Do [T, D] and so D centralizes X. In the second
case, consider the groups X«> = ^x(CDt) (i = 1, 2, 3). Since X{ < Dt and
CDt < TDit X{i) is a non-trivial TD-group. Therefore, since X is a simple
r/)-group, Xw = X. Thus, D = DXD2D3 again centralizes X. This proves
the lemma.

We break off at this point to prove a general result about ^-groups,
required in deducing Theorems 1 and 2 from Theorem 3. Notice that the
hypotheses that G is reduced and P non-cyclic have not been used in proving
Lemmas 4.1.1—4.1.3. Thus, these results apply to any ^-group satisfying
(c) in Proposition 2.7.

4.1.4. PROPOSITION. / / 0 is any non 2-nilpotent Si-group, then 0(0) is
nilpotent.

Let S be a Sylow subgroup of O(G), U the complement of S in O(&) and
r= QjU. If S is cyclic, S ^ &(G). If S is non-cyclic, S n f ( f i ) = l and
F is a reduced M-group.

PROOF. Since Q is not 2-nilpotent, either (b) or (c) of Proposition 2.7
holds. In the former case, 0 (Q) is a cyclic central subgroup of G by Proposi-
tion 3.3 and Lemma 2.9. In the latter case, O(G) is nilpotent by Lemma 4.1.3.
Clearly, r is an ^-group. Since O(r) = SUjU s S and O(r) n &(T) =
(S n 3?(Q))UjU s S n 3?(G), we may assume for the remainder of the
proof that r=Q,S = O(Q).

By the last part of Lemma 4.1.1, either S is cyclic or S n $?(&•) = 1.
In the former case, S ^ &{&) by Proposition 2.8. In the latter case, G is
reduced because O(Q) is a prime-power group and O(Q) n 2£{G) = 1. This
completes the proof.

We return now to the study of the group G. In the next two corollaries,
the assertion that P is a ^>-group follows from Lemma 4.1.3 and the assump-
tion that G is reduced. The remaining statements follow from Corollary 4.1.2.

4.1.5. COROLLARY. P is a p-group for some prime p. There is precisely
one series
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(1) P = P0>P1--->Pt=l

of H-subgroups of P such that each factor PJPi+1 has exponent p; in particular
(1) is the Frattini series of P. For each i, \P{ : Pi+1\ = p or p3.

4.1.6. COROLLARY. (1) is the unique G-composition series of P. Every
G-subgroup, and in particular every characteristic subgroup, of P is one of
the Pt.

We consider now the power and commutator structure of P.

4.1.7. LEMMA. The rule xP{ -> xvPi+1 (x e P ^ ; 0 < i < t) defines a
G-isomorphism ni : Pi-ijPi -> PJPi+i-

PROOF. By Corollary 4.1.6., [Pk, P, • • •, P] <L Pk+n. Therefore, if
x e P and y e Pk, ' ~ '

(xy)* = x»yP[y, x]O (mod Pk+2),
[y, x\> = 1 (mod Pk+2),

and so

(2) (Ky)» = «'s

(2) shows that jrt is a well defined G-isomorphism. nt is non-zero because
Pi-ilPi+i is n° t a. group of exponent p. Therefore, since P^JPt and PtJPi+i
are irreducible G-modules, nt is a G-isomorphism.

4.1.8. COROLLARY. Every factor P J P i + 1 has order p3.

PROOF. The lemma shows that all factors have the same order, p or p3.
If the common order were p, Pj0(P) = PlPx would be cyclic and so P
would be cyclic, contrary to assumption.

4.1.9. COROLLARY. Pi+1 is the set of p-th powers of the elements of Pt.

PROOF. Let x e P and y e Pk\Pk+1. If ft = t— 1, y is a central element
of P of order p and {xy)v = xv. \ik<. 2—1, yv e Pk+1\PJc+i and so, by (2),
(xy)v ^ x". Thus, (xy)v = xv if and only if y e Pt_x. It follows that the set S
of p-th. powers of the elements of P{ has \Pi\l\Pt-x\ = \Pi+1\ elements.
Thus S = Pi+1.

4.1.10. LEMMA. If P' = P,, then [Pit P,] = P i + i + s {where Pk=l when
k >t).

PROOF. Replacing y by [x,y] in (2), we see that, if x, y e P and
[x, y]e Pk, then

(3) [x», y] = [x, y]» (mod Pk+i).

It follows easily from (3) and lemma 4.1.7. that

https://doi.org/10.1017/S1446788700006182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006182


534 G. E. Wall [12]

Therefore, since Pi+i+s+1 = 0(Pi+j+s), the commutators [xv\ ypi] (x,yeP)
generate Pi+i+,. On the other hand, by corollary 4.1.9, these commutators
generate [Pit P3].

'4.1.11. LEMMA. There exist u, v e H and x e P\PX such that

(i) u2 = v3 = (uv)3 = 1;

(ii) xu = x;

(iii) xp" = [xv, x"2] [xv, xv\ u]i.

PROOF. Write N = JVH (T). Clearly, NP = H and since each factor
pilpi+i i s a faithful T-module, N n P = VP{T) = 1. Therefore N is a
complement of P in H and so N s At. Choose u, v e N so that (i) holds.

By Corollary 4.1.2, P(PX has a T-module decomposition

P\PX = <yP2> 0 <yPj> © <^2P2>,

where (t/Pi)" = yPx. In particular,

(^')« = (y ' ) - 1 (mod P J ( . '=1 ,2)
so that

(4) Cy, y 2 ] " = [y\ r 2 ] (mod Ps+1).

Here

(5) [y\ y°2] # 1 (mod Ps+1) if s < t,

since otherwise P ' ^ Ps + 1 , contrary to the definition of s.
Since \yPx\ is odd and u2 = 1, we may assume y" = y. We prove, by

induction on t—s, that (iii) holds for a suitable generator x of <y>.
The assertion is obvious for s = t. Suppose s < t and yv = abc, where

a = [yv, y"2], b = [yv, yv\ «]i, c e P ^ . Now 62u = (a^a")" = 6"2, so that
(ab)u = aub2bu = ab; hence c" = c. By lemma 2.4, c has the form y^*'1 and
therefore

yw = «6f where A =

Since a ^ Ps + 1 and 6 e P s + 1 (by (4) and (5)), Af£ 0 (mod/)). We choose a; so
that xx = «/. Setting

x 2 = x , x s = x , $2 = x% , c 3 = a?3 ,

and using (3), we find that

« = [x2$2,xa£a~]

= LX2> (sl[X2> Xz\\-X2- XZ< hKX2> X3^3> h]ih> Xsh]

Then, since
[x2, x^2'1 e Pt_i, [x2, x3, M]A2-1 e Pt_lt
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we get b2 = \x%, x3, u]x* and

Thus x satisfies (iii) as required.

4.1.12. COROLLARY. H is a splitting extension of P by At.

4.1.13. LEMMA. The F-module P/P1 affords a faithful, absolutely irre-
ducible, unimodular representation p of F over Fv. If P is non-abelian, p is
self-contragredient.

PROOF. If F ~ Ai, the lemma follows from Corollary 4.1.2. We may
therefore suppose that F > HjP and that the restriction, p , of p to HJP
satisfies the conclusion of the lemma. Then p is absolutely irreducible
because p' is. p is faithful because p is faithful and every non-trivial normal
subgroup of F contains TPjP.

Suppose p were not unimodular. Since F > HjP, F is generated by
involutions. Thus there exists an involution uP e F such that the matrix
JJ = p(uP) has determinant —1. U is similar to diag (—1, — 1 , —1) or
diag (—1, 1, 1). The first case is impossible because p is faithful and
3£{F) = 1. In the second case, U has a 2-dimensional space of invariant
vectors, which means that ^"p/p (uPt) has a subgroup ~ (Cj,)2. This is im-
possible by lemma 2.4. Hence p is unimodular.

Suppose now that P is non-abelian, i.e. s < t. Let zP e F and let Z be
the matrix of the induced linear transformation on P/P1 with respect to the
basis xPx, xvPlt xviP1 in lemma 4.1.11. The relation (iii) and its conjugates
under v show that Z = adj Z, i.e. ZZ' = \Z\I. Hence \Z\ = 1 and
ZZ' = / . This shows that p is self-contragredient.

4.2. Type of G.

4.2.1. LEMMA. One of the following holds:

(a) q=p^5;
(b) 9 = 3,^3;
(c) q = 5, F ~ Ah and p = ± 1 [mod 5);

(d) q=l,F £ r+(7), P is abelian and p = 1, 2, or 4 {mod 7).

In the last 3 cases, G is a split group.

PROOF. Let q = rx, where r is prime.

FIRST CASE: p =£ r. Let E be an elementary abelian subgroup of F of
order rx and N =Jr

r(E). PjPx is a completely reducible ^-module; let
Xi> %2> %z be the corresponding linear characters of E. Since E is faithfully
represented, we may assume Xi is not the trivial character. Then %i n a s
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|iV : E\ conjugates under N because NjE acts fixed-point-free on E. Since
each such conjugate is a %lt \{q— 1) ^ 3 if F ~ PSL2(Fg) and <?—1 ^ 3 if
F ^ PGL2(Fq). Hence either q = 3 or q = 5, F s A5 or q = 7, F ~ F+{1).
If q = 5, an element of F of order 5 is represented by a linear transformation
with characteristic roots 1, s, e~1, where £ is a primitive 5-th root of 1.
Therefore e+e'1 = — £(1+V5) e Fp and so p = ±1 (mod 5). If ? = 7, an
element of F of order 7 is represented by a linear transformation with charac-
teristic roots co, co2, Co4, where m is a primitive 7-th root of 1. In the contra-
gredient representation, the same element is represented by a linear trans-
formation with characteristic roots w-1, co~2, co'*. Hence P is abelian by
lemma 4.1.13. Since co+co^+co* = — \(l+\/— 7) e F J , , ^ = l ) 2 o r 4 (mod
7). In all these cases, G splits over P because P, F have relatively prime
orders.

SECOND CASE: p = r. Let Z be the matrix representing an element of
F of order ^(<?+l) in the representation p. The smallest power p* such that
pf = 1 (mod J(?+l)) is <72. Hence Z has a characteristic root 6 such that
FJ>(6) = FQ2. Each of the 2A conjugates of 6 over Fj, is a characteristic root
of Z, so that 2A ^ 3. Thus q = p as required. If 9 = 3, P has the comple-
ment JVG{T) in G. This completes the proof.

4.2.2. LEMMA. If p ^ 5 and G = F+(p2), G does not split over P.

PROOF. A Sylow ^-subgroup S of G is regular because \S\ = p* and
p S; 5. If G were a split group, S would be generated by elements of order p
and so would have exponent p. However, it is easily verified that G has
elements of order >̂2.

Before proving the next lemma, we set down some facts about the
representations of ^ = F2(p) or F£(p) over FQ (cf. Brauer and Nesbitt [1]).
The ^(p-\-l) irreducible unimodular representations of @ over Fv have
degrees 1,3, 5, •••,/> and all are absolutely irreducible. We denote the corre-
sponding irreducible ^-modules by [1], [3], • • •, [/>]. Notice that the module
[p] is projective because p divides | ^ | to the first power.

By lemma 4.1.13, PjP1 s [3] when q = p. The representation corre-
sponding to [3] is given by the classical isomorphism F2(p) -> 0$(Fv)
(or F}(p) -±Q3(FV)). It is the only faithful unimodular representation of
degree 3 (otherwise such a representation would have all composition factors
of degree 1 and 'S would be nilpotent, which is clearly not the case).

4.2.3. LEMMA. / / p ^ 5,t ^ 2, the group of automorphisms of P /P 2 has
no subgroup ~ F£(p).

PROOF. We may assume without loss of generality that t — 2. Choose
x1 — x, x2 = xv, x3 = a;"2 as in lemma 4.1.11. Then either x{ = [x2, x3],
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x\ = [x3, Xj], x% = [x1;jr2]_or P ~ ( C ^ Thus, if G is the ^-group A(^( + 1)
(t ^ 3), P ~ P/P2 or Px/P3. Since ^G(PilPi+z) = -Pi. ^ induces a group
of automorphisms of PilPi+2 isomorphic to F2(p

2). Thus, the group of auto-
morphisms, A, of P has a subgroup X ~ A(^2)- Moreover, by the argument
in lemma 4.1.13 (applied to G), we may suppose each en e X has the
property that

(xW = n {xtPi)'« (* = 1. 2, 3),
I

where (a.ij)'(a.ii) = 7 , |ais-| = 1.
Let B denote the subgroup of A formed by all automorphisms a with

this property. Then B = XC, where C is the group of automorphisms 6
of the form

x\ = xiYixf» ( t = l , 2 , 3 ) .
I

Clearly, B is an extension of C by F2(p) and d ->* (di}) is an isomorphism of
C onto the additive group of all 3 x 3 matrices over Fp. If <x 6 B, 0 e C, then
0a is the element of C corresponding to the matrix (a^)"1 (0ti) (ao). It follows
that C is a 71

2(/>)-module ^ [3] 0 [3] (where v denotes the contragredient).
Now, since p > 3, C is the direct sum of the 71

2(/>)-submodules

Since [3] is absolutely irreducible, [3] <g» [3] has only the one submodule s
[1]. Since C is self-contragredient and since [1], [3], [5] are its only possible
composition factors, it follows easily that Ct are irreducible. Thus, C s
[1] © [3] © [5] and X is a complement of QCg in B.

Suppose now that A has a subgroup Y ^ F}(p). Let T denote the
natural homomorphism of A into the group of automorphisms of P/Pi-
Evidently Yr s r+(p), so that P/P1 ~ [3] as YT-modules. Thus, if P is
abelian, YT is conjugate in GL(PjPx) — A7 to a subgroup of BT. If P is not
abelian, Y gi B by the argument in lemma 4.1.13. Hence we may assume
that Y ^ B in both cases.

It now follows that both YCZ and X+ are complements of CxCb in YC,
where X+ is the subgroup of X of index 2. Therefore X+ ~ YC3> contrary
to lemma 4.2.2. This proves our result.

4.2.4. COROLLARY. If p = q ^ 5 and t 2j 2, ttm s = 1
not split over PjPx.

PROOF. If s > 1, P/P2 is abelian and G induces a group of automorphisms
of P/P2 isomorphic to F. If P\PX has a complement X/P1 in G\PX, X induces
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a group of automorphisms of P/P2 isomorphic to F. By the lemma, neither
case is possible.

4.2.5. PROPOSITION. There is a subgroup G of a group (1.2), (1.3) or (1.4)
which has the same type as G.

PROOF. We consider the cases of lemma 4.2.1 in turn.

(a) Here s = 1 by lemma 4.2.4. If G is not a split group, we may take
Q = r2(/>'+1) or r+(pt+1) by lemma 4.2.2. If G is a split group, then t = 1
by lemma 4.2.4., and we may take G as a group (1.3).

In the remaining cases, G is a split group by lemma 4.2.1.

(b) The group Ps_Xs+t_x{p) defined in § 1 has order p3t and by lemma
4.1.10, its commutator subgroup is P2s-i,s+t-i(P)> °f index p3$. Hence we
may take G as one of the groups

(c) Here/) == ± 1 (mod 5). Hence we may take

G = (A5; Ps_1<s+t_AP))-
(d) Here s = t and p == 1, 2 or 4 (mod 7), by lemma 4.2.1. Hence we

may take G as the group (1.4).

4.3. Uniqueness. In this subsection, G, G denote groups which satisfy
(A) — (C) and have the same type.

4.3.1. PROPOSITION. / / G is a split group, G s G.

PROOF. The proof is by induction on t (2; 1). We may assume that
GfPt_1 ~ GjPt_x. Choose x, u, v in G as in lemma 4.1.11. We first prove
that there is an isomorphism a : GjPt_x -*• GjPt_x such that

where x, u, v also satisfy (i)-(iii) in lemma 4.1.11.
Take any isomorphism /? : GjPt_1 -^ GjP^. We may evidently choose

x e (xPf^y, u e (uPf^y, ve {vPt_xY so that x, u, v satisfy (i), (ii). These
elements satisfy (iii) modulo iV i - Hence, by the proof of lemma 4.1.11,
there is a power x = xx such that x, u, v satisfy (i)-(iii), where X = 1 if
s = t, (X,p) = 1 if s = *—1 and A = 1 (mod p*-1-*) ii s < t —1 . Since
[P, Pt~i-S] = Pt-i by lemma 4.1.10, the mapping z - • zx is a central auto-
morphism of PjPf^. Since G splits over P, this can be extended to an
automorphism 6 of G\Pt_x which fixes M P M and vPt_x. Then a = /?0 :
GjPt_x -> 0/Pt_1 satisfies the required conditions.

Let S be the subgroup oiGxG formed by the elements (y, z) satisfying
(yPt-i)

a = zPt-i- If X, Y are the kernels of the projections
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<p : S -> G, (y, z) -> y ; xp : S -> G, (y, z) -> z,

and 0, = <rHPt) = rp-^P,) (0 ^ t ^ <- l ) ,

then K X < 0 , ^ < • • • < Qo = Q
K Y < Qt_x < • • • < < ? ,

are S-composition series of Q with factors s (CP)3; moreover, S/Q s /"
and the factors are isomorphic /"-modules. We note also that Q has a comple-
ment K in S. For we may take K = ^/*s«(w, u), (v, £)» if q = p = 3,
and in all other cases (\Q\, \S : Q\) = 1.

If &s ̂  ^ > (k—\)s, the descending central series of P, P are P >
P. > • • • > P(t_1)f > 1 and P > Pa > • • • > Pik_1)3 > 1 by lemma 4.1.10.
Since Q is a subdirect product of P, P, its descending central series has the
f o r m Q = 0<o> > QU) > • • > 0<*-D > 1,
and

(1) Q^X = g(<)Y = Qis (0 ^ t ^ jfe—1).

By the proof of lemma 4.1.7,

Pi • QIQs -> Qu-vJQis. *Q. -> *•'"". (i ^ » ^ A - i)

is a well defined S-epimorphism. By (1) and since X ^ ^{Q)> the natural
commutator epimorphism

induces an S-epimorphism

. ! ( 1 = ^ = ! k—1).

The product (1 ® /ii)yi: (0/0.) ® (0/0.) -* QWjQV+v

satisfies ((1 ® /ijyi) (yQs ® yQ8) = Qii+1)

and so induces an S-epimorphism of the exterior square

K • (QIQs) A (0/0.) - QliW™

Now M = (Q[QS) A (QIQS) is an indecomposable ZS-module with unique
composition series M > pM > • • • > p'M = 0. Therefore Q{i)[Qii+1) £
Mjpr<M (1 ^ * ^ A—1), where ^r- ^ />s is the exponent of <2(i)/<2(i+1)- If
1 ^ i ^ ft—2, the group 0jJ/0<<+1), of exponent />" is a homomorphic image
of 0<i>/0(i+1» and so r4 = s. If i = k—1, Q<k-u has the same exponent as
Ql*-1)X = Qlk_1Ul viz. ^-<*-i>.f so that ffc_1 = <_(A_i) s . Thus, |0 ' | =
p3it-» a n ( j |g • g' | _ ,̂3(8+1) j n other words, Q' is a subgroup of (^ of index
p\
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Since Q/Qs = (Cj,«)3 a n d since all S-composition factors of Q are iso-
morphic to (CJ3, Q\Q' s (C^+i)3 or (CP,)

3X (CJ3. Now by the choice of
x, x, • • •, the elements x* = (x, x), u* = (w, w), U* = (w, v) satisfy (iii)
in lemma 4.1.11. Thus {x*)»" e Q'. Since

' has exponent p\ Therefore QjQ' s (CP»)3X (Cp)
3.

Now the /"-module Q1^(Q)[^'(Q) is a direct summand of Q[$(Q):

QI&{Q) ^ (RI0(Q)) ®

(For either (p, \r\) =£ 1 or p = q = 3 and Q10{Q)l^>(Q) is the injective
module [3].) This implies that R <\ S and Q\Q' = (R/Q')x {QJQ'). Since
^x = ^>'X = @'Y, i? is a common complement of X, Y in (). Therefore KR is
a common complement of X, Y in 5. This gives

G ^ S/X ^ KR ^ S/Y s G,
as required.

For the remaining proofs, we need some information about the cohomo-
logy of 'S = F2(p) or F£{p) over Fv. We assume that p > 3. The symbol

'a, b, • •

u, v,

will denote a ^-module N with successive Frattini factors

N/0{N) ~ [ « ] 0 [&] © • • - ,

Let [1]', [3]', • • •, [/>]' denote the principal indecomposable modules
corresponding to the irreducible modules [1], • • •, [p]. [k]' is self-contra-
gredient and has a unique maximal submodule Mk, which satisfies [A]'/
Affc s [A]. Using these facts and the known values of the Cartan invariants
of 1? (cf. Brauer and Nesbitt [1]), we find easily that

[1]' =

1

P-2 (Kk<p).

There is a very simple projective resolution

[i]
VIZ.

1, 3 [1J - * 0.
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The successive kernels Kt = ker 8{ are given by

Let L, N be modules and Q ->• 77 -> Z, a projective presentation of L.
By definition,

Ext (Z,, 2V) s Horn (<?, AT)//,

where / is formed by the elements of Hom(Q, N) which extend to elements of
Horn (77,2V). The cohomology groups //'(2V) = !!*(&, N) are given by

H'{N) = Ext (K^.N).

In view of the presentations

Mk -> [*]' -* [*], if, -> 77. - • 7 ^ ,

and since Ms is the unique maximal submodule of [k]', we have

(1) Ext ([*], [»»]) s Horn (Mfc, [m]),

(2) #<([*]) ~ Horn (Kt, [k]).

4.3.2. PROPOSITION. If G is not a split group and p =£ 5, then O ~ G.

PROOF. We use the same method as in proposition 4.3.1. The proof
is by induction on t(7^ 1). We may assume GfPt_i ^ G\Pt_x (using corollary
4.2.4.). Choose any isomorphism a : G\Pt_^ -> G\Pt_x, and form S as before.
Then \Q : Q,\ = |& : <?'| = ^ a n d g/^ ' s (Cpi)8 Or (C,)«. Now (?/(?' is a
Z/'-module so that the first case is excluded by lemma 4.2.3.

It follows that QIQ' is an /^/"-module with composition factors [3], [3].
Now the extension SjQ' of QjQ' by F is determined by a certain element of
H2(QIQ'), i.e. (cf. (2)) by a certain homomorphism K2 -> ^/^>. Moreover,
if ^ /^ ' ->- ̂ /<2i is the canonical epimorphism, the extension S/Q1 of Q\QX

by F is determined by the homomorphism K2 ^> ̂ / ^ i - By lemma 4.2.4,
a/9 ̂  0. Since K2 s fy ,^ ! an(^ P ^ 5> w e

(3) <2/(̂ ' ~ (ima) © (ker /S) (as T-modules),

where, of course, ker /? = <?!/<?'. Let im a = R/Q'. The extension SIR of
£//? by Tis determined by the homomorphism K2 ^> (?/7?, where (?/(?' -^ (?/7?
is the projection corresponding to (3). Evidently, ay = 0 so that QjR has a
complement Z/i? in SJR. Then L is a common complement of X, Y in S
and so 5 ^ G as before.

The remaining case p = 5 requires a different argument.

https://doi.org/10.1017/S1446788700006182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006182


542 G. E. Wall [20]

4.3.3. LEMMA. Let G = -T2(^'+1) or r$(Pt+1) ( *^ 2). / / 8 /> ^ 3 or 1,
the group of outer automorphism classes of P has a single conjugacy class of
subgroups s F.

PROOF. Let A be the group of automorphisms of P. Let / , C, B denote
the subgroups of inner automorphisms, central automorphisms and auto-
morphisms induced by elements of G. Then B s F2(p*) and B is an exten-
sion of J by F2(p). Choose xlt x2, x3 as in the proof of lemma 4.2.3. An
element 0 of C has the form

*? = **n**w1"-1 (*•=!, 2, 3),
I

and we may define C1, C2, C3 as before. An element a of A has the property
that

{XiPiY = IT (*^ i ) a " (* = 1, 2, 3),
I

where (<xw)'(aM) = / , |aw| = 1. Therefore C is a F2(p)-module with the Cf as
irreducible components. It may be proved that B n C = C3, BC = A.

It follows that BIJ(z r2(p)) is a complement of C / / / ( s CxCb) in
the group of outer automorphism classes AjJ. The lemma now follows
from the fact that

Hx([l] 0 [5]) s Horn ( ^ 2 ] ' W © ^]) = 0 (P * 3, 7).

4.3.4. LEMMA. Let G = r^p^) or r}(pt+1) (t ^ 2). Le/ (5 be an exten-
sion of P by T such that 3£{Q) = l.If9p^3or7,G^G.

PROOF. We may regard Q, G as groups of pairs (x, u)(x e F,u e P)
with multiplications

(x, u) (y, v) = (xy, c(x, y)u^v)v) in Q,
(x, u){y, v) == {xy, c{x, y)urMv) in G,

where T, T are homomorphisms F->• AjJ. Since Q, G have trivial centres,
T, T are monomorphisms. Hence, by lemma 4.3.3, we may suppose r = r.
Then c(x, y) = c(x, y)d(x, y) where d(x, y) e 2?(P) = Pt_x.

Now c(x, y)Plt d(x, y) are 2-cocycles for the /"-modules PIPX, Pt-\-
By lemma 4.2.2, the former is not a coboundary. Since

8 The lemma is in fact true for p = 3 but false for p = 7.
' The lemma is in fact true for both p ~ 3 and p = 1. The proof in the latter case is

somewhat complicated because one has to prove that a certain 3-cocycle is not a coboundary.
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we may suppose that d,(x, y) = c(x, y)Xv for some integer X. Thus c(z, y) =
c(x, y)m, where co is the automorphism u->• M1+AJ)'~1 of P. Since a> e 3f(A),
the mapping (a;, y) ->- (x, y"), G -> G, is an isomorphism. This proves the
lemma.

4.3.5. COROLLARY. / / G is not a split group and p = 5, G ^ G.

PROOF. Choosing H < G, H <G so that HIP s JS/P s ^44 and
applying lemma 4.3.1 to H, H, we deduce that P ~ P. Thus G, G are both
extensions of P by F and so, by the lemma, G ~ G.

This corollary and Propositions 4.3.1 and 4.3.2 show that G ^ G in all
cases. Thus, the final step in the proof of Theorem 3 is complete.
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