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ABSTRACT

The paper gives details of a case study in the premium rating of a Householders
Contents insurance portfolio. The rating is performed by the fitting of bivariate
spline functions to a version of operating ratio described in Section 3.

The use of bivariate splines requires a small amount of mathematical equip-
ment, which is developed in Section 4. The fitting of splines, using regression is
carried out in Sections 5 and 6, where the numerical results are given, including
some assessment of goodness-of-fit.

Contour maps of the spline surfaces are also given, and used for the selection
of geographic areas used for premium rating purposes. These are compared with
the areas, past and present, actually used by the insurer concerned.

1. INTRODUCTION

It is common in insurance of domestic property lines, e.g. motor vehicle (colli-
sion damage) and householders, to find that the risk premium per unit exposure
varies with geographic area when all other risk factors are held constant.

Such variation may or may not be continuous as a function of spatial coor-
dinates. In either event, it will be necessary for practical purposes to divide the
total area for which premium rates are required into a relatively small number
of regions of reasonable size such that, all other risk factors equal:

(i) premiums vary as between region;
(ii) premiums do not vary within region.

Henceforth, such regions will be referred to as rating regions,
This raises the question of how such regions should be determined. The pre-

sent paper consider this in a context in which the determination is to be made
solely on the basis of data. In practice, of course, it may be necessary to modify
the conclusions reached in this way in order to make suitable allowance for
available anecdotal or circumstantial evidence.

Thus it is assumed that claims and exposure data are available in respect of a
number (possibly a large number) of subdivisions of the total area for which
premium rates are required. In the specific example considered here these sub-
divisions are postal areas {postcodes in Australian terminology). The problem
consists of identifying the appropriate aggregations of the postcodes into rating
regions satisfying the two conditions set out above.

It is possible to regard the problem as one of cluster analysis, suitable clusters
of postcodes being sought. However, it is evident that clustering must be carried
out according to the criteria of both geographic clustering and clustering by
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premium. Definition of a metric for the clustering algorithm which incorporates
both criteria satisfactorily is not easy.

This paper follows a different path. Risk premium, with all factors except
geographic coordinates held constant, is envisaged as a continuous function of
these coordinates. This function is then estimated and examine for steep gra-
dients which would lead to the definition of rating areas satisfying conditions (i)
and (ii) above.

Thus, the fitting of the premium function becomes the major task. The
mathematical form of this function is quite unknown. A natural way to fit it
smoothly to the available data points is to make use of spline fitting. Note that
the fitted spline function is bivariate.

This fitting is carried out in Section 3 and the results presented in Sec-
tion 4.

2. DATA AND NOTATION

2.1. Data

Data available in respect of each metropolitan postcode related to the experience
of the Householders Contents portfolio of a large Australian insurer in the
financial year 1985/86 and in the state of New South Wales. The data compri-
sed:

(i) postcode identifier and geographic coordinates;
(ii) years of exposure to risk;
(iii) number of claims;
(iv) average cost per claim;
(v) average sum insured;
(vi) average jewellery penetration (i.e. the proportion of policies carrying

jewellery insurance, this risk requiring a separate coverage);
(vii) average jewellery sum insured, the average being taken over those cases

which carry a non-zero sum insured;
(viii) average earned premium per year of exposure;
(ix) average gross experience premium per year of exposure, consisting of:

average observed risk premium per year of exposure

plus

administration expense loading consisting of a charge per policy, a
charge per claim, a percentage of claim payments, and a percentage
of premium,

where average observed risk premium per year of exposure is defined
as:

number of claims per year of exposure

x

average cost per claim;
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(x) the Company's present system for premium rating the relevant postcode,
consisting of:

(a) the rating region to which that postcode is currently assigned;
(b) premium rating formula for that rating region, of the form:

base premium + const u x sum insured + const2. x jewellery sum insu-
red,

the terms "base premium" and "const." each varying with rating
region.

A small sample of these data is displayed in Appendix A.

2.2. Notation

The remainder of this paper uses the following notation. Suppose there are N
postcodes. Without loss of generality, they can be treated as numbe-
red \,2, ...,N (although in fact they are not). In the following definition of
notation a subscript / denotes postcode /.

Let
El = number of years exposure;
n, = number of claims;
x, = average cost per claim;
Sj = average sum insured;
Pi = average jewellery penetration;
/ , — average jewellery sum insured;
Pf •= average earned premium per year of exposure before allowance for

no claim discounts (NCD);
Pf = average risk premium per year of exposure rijXj/Ej, as defined in

Section 2.1;
Pf = average gross experience premium per year of exposure;
k = average NCD in the portfolio, expressed as a proportion of premium

payable net of NCD;
R\P) = rating region to which the postcode is assigned in the present pre-

mium rating system;
bR = base premium in rating region R;
n$ - premium rate per $ 1000 of sum insured in rating region R;
n^ = premium rate per $ 1000 of jewellery sum insured in rating region

:M = URJP) = total region covered by postcodes.

According to this notation, the jewellery premium rate for postcode / is denoted
by n($tp. This very cumbersome expression is abbreviated to nf^. Similarly, bRp
and n^n are abbreviated to bt and n\B) respectively.
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3. ISOLATION OF GEOGRAPHIC AREA AS A RISK FACTOR

3.1. General context

As Section 1 explains, the objective of this paper is to fit a function to the
"geographic area effect". This requires controlling for any other factor affecting
risk premium.

Strictly, all risk factors should be fitted to the data simultaneously. This,
however, would be extremely difficult. It is assumed here that risk premiums are
estimated by a three-stage procedure:

— Stage 1. Fit all factors simultaneously, but with only a rough fit of the
"geographic area effect". This effect could be roughly incorporated in the
model using rating regions taken from an existing premium rating system or
even chosen by guesswork.

— Stage 2. Control for all risk factors other than geographic area by calcula-
ting, for each postcode, an index of risk (the following uses a version of
operating ratio) based on standardized values of all other risk factors.

— Stage 3. Treating this index as function of geographic coordinates x, y, fit a
function I(x, y). Then estimate risk premium at (x, y) as proportional to
I(x,y).

In the present application, Stage 1 was taken as being carried out by the existing
premium rating system, which was believed to be reasonably accurate.

In a general context Stage 2 proceeds as follows.
The operating ratio for postcode / is:

(3.1.1) Pi = {\+k)Pf/Pf.

A more accurate version of this formula would have been

with an NCD factor kt specific to postcode i. Unfortunately, the factors /c, were
not available and it has been necessary to use the compromise formu-
la (3.1.1).

This would result in a tendency to reduce high observed operating ratios, and
increase low ones. Such attenuation of the data would have little effect on the
present exercise, since the selection of geographic rating regions depends largely
on the risk ordering of postcodes rather than the magnitudes of their risks. It is,
however, a factor which would need to be taken into account in the subsequent
exercise of determining premium rates for the rating regions selected.

Suppose that the premium rate depends on m factors F{,..., Fm, with Fx

representing rating region (of the present system). Let n{fx, ...,fm) be the pre-
sent tabular premium when F{ = / , , . . . , Fm = fm.

Now let fij,j = 2,...,m, denote the average value of /•} observed in postcode
/; and let fj,j = 2,...,m denote the corresponding average over the entire
portfolio. Averages here are weighted averages with years of exposure used as
weights.
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Next select a "standard" rating region, preferably not near the extremes of
high or low risk, and denote it by R$p. With a slight abuse of notation, the
tabular premium in this region on the basis of average values of risk factors
F2,...,Fm taken over postcode i may be written as n(*, fa, ••-,fim).

Then, to a reasonable degree of approximation, the factor:

(3.1-2) 0, = n(i, fa,...,U/n{*, fa, ...,fim)

is the factor by which premium actually received in respect of postcode / has
been increased relative to the premium which would have been received had
rates of the " standard " rating region been applied to all postcodes.

Removal of the geographic area effect adjusts Pf to Pf/<pt, and hence pt to:

(3.1.3) />,<*> =/>,&,

by (3.1.1). By (3.1.2) and (3.1.3),

(3.1.4) pW = Pi n (i, fa,..., f , J / n (*,fa,..., f i m ) ,

which is the operating ratio which would have been observed in postcode / had
that postcode been subject to the premium rates of the " standard" region. It is
essentially an estimate, subject to sampling error, of relative costs of the various
postcodes. This will be referred to as the operating ratio adjusted for region.

Now let (x,,y,) denote the centroid of the polygonal postcode area /, i.e. the
average of the vertex coordinates (see Appendix Al). Then a first approximation
to the index of risk required in Stage 2 is:

(3.1.5) ?(Xi,yd=pP.

An alternative version of 0, may be considered. This is:

(3.1.6) ft = 7t(i,f2,...,fm)/n(*,f2,...,fm).

Usually (3.1.2) woul be preferred to (3.1.6) since the former takes into account
any unusual variation in the risk factors F2, • •., Fm as between different postco-
des.

3.2. Specific context

In the specific context of the premium rating system set out in Section 2.1, item
(x) (b), m = 4 with

JF] = rating region;
F2 = sum insured;
Fi = jewellery penetration;
F4 = jewellery sum insured;

where, for an individual policy,

^ 3 = 1 , if the policy carries a jewellery sum insured;
= 0, otherwise.
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Thus, the numerator of <ph as defined in (3.1.2), is the premium for a policy
written in postcode / carrying the average sum insured and average jewellery
sum insured of that postcode and with the jewellery component of the premium
scaled down by the jewellery penetration factor. The denominator of <p, is the
same except based on premium rates of the " standard " region instead of the
region containing postcode /.

A small sample of the results of these calculations is set out in Appendix B. As
appears there, the two versions 0, and (j>\ of operating ratio adjusted for region
produce quite similar results and only 0, has been used subsequently.

4. SPLINE FITTING

4.1. General

According to the preamble in Section 1, the operating ratio adjusted for region is
envisaged as a function I(x,y), x,yeM By (3.1.5), estimates of I{xhy^ are
available. The function I(x, y) is to be estimated as a spline which fits these
estimates adequately.

4.2. Analytical

It is first necessary to clarify what is meant by a spline with multi-dimensional
domain. The present application is concerned with a 2-dimensional domain,
and discussion will be restricted to that dimensionality. The concepts generalize
readily to higher dimensions, but at the cost of more complex definitions which
would represent impedimenta in the present context.

DEFINITION. Let be the 2-dimensional domain [0, oo) x [0, oo), and (u, v):
M-* &% a- C°° bijection. Let 0<hl<h2<-..<hm<oo and
0 < ki < k2< ... < kn<oo. Define y, to be the curve with parametric form:

(4.2.1) Yj(t) = [u{t, kj), v(t, kj)], j = 1 , . . . , « ;

and similarly define the curve S^.

(4.2.2) 5,(t)

The curves y7- and <5, will be called hinges. They are sometimes called knot lines
in the literature. A subset of .abounded only by hinges will be called a hinged
subset. A hinged subset which does not contain any other hinged subset as a
proper subset will be called a minimal hinged subset. A real function defined on
Ji is a spline function of degree p if, when restricted to any minimal hinged
subset, it is a bivariate polynomial of degree ^ p, at least one such polynominal
having degree equal to p, and all derivatives (including mixed derivatives) of
order ^p— 1 are continuous on the whole of M
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REMARKS. The function (u, v) establishes curvilinear coordinates in R. The set of
curves j y,, S, \ are coordinate lines in these new coordinates. The remainder of
the definition generalizes concepts involved in spline functions of a single varia-
ble. The correspondences between univariate and bivariate splines are as fol-
lows.

Univariate

Knot

Interval
between knots

Bivariate

Hinge

Minimal
hinged subset

Note that, because the map (u, v) is a bijection, i.e. a coordinate transforma-
tion, its inverse (call it g) transforms the hinges into coordinate lines in R. Thus,
instead of fitting a spline function with hinges yjt St to observations l(xt,y) one
might fit a spline function to observations I{g(xh y,)) with hinges (in the xy-
plane) x = hh i = 1, . . . , m and y — kj, j = 1, . . . , n.

In this coordinate system, all minimal hinged subsets will be rectangular. In
all subsequent analytical development, therefore, this rectangular structure will
be assumed without any loss of generality.

It should be noted that, since the coordinate transformation is in general non-
linear, a spline function fitted in the coordinate system in which hinges are
rectilinear will not necessarily induce a spline function in the coordinate system
of curvilinear hinges. Nevertheless, the function fitted in this latter coordinate
system will be a reasonable interpolating function.

DEFINITION. Let (z)+ denote max (z, 0), and read (z)p
+ as [(z)+F. An M-spline

of degree p is a function (defined on the Euclidean xy-plane) which assumes one
of the two forms (x—h)p

+ for some constant h or (y—k)p
+ for some con-

stant k.
The M-splines are of use in constructing spline functions as the following

result shows. Their univariate version is discussed by GREVILLE (1969, pp. 2-3),
though not under that name.

PROPOSITION. Any spline function of degree p with hinges x = hx,..., hm cutting
the x-axis and hinges y = kx,..., kn cutting the y-axis can be decomposed into a
sum of:

(i) a polynominal of degree ^ p on &, and
(ii) constant multiples of the M-splines (x—h^p

+ , i = 1, . . . , m;
(iii) constant mulitples of the M-splines (y—kjf+ , j = ! , . . . , « .

PROOF. See Appendix C.
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4.3. Choice of hinges

Certain criteria can be established for the determination of the hinges of biva-
riate spline functions to be fitted to a particular data set.

First, the more hinges are specified, the more parameters are to be estimated,
since the spline function changes its polynomial form each time a hinge is cros-
sed. Thus, the choice of too many hinges will lead to over-fitting, i.e. a " wrin-
kly " fitted surface. For this reason the number of hinges used should be mini-
mized subject to adequate fit to data.

Second, the choice of hinges should be related in some way to the " flatness"
of the data points. For example, if all data points assumed the same value, a
constant polynominal would fit over the entirety of the relevant domain. There
would be no purpose in choosing any hinges to allow the polynominal form to
vary from one hinged subset to another.

Strictly, it is not "flatness" which matters but rather conformity of data
points with a simple polynomial form. For example, if a quadratic spline is to be
fitted and all data points lie on a quadratic surface, there would again be no
purpose in choosing any hinges. However, this type of conformity of the data
will often be difficult to verify by simple inspection.

Conversely to the second point, hinges will need to occur more densely in
those subregions where the surface to be fitted is evidently changing more rapid-
ly.

Thus, in general terms, hinges should be chosen to delineate " essentially dif-
ferent" parts of the surface, with greatest (resp. least) density in those areas
where the surface is changing most (resp. least) rapidly. Parts of the surface
which are apparently different can be identified from the map in Appendix Gl.
It can be seen in the following diagram that the hinges have been chosen to
approximate the boundaries of these regions, isolating for example:

(i) the north-east and south-east corners;
(ii) the central east region around the harbour;
(iii) the far west region.

With all this, however, it must be said that the choice of hinges actually adopted
on any particular occassion remains very much a subjective one.

The following diagram provides a schematic representation of the (curvili-
near) hinges chosen in relation to the fitting of operating ratio adjusted for
region detailed in Appendix B. In fact, in the actual surface fitting procedure,
some of these hinges were very slightly distorted, as described in Section 5.2.

The rectangular region covered by these coordinates is the region appearing in
the diagrams of Appendix G, though the horizontal scale has been distorted
relative to the vertical scale in the schematic representation.

The precise definition of these hinges is given in the numerical detail of Sec-
tion 5.1. Initially, two further hinges, like flatter versions of the seemingly para-
bolic hinges to the right of the diagram, were considered to the left of those.
However, the numbers of observations in the minimal hinged subsets so created
were sufficiently small that the additional hinges were dropped.
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4.4. Fitting by regression

The hinges illustrated in Section 4.3 were transformed to rectilinear hinges by
means of the coordinate transformation set out in Section 5.2. The rectilinear
hinges were:

x=300 , x = 400;
y=l00, ^ = 150, y=l&0, y = 200.

Then, by the spline decompositon result quoted in Section 4.2, quadratic and
cubic spline functions can be written in the forms:

2 m

Quadratic spline: f(x,y) = ^ a w * V + 2 bj(x-h)2
+ +

k,l=O i = l
k IS2

n

(4.4.1) + V

3 m

Cubic spline: f(x,y) = ^ aki*kyl + 2
k, 1=0 i= 1
k lS3

n

(4.4.2) + 2
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The splines are fitted by estimation of the coefficients a^, bt, Cj. Since/is linear
in these unknowns, regression can be used to carry out the fit.

Regressions have been performed using the GLIM (Generalised Linear Inte-
ractive Modelling) system (PAYNE, 1985). Regression fits are carried out in this
system by the method of maximum likelihood. It is assumed that each obser-
vation respresents a drawing from a gamma distribution. This recognises the
essential positivity of the sampled variable, operating ratio adjusted for region.
Each observation is assigned a weight E,. This means that the coefficient of
variation of the gamma distribution associated with postcode / is taken to be

const./£/,

where the const, term is independent of;.
The difficulties arising in the choice of an error distribution deserve some

discusson. It may be reasonable to regard the amount of claims in each cell as a
generalized Poisson variate. For a large expected number of claims, i.e. large Eh

this is known to approximate a gamma variate (SEAL, 1977). Hence operating
ratio adjusted for region/>, (*), a scalar multiple of this claims amount (see (3.1.1)
and (3.1.4)), will also be a gamme variate approximately.

Difficulties arise when Et is small. In this case the distribution of /?{*' consists
of a spike at zero, together with a continuous distributions on strictly positive
support. No standard distribution provides a model for this.

It is evidently extremely difficult to find an error distribution which provides
an adequate representation of/?{*' at both large and small exposures, and is also
computationally manageable for regression purposes. Certainly, the standard
regression packages do not appear to provide for this.

In the event, only a small minority of cells contained small E,. The great
majority contained Et of at least some hundreds, probably sufficient to justify
the adoption of the gamma error distribution.

When the gamma error distribution is used, it is natural that the reciprocal of
the linear model (i.e. the reciprocal of the spline function) be fitted to the data.
This is done by the GLIM package.

5. RESULTS

5.1. Hinges

The reasoning governing the selection of hinges is set out in Section 4.3, as is the
general shape of those actually selected. The precise forms of the hinges, special
cases of (4.2.1) and (4.2.2), are as follows:

yj(t)= {t, kj + sgn (kj- 150) exp [-0.0004 | k}— 150 I (t- 500) +

(5.1.1) + 5(^,-100)/3]}, 0 ^ ^ 6 0 0 ,

for j = 1, 2, 3, 4, with ky = 100, k2 = 150, k3 = 180, k4 = 200; and

(5.1.2) <S,(0 = I hj+600000 (/-150)2/(600- h,)\t\, 0 ^ / ^ 3 0 0 ,

https://doi.org/10.2143/AST.19.1.2014917 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.1.2014917


USE OF SPLINE FUNCTIONS FOR PREMIUM RATING BY GEOGRAPHIC AREA 101

for / = 1, 2, with h{ = 300, h2 = 400, where sgn (.) is defined by:

sgn(x) = + l ,x > 0;
= 0,x = 0;
= - l , x < 0.

The functional forms needed to produce hinges of the right shape are evidently
complicated, as they will be in most practical implementations. Discovery of
these forms, and production of the associated coordinate transformations (Sec-
tion 5.2), are the only non-routine, and hence difficult, parts of the whole fitting
procedure.

5.2. Coordinate transformations

As remarked just after the definition of a spline function in Section 4.2, the
hinges <$, are the images under the coordinate transformation (u, v) of the coor-
dinate lines x = ht in the xy-plane. Similarly, the hinges y, are the images of the
coordinate lines y = kj.

Comparison of (4.2.2) with (5.1.2) indicates that, along the hinge Sh

u(x,y) = . X + 6 0 0 0 0 0 [ D ( X , > 0 - 1 5 0 ] 2 / ( 6 0 0 - X ) 3 .

For convenience, write x', y' for the transformed coordinates induced by x, y.
Then, along <$,-,

(5.2.1) x' = x + 6 0 0 0 0 0 ( / - 15O)2/(6OO-x)3.

Similarly, along yj,

(5.2.2) y' = y+sgn (y-150) exp [-0.0004 I y- 150 I (x'-5OO + 5(y- 100)/3].

Now (5.2.1) and (5.2.2) together do not give a coordinate transformation in a
convenient form since they give:

(x,y') (->• x'
(x',y) .-> y',

and not

(5.2.3) (x,y) .-> (x',y'),

as required.
In the present case this difficulty can be overcome by using the fact (from

(5.2.2)) that y' ~ y for large x'. The coordinate transformation chosen is there-
fore:

(5.2.4) x' = x+600000 (y- 150)2/(600-x)3;

(5.2.2) y' = y+sgn (y- 150) exp [-0.0004 I y- 150 I (x'-500 + 5(y- 100)/3].

Equation (5.2.4) is of the form required by (5.2.3). If x' in (5.2.2) is expressed in
terms of x, y by means of (5.2.4), then (5.2.2) is also in the form required by
(5.2.3).
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The means of converting each (x', y') pair used in defining a postcode (Ap-
pendix A) to a point (x, y) is given in Appendix D2.

Naturally, the approximation of y' by y in (5.2.4) will distort the hinges defi-
ned by x — hj and y = kj respectively. However, for the points x',y' with larger
values of x' and smaller values of y'-150, which are primarily the ones where
the definition of the hinges needs to be reasonably precise (see the diagram in
Section 4.3), the distortion willl be small. This is illustrated by the following
diagram which displays the hinges x = 300, 400 and y = 100, 150, 180, 200 in
the x'y'-plane, as produced by the coordinate transformation (5.2.4) and (5.2.2),
and overlays them on the diagram of the desired hinges illustrated in Sec-
tion 4.3. The difference between the two sets of hinges is very small for practical
purposes, and in a number of respects the two are quite indistinguishable.

300

280 •

260

240

220

200

180
X

1 SO

*°««0«

140

120

100

ao

80

iTnq i i I I \ ] I I I I I 1 1

200 400

It should be pointed out here that (5.2.4) and (5.2.2) do not in fact provide a
coordinate transformation of 3L The appearance of the terms sgn (y— 150) and
I y— 150 I in (5.2.2) produces discontinuities in the gradients of the expression
given there for y'. However, (5.2.4) and (5.2.2) do provide separate coordinate
transformations of the two subregions of <M defined by the constraints y ^ 150
and y^ 150 respectively. It is evident from (5.2.2) that these subregions are
mapped to y' ^ 150 and y' ^ 150 respectively. It follows that the line y = 150 is
mapped to y' = 150.

6. THE SPLINE SURFACES

Section 4.4 gives the algebraic forms of the quadratic and cubic splines whose
reciprocals are to be fitted to the data [see (4.4.1) and (4.4.2)]. These are written
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in terms of (x, y) coordinates indicating that the independent coordinates are
from the domain in which the hinges are rectilinear, as assumed in the formulas
given. Details of the regression model used in the fit are also given in Sec-
tion 4.4.

The function to which the reciprocal spline is fitted in Section 4.4 is taken as
I(x, y), the operating ratio adjusted for region, as experienced at (x, y). As noted
in (3.1.5), observations I(x, y) on this function are taken as available at the
centroids (xt, y,) of the various postcodes. A sample of observations is listed in
Appendix B.

Note that these centroids must be expressed in terms of the (x, y) coordinates.
This has been done by means of the following procedure:

(i) for each vertex (x', y') of postcode / listed in Appendix Al, calculate the
corresponding coordinates (x,y);

(ii) calculate (x,, yt) as the average of all the vertex coordinates (x, y) related to
postcode /.

The results of these computations are sampled in Appendix E. Note that, becau-
se the transformation between the (x, y) and (x1, y') coordinate systems is non-
linear, postcode polygons in the (xr, y') coordinates will not have rectilinear
sides in the (x, y) representation. Therefore, the evaluation of a centroid as the
average of the vertex coordinates will involve some error. Since most postcodes
are small in area, especially where the curvature of the coordinate transforma-
tion is greatest, this error will be small and probably negligible.

Appendix E summarizes a small sample of the data used in the spline-fitting
regressions.

The results of the regressions are as follows.

QUADRATIC SPLINE

Spline coefficient
Term

Fitted value Standard error

const. 1.555 1.659
x -6.247x10-' 2.830xl0"3

y 4.236 x 10"2 3.725 x 10"2

x2 1.297 x 10"2 5.095 x 10"6

xy 1.387xlO"5 1.253xlO"5

y2 -3.648 x 10-4 2.142x10""
(x-300)2

+ -4.326xlO"5 1.996xlO"5

(x-400)2 1.312xlO"5 5.250xl0"5

(y-100)2. 5.741x10"" 3.003x10""
(y-150)2

+ -1.512x10"" 2.483x10""
(y-180)2

+ 4.544 x 10"" 4.319x10-"
(y-200)2

+ -5.708x10"" 3.876xlO"4

It may be noted that a number of the coefficients here are not statistically
significant. This fact is taken no further here, but will be referred to again below
in relation to the fitted cubic spline.

https://doi.org/10.2143/AST.19.1.2014917 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.1.2014917


104 G.C. TAYLOR

Term

CUBIC SPLINE

Spline coefficient

Fitted value Standard error

const.
x
y
x1

xy
y2

xy

(x-300)3
+

(x-400)3

(y- \M)\
\

(y-m)\
(y-200)3

+

-1.681
1.300 x 10-3

1.287 x 10-2

1.198x 10-4

-2.965 x 10"4

5.945 x 10"4

-2.016x 10"'
9.316x 10-8

7.772 x 10-'
-3.670xl0"6

5.835x 10-'
-1.744 x 10"6

7.390x 10"6

-3.353x 10-6

5.155 x 10"6

7.855 x 10-6

4.916
2.098 x 10"2

1.519 x 10"1

4.694 x 10-5

1.610x 10-4

1.837 x 10-'
5.861 x 10"8

1.352 x 10-'
3.412x 10-'
7.013x 10"6

2.167x 10-'
8.728 x 10-'
9.671 x 10-6

7.737 x 10-6

1.270x 10-5

1.102x 10"5

As was the case with the fitted quadratic spline, many of the terms in the
cubic spline are not statistically significant. It is possible to eliminate these from
the fit. Experimentation with the elimination of insignificant variables led to the
following cubic spline function.

T m

const.
X

X2

X3

y3

(x-3OO)3
+

(X_4OO)3
+

(y-100)3
+

(y-15O)3
+

Fitted value

3.742
-3.229 x 10"2

1.695 x 10-"
-2.542 x 10- '
-5.215x 10- '

6.871 x 10"'
-1.857x 10-6

3.401 x 10-6

-3.884x 10-6

Spline coefficient

Standard error

0.4087
6.474 x 10-3

3.306 x 10-5

5.132x 10-8

6.686x 10-8

2.051 x 10- '
8.625 x 10- '
5.307 x 10- '
9.090 x 10"'

Some further statistics related to the regression models, particularly concer-
ning goodness of fit, are of interest. These appear in the following table.

The meaning of the estimated coefficients of variation is as follows. For the
largest postcodes, with exposures in excess of 4000, the coefficient of variation
of the adjusted operating ratio is about 15%. For a relatively small postcode
with 100 years of exposure, the coefficient of variation is about 100%.
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Estimated coefficient Coefficient of determination
of variation of of regression (b)

r operating ratio
surface '?,•** ,•„_adjusted for Unadjusted Adjusted

region (a) % %

Quadratic 10.7 39 35

Cubic:

full model 10.1 46 41

reduced model 10.1 44 41

Notes: (a) This coefficient of variation relates to a single year of exposure. The corresponding coeffi-
cient for E, exposure years is this figure adjusted by a factor of E,rK

(b) The adjusted coefficient of determination is defined as (SEBER, 1977, pp. 362-363):

\-nS1/(n-p),

where

residual sum of squares of the regression model fit
S2 = .

residual sum of squares of a constant model fit

= 1 - unadjusted coefficient of determination.

These coefficients of variation seem large, but perhaps not unrealistically so.
For example, if each cell were Poisson distributed the coefficient of variation for
a single year's exposure would be 1. Since it is fair to assume that there is
variation in the mean claim frequency associated with individuals within a cell,
it may be inferred that the coefficient of variation of claim frequency associated
with a single year's exposure will be larger than 1 (see e.g. SEAL, 1969, p. 25). It
is also known that the distribution of Contents insurance claim sizes tends to be
long tailed. When additional allowance is made for this component of variation,
it may be that the actual coefficient of variation of the adjusted operating ratio
approaches the value estimated from the data. Otherwise, the conclusion would
be that the spline fit is inadequate, and its deviation from the true underlying
adjusted operating ratio manifests itself as a spurious increase in random noise.

The unadjusted coefficients of determination show the proportion of variation
in the data explained by the fitted spline surfaces.

As explained by SEBER (1977, p. 363), the unadjusted coefficients of determi-
nation of regressions involving different numbers of regressors are not compa-
rable. The adjusted coefficient of determination is intended to make for compa-
rability.

On the basis of these statistics there seems little to choose between the two
cubic splines, both of which appear somewhat superior to the quadratic spline.
The quadratic spline was dropped from the final process of selecting rating
regions.
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QUADRATIC SPLINE

3
3
3
3
2
2
2
1
1
1
0
0
0
0
0
0
0

1
1
1
2

Standardized
residual

.900

.600

.300

.000

.700

.400

.100

.800

.500

.200

.900

.600

.300

.000

.300

.600

.900

. 200.500

.800

.100

*

*
*

*
*

* * * *
2 * *
3 * * **

* 3 * *
*2 * * *

* * 3 * *2* *
* * * * * 2 *

*

*

*

*2* *
2 * *

* 3*
•22 *

*2 **2
** * * *3
*3 *24 *2*
*** * 2** 2
222 23 2* 2

3* * 2*332* *
* 2**

* *
* 2

2*

0.250 0.500 0.750 1.000 1.250 1.500 • 1.750
Fitted value of
operating ratio
adjusted for
region

FULL CUBIC SPLINE

Standardized
residual

4.800
4.400
4.000
3.600
3.200
2.800
2.400
2.000
1.600
1.200
0.800
0.400
0.000

-0.400
-0.800
-1.200
-1.600
-2.000
-2.400
-2.800
-3.200

*

2
3

4

*

*

*
* 3
3 *2 *

22
*33***2**
**22* * *
* * * * 2

*
2
*

** *
**

3 22
2*2

* *

*

* * * *
*

• *
* * * * *

* * *2 **2* * * *
* * 22** * 4 * * * * * *

*2* *22*3* * * *
22*43*3 * *

* 2* *5**2*2 * * *
2 * * *2 *

2 * *
• *

0.375 0.625 0.875 1.125 1.375 1.625 1.875

Fitted value of
operating ratio
adjusted for
region
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REDUCED CUBIC SPLINE

Standardized
residual

3.600
3.300
3.000
2.700
2.400
2.100
1.800
1.500
1.200
0.900
0.600
0.300
0.000
-0.300
-0.600
-0.900
-1.200
-1.500
-1.800
-2.100

. -2.400

*

*
*

**2
• 2

* 2 ** 2
2 * * *
* 32* * * *
** ** 23
3* *2 23

***3 32* * *
23 2* * * *
* *22 *
* *

* 2 *

* *
* • *

2 *2
* * ** *
* 232*2* **
*33222 **
2** 33* *
3*3* * * *
**25622 *
2*5 * *

* * * *
* * *
2

*

0.000 0.400 0.800 1.200 1.600 2.000 2.400
Fitted value of
operating ratio
adjusted for region

A small sample of values of operating ratio adjusted for region fitted by each
of the three splines is displayed in Appendix F, together with the standardized
residuals in each case. Plots of these standardized residuals against the fitted
values appear above. In these plots, a * in the (x, y) position denotes occurrence
of a standardized residual of y in the case that operating ratio adjusted for region
is x; a 2 in the (x, y) position is equivalent to two *'s there; a 3 equivalent to
three *'s; etc.

The plots appear reasonable. There is perhaps a hint that, for constant expo-
sure, coefficient of variation decreases with increasing operating ratio. It might
have been feared that the spline surface would tend to flatten out real eccentri-
cities in operating ratio. There is, however, no evidence that the spline surfaces
tend to under-estimate (resp. over-estimated) at the upper (resp. lower) extreme
of operating ratios.

In the case of each of the cubic splines, maps of the total rating region were
produced showing the division into different ranges of adjusted operating ratio
as estimated by the spline function in question. The map for the reduced cubic
spline appears in Appendix G2. This may be compared with the corresponding
map in Appendix Gl which shows the division into different ranges of adjusted
operating ratio as observed.

Contour maps of the two cubic spline surfaces were also produced. These may
be used to select rating regions. The map relating to the reduced cubic spline is
reproduced below.
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i
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NEW RATING AREAS

m

AREA A

AREA C

AREA E

The contours indicate five regions of steep gradient which divide off five clear
rating areas:

(i) the north-eastern suburbs (low risk);
(ii) the south-eastern suburbs (low risk);
(iii) the far western suburbs (low risk);
(iv) a small pocket of certain eastern suburbs (high risk);
(v) the central western suburbs (high risk).

The remainder of the total region would then provide a sixth rating region.
In practice the task would be completed by using the contours to determine
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boundaries of the six rating regions, which would then be treated, for rating
purposes, as homogeneous with respect to operating ratio.

It is of interest to compare these suggested rating regions with those actually
used by the insurer concerned. Appendix G3 displays the regions in use during
1985/86, the period to which the data of the present paper relate; the immedia-
tely preceding map, in which Areas A to E are in descending order to risk,
displays the regions currently in use.

This map does indeed indentify most of the rating regions suggested by the
splines. Moreover, a comparison with Appendix G3 shows that in the recent
past the insurer concerned has considerably expanded its high risk region in the
central west. The splines identified the need for this from 1985/86 data, i.e. at
least 17 months before it actually occurred.

The main differences between the rating regions suggested by the splines and
those actually currently in use are:

(i) the actual regions do not identify any of the eastern suburbs as of particu-
larly high risk, whereas the splines do;

(ii) the actual regions identify Sydney city as high risk, whereas the splines do
not;

(iii) the actual regions identify a corridor of relatively high risk inner western
suburbs, whereas the splines interpret this in a relatively minor way.

Reference to Appendix Gl (the data) can assist in resolving these disparities,
although one must remember that Appendix Gl gives no indication of the
exposure, and therefore the statistical significance, of each of the postcodes
mapped.

However, such a comparison suggests the following conclusions.
First, the splines are probably correct in identifying a very high risk pocket of

eastern suburbs.
Second, the splines are probably wrong in their treatment of Sydney city and

some of the innermost suburbs. This may be indicative of splines' failure, as
locally low degree polynomials, to respond to highly localized steep gradients.

7. CONCLUSION

Spline functions can provide an effective means of determining geographic
regions for premium rating. Most of the implementation is routine. The excep-
tion to this is the determination of a suitable set of curvilinear coordinates, and
the transformations which take these coordinates to and from rectangular coor-
dinates. This step can be difficult and time-consuming.
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APPENDIX A

DATA

Al. Geographic coordinates of postcodes

Postcode boundaries have been approximated by polygons. These have been
defined by the geographic coordinates of the vertices of the polygons.

These coordinates take the form of a list of (x, y)-coordinates for each post-
code, a small sample of which follows.

Post
code

2000

2006

2007

Coordinates

X

456
460
463
467
468
464
464
462
461
459
456
451
455
451
451
456
456
447
451
442
443
447
451
456
451
447
447
451

y

162
157
153
150
145
147
145
144
146
146
143
145
154
153
155
159
162
164
160
161
162
163
155
159
160
155
155
155

Post
code

2011

2015

2016

Coordinates

X

All
473
471
468
467
463
444
451
446
457
460
460
460
456
454
448
451
444
456
469
469
464
456
456
454
454
456

y

150
148
148
150
150
153
172
173
178
178
177
173
171
165
165
167
169
172
165
165
162
162
162
162
164
165
165

Post
code

2020

2021

Coordinates

X

446
433
434
442
449
455
453
451
447
456
464
464
457
457
446
473
475
478
485
489
489
481
483
479
473
468
473

y

178
188
193
193
202
201
199
199
193
192
186
181
181
178
178
164
167
168
167
166
163
159
156
155
155
158
164
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A2. Claims data (sample only)

G. C. TAYLOR

Prtct
rOSl
code

2006
2008
2749
2027
2157
2171
2759
2115
2177
2025
2761
2026

Years
of

exposure

3
66
45

340
226
841
393
381
314
274
115

1153

Average
sum

insured

$ 000's

44.667
21.388
23.329
42.688
28.816
25.920
24.307
24.129
22.368
33.654
22.253
22.432

Jewellery
penet-
ration

%

0.00
10.67
9.52

10.51
5.22
5.75
9.18
8.09
4.86
9.67
4.03

11.03

Average
jewellery

sum insured

$

1734
1562

15048
3435
2978
1973
2305
2690
5551
2404
3540

Number
of

claims

2
9
6

35
19

106
42
37
41
32
18

102

Average
claim
cost

$

1300
4293
2974
2865
2189
1510
1414
1608
1595
1671
1243
1921

Average
earned

premium

$

290.80
267.73
103.51
208.52
119.60
140.31
110.34
108.28
183.19
168.03
182.60
144.28

Average
observed

risk
premium

$

865.92
585.13
395.17
295.54
184.30
190.84
151.80
156.80
209.02
196.00
194.81
170.68

Average
gross

experience
premium

$

935.98
608.65
427.29
316.26
208.78
216.02
179.95
176.94
232.24
218.04
228.10
190.13

A3. Existing premium rating system

Each metropolitan postcode is asigned to one of 5 rating regions. For these
regions, the existing premium formula has been taken as the following.

Basic (i.e. non-jewellery) premium Jewellery premium

A
B
C
D
E

Rating Base premium

$

130
94
72
49
27

Premium per $ 1000
basic sum insured

$

3.60
2.70
2.00
2.00
2.00

Premium per
jewellery sum

$

20.00
20.00
15.00
15.00
10.00

$ 1000
insured

In fact, some 5% to 10% of policies were subject to a loading of 33% on these
rates, but this fact has been ignored in the following.
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APPENDIX B

OPERATING RATIO ADJUSTED FOR REGION

The following results relate to the same sample of postcodes as appears in
Appendix A2.

Rating
region

a
a
d
c
d
c
d
d
b
c
b
c

Post
code

2006
2008
2749
2027
2157
2171
2759
2115
2177
2025
2761
2026

Operating-
ratio

386.2%
272.8%
495.4%
182.0%
209.5%
184.8%
195.7%
196.1%
152.1%
155.7%
149.9%
158.1%

Adjustment to operating ratio
1st version (3.1.2)

Nume-
rator

290.80
210.70

97.89
181.10
109.32
126.41
100.33
100.06
157.01
147.36
156.02
122.72

Denomi-
nator

(Area C)

161.33
117.55
120.89
181.10
132.32
126.41
123.33
123.06
118.70
147.36
117.96
122.72

or region
2nd version (3.1.6)

Nume-
rator

225.76
225.76
103.25
126.25
103.25
126.25
103.25
103.25
167.17
126.25
167.17
126.25

Denomi-
nator

(Area C)

128.26
128.26
128.26
128.26
128.26
128.26
128.26
128.26
128.26
128.26
128.26
128.26

Loss ratio ajusted

1st
version

based on
(3.1.2)

696.2%
489.0%
401.1%
182.0%
173.1%
184.8%
159.2%
159.4%
201.2%
155.7%
198.3%
158.1%

2nd
version

based on
(3.1.6)

679.9%
480.2%
398.8%
179.2%
168.6%
181.9%
157.5%
157.9%
198.3%
153.3%
195.4%
155.7%

for region

Ratio of
1st

version
to 2nd

.024

.018

.006

.016

.026

.016

.011

.010

.015

.016

.015

.016
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APPENDIX C
PROOF OF SPLINE DECOMPOSITION

PROOF OF THE PROPOSITION IN SECTION 4.2. Consider any particular spline func-
tion/(.x, y). Define the polynomial (/) in the statement of the Proposition to be
the extension to Mof f(x,y) for 0^x^hx, O ^ y ^ / c , . Call this polynomial
p(x,y). Now consider the spline function for ht^\ = h2, 0 = y = k{. It is a
polynomial of degree ^p on this region, and therefore so is
f(x, y)—p(x, y) = q(x, y), say. Then q(x, y) can be written as a linear combina-
tion of terms x"yb, a+b ^p. By a change of origin (on the x-axis), q(x, y) can be
written alternatively as a linear combination of terms (x—hl)"yb. Thus, q(x, y)
as a function over the region 0^x^h2, O^y^k^ is a linear combination of
terms {x-hx)%yb.

Now recall the continuity requirements on the derivatives of a spline function.
These imply continuity of all derivatives of q(x, y) of order <p. Suppose a <p
and consider (d"/dxa)[(x-hi)

a
+yb]. It is simple to verify that this derivative

does not exist at x = hx, y>0. Thus q(x,y) reduces to a multiple of

(*-*,£.
The traversal of other hinges can be dealt with in precisely the same way.

Traversal of each hinge x = ht (in the positive direction) adds a multiple of
(x—h,)p

+ to the spline function. Traversal of each hinge y = kj (in the positive
direction) adds a multiple of (y-k,)1^ .
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APPENDIX D

COORDINATE TRANSFORMATIONS

Dl. Methodology

The coordinates against which actual claims data are recorded are denoted by
(xr, y'). This is the coordinate system in which the postcode boundaries of
Appendix A are defined; and also in which the hinges illustrated in Sections 4.3
and 5.2 are defined.

An alternative coordinate system in which these hinges are rectilinear uses
coordinate pairs denoted by (x, y) (Sections 4.1 and 5). The transformation
(x,y) (-> (x',y') is given by (5.2.4) and (5.2.2).

The inverse transformation (x', y') i-> (x, y) for each of the pairs (x, y) listed
in Appendix Al is given in Appendix D2. The inversion has been carried out
numerically, as follows.

For convenience, let / denote the function (u, v), such that

(x',y')=f(x,y).

Suppose that it is necessary to solve for x, y in:

(Dl.l) f(x,y) = W,yQ,

for particular values of xd, yd- Note that, for another coordinate pair (x*, y*) in
the xy-plane,

fix*, y*)-(x(,,yS) = [[x*-x) (du/dx) + (y*-y) (du/dy), (x*-x) (dv/dx)
) (y*-y)(dv/dy)],

to first order, where all derivatives are evaluated at (x, y).
It would be possible at this point to use Newton's algoritm to obtain a sequen-

ce of iterations of (x*, y*) converging to the required (x, y). However, this algo-
rithm would involve the partial derivatives of/ rather messy expressions obtai-
ned from (5.2.2) and (5.2.4). To avoid this messiness, Newton's algorithm has
been very slighly modified by replacing the partial derivatives by discretized
versions of them as follows:

y)-(x{,,yd = [a(du/dx), a(dv/dx)];

(D1.4) f{x, y+b)-ixo,yd) = [bidu/dy), bidv/dy)].

Now substitution of the right sides of (D1.3) and (D1.4) in (D1.2) yields

(D1.5) (M*, if) = [[x*-x)iua, va)/a+iy*-y){ub, vb)/b],

where

(u*,ti*)=f(x*,y*)-(x(t,yQ;

("a> va) =f(x+a,y)-(XQ, yd);

(ub,vb)= fix, y+b)-ix(,, yd) •
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Equation (D1.5) represents two simultaneous equations;

) (bua) (x*-x) + (aub) (y*-y) = abu*

) (bva)(x*-x) + (avb)(y*-y) = abv*

It is now possible to obtain the solution x*-x, y*—y to (D1.6) and (D1.7):

) x*-x = a(u*vb-v*ub)/A,

) y*-y = -b(u*va-v*ua)/A ,

where

(DUO) A =
ua ub

vva

Still working to first order only, (D1.8) and (D1.9) yield:

(Dl.ll) x = x*-a(u*vb-v*ub)/A,

(DU2) y = y* + b(u*va-v*ua)/A.

The whole procedure is made iterative, by letting (x{"\ yin>), the «-th approxi-
mation to (x,y), replace (x*,y*). Then the adaptation of (Dl . l l ) and D1.12)
yields:

3) x(n+i) = x(n)-a[u{n)vin)-v{n)uin)]/A(n);

(D1.14) y(n +'> = y ( n ) + b[u(n) v{
a
n)- v(n> u{

a
n)]/A(n);

where

i. 16) (u <">, v <«») = f(xw+a, /n)) - w , yS>;

(D1.17) - (4"\ v^) = f(x{"\ y{n) + b)- W , yQ .

The recursion is initialized by:

It should also be noted, as remarked in Section 5.2, that (5.2.4) and (5.2.2) do
not provide a proper coordinate transformation, but rather separate coordinate
transformations of the .xy-subplanes defined by the constraints y^\50 and
y^ 150 respectively. When y' = 150, the inverse transformation gives y = 150,
indeed (x, y) = (x', y').

D2. Transformed coordinates

For each of the pairs of coordinates (x', y') defining the polygonal boundary of a
postcode (given as (x, y) in Appendix Al), the inverse transformed coordinates
{x, y) were obtained by the recursive algorithm (D1.13) —(D1.18).
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Occasionally, when the algorithm failed to produce convergence, or failed to
produce a sufficient rate of convergence, manual intervention reinitialized the
procedure. For example, if the sequence of {x(n\ y(n)) oscillated with period 2, the
procedure was restarted with
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APPENDIX E

DATA FOR SPLINE-FITTING REGRESSIONS

Section 6 explains how the postcode vertex coordinates of Appendix Al are used
to compute postcode centroids in the alternative coordinate systems. These
results are listed below for various postcodes. The additional data required in
respect of each postcode for input to the regression have also been listed. They
are drawn from the same source as Appendix B.

Note that the first set of coordinates appearing in the following table, while
given for interest, are not used in the regression.

Postcode

i

2000
2006
2007
2008
2009
2010
2011
2015
2016
2017
2018
2019

Centroid

Given coordinate
system

458.8
446.0
450.5
452.4
448.4
465.2
471.0
452.6
459.3
462.1
466.5
470.3

yl

150.9
162.0
156.5
162.0
152.1
158.8
151.5
171.7
163.6
168.6
178.7
193.0

coordinates

Coordinate system
of rectilinear hinges

X,

453.7
430.5
444.9
435.4
447.7
452.2
469.8
412.3
436.6
425.4
403.3
374.4

y,

151.0
161.2
155.6
161.2
151.6
158.0
151.2
171.1
162.8
168.0
178.4
192.9

Years of
exposure

E,

83
3

48
66
26

319
329
123
134
49

337
284

Observed
loss ratio
adjusted

for region

Kx,,y,)

0.275
6.962
1.343
4.890
0.337
2.164
1.529
1.411
1.112
0.262
0.769
0.608

https://doi.org/10.2143/AST.19.1.2014917 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.1.2014917


USE OF SPLINE FUNCTIONS FOR PREMIUM RATING BY GEOGRAPHIC AREA 119

APPENDIX F

OPERATING RATIOS FITTED BY SPLINE SURFACES

The following table displays, for each postcode appearing in Appendix E, the
observed operating ratio adjusted for region. This is accompanied by the corres-
ponding operating ratio fitted by each of the spline surfaces described in Sec-
tion 6 and the standardized residual.

The standardized residuals (for a gamma error term) are calculated according
to the formula:

(observed value — fitted value) x weight

Postcode

2000
2006
2007
2008
2009
2010
2011
2015
2016
2017
2018
2019

Observed

0.275
6.962
1.343
4.890
0.337
2.164
1.529
1.411
1.112
0.262
0.769
0.608

fitted

Full quadratic spline

Fitted
value

1.0768
1.0122
1.0519
1.0297
1.0510
1.0931
1.1696
0.9783
1.0382
1.0100
0.9661
0.8735

Standardized
residual

-0.635330
0.953465
0.179540
2.852375

-0.324423
1.638832
0.521963
0.459386
0.077088

-0.485528
-0.350791
-0.479695

value x

Full

Fitted
value

0.9417
1.0101
0.9661
0.9986
0.9385
0.9842
1.0260
1.0629
0.9985
1.0234
1.0390
0.9034

coefficient of

cubic spline

Standardized
residual

-0.635527
1.005597
0.266327
3.119427

-0.322000
2.109650
0.876103
0.357886
0.129678

-0.513134
-0.470091
-0.542916

variation

Reduced

Fitted '
value

0.9179
0.9777
0.9372
0.9692
0.9126
0.9595
1.0065
1.0458
0.9730
1.0052
1.0555
0.9803

cubic spline

Standardized
residual

-0.629456
1.045798
0.295957
3.241843

-0.317242
2.211845
0.928970
0.382018
0.163161

-0.510541
-0.491562
-0.631311
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APPENDIX G

RISK PLOTS

Gl. Data

The following map plots the operating ratio adjusted for region, (3.1.4), different
colours designating broad bands of values of this ratio.
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G2. Reduced cubic spline function

121

The following map repeats the one appearing in Appendix Gl but with the
observed operating ratio replaced by that fitted using the reduced cubic spline of
Section 6.

RATIO-TWO

17,7? - 1,0 1,0 - 1,5 OVER
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G3. Rating areas used in practice from 1/4/85 to 1/2/88

AREA A

MCA C

AREA E

REFERENCES

GREVILLE, T. N. E. (1969) (ed). Theory and applications of spline functions. Academic Press, Inc. New
York.

PAYNE, C. D. (1985) (ed). The Generalised Linear Interactive Mode/ling System. Manual Re/ease 3.77.
Numerical Algorithms Group Ltd, Oxford, UK.

SEAL, H. L. (1969). Stochastic theory of a risk business. John Wiley & Sons, Inc. New York.
SEAL, H. L. (1977). Approximations to risk theory's F{x, t) by means of the gamma distribution.

ASTIN-Bulletin, 9, 213-218.
SEBER, G. A. F. (1977). Linear Regression analysis. John Wiley & Sons, Inc. New York.

G. C. TAYLOR
WILLIAM M. MERCER CAMPBELL COOK & KNIGHT

The American Express Tower, 388 George Street, Sydney, NSW 2000, Australia.

https://doi.org/10.2143/AST.19.1.2014917 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.1.2014917



