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UNIT PRESERVING ISOMETRIES ARE
HOMOMORPHISMS IN CERTAIN L/~

ROBERT SCHNEIDER

1. Introduction and notation.

(a) o1 and o, will always denote positive bounded measures of equal mass
defined on sets X and Y respectively. L?(¢;) and L?(a5) will always be complex
L? spaces.

(b) M C L®(o1) will always denote a subalgebra of L*(o1) containing
constants.

(c) Let T": M — L?(o:) be a linear map of M into L?(c2). We shall say that
T is a linear isometry in L? norm if

f |Tf [Pdos = f | f [Pdos.

We shall prove the following:

THEOREM B. If 2 < p < 0w and T : M — L?(cs) 1s a linear isometry in the
L? norm with T(1) = 1 then T is a homomorphism on M, that is

(@) T(fe) =TNT()
for all f and g in M. Furthermore,

(b) f T(f)T(g)dos = f fedor
for all f and g in M.

This theorem extends a result of Forelli's [2] by eliminating his extra hypo-
thesis that 7f £ 0 a.e. o5 if f 2 0. For results when p = o, see [3].

2. The proof of Theorem B is an extension of Proposition 1 and Proposition
2 [1] of Forelli. We shall use similar language where we can so that the reader
familiar with Forelli's work can follow more easily.

THEOREM A. Let 0 > p > 2 and assume that f, is in L? (o) (k = 1, 2) and
that for all complex numbers z

1) f]1+zf1|”dal= f]l—l-zf2]”dag.
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f (ltdo = [ 1 o
flfll do, f|f2l4d02.

Proof. Forelli’s Proposition 1 gives part (a). Also note that since p > 2,
fr € L%*(oy). If for both & =

[ 15140,

is infinite we are done. Assume that

flfll4d01

is finite. Consider

Then

I

an

1 o ix|p ?i 2
@) Zfo [1+ze[dx—4]z[—1.
When |z| < 1
iw\p/2 _ P/Q) A2
(1 + z¢™) ; (]

and (2) is given by

® () e+ 5 (22)

and therefore

@ (L 71 e = E = 1) = (P2) g

pointwise a.e. when r — 0.
We wish to show that (2) is nonnegative for all z. For |z| < 1 this is clear
from (3). For |z| > 1 note that

L[ epar = 2 ap [T Lo
2m 0 27 0 b4
and therefore (2) is given by

» £f p—z_?_z 2 p/2 1p—27
® el 1t 5 (22)

J
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for |z| > 1. To show (2) is nonnegative for |z| > 1 it therefore suffices to show
that

2 2
© gw) =@ +Ee L
4
is nonnegative for x > 1. We shall just use some elementary calculus techniques
for this. Note:
(a) g(1) = 0.
(b) Since p > 2 g(x) ~ x? as x — o0 and hence is positive for large x.
(c) g'(x) = pa?' + 1p*(p — 2)a?~* — 3p°x and ¢'(1) = ip(p —2)* >0
asp % 2and p > 0.
From (c) we see that g(x) > 0 for 1 < x <1+ e If g(x) < 0 for some
x > 1 we can see from (a) and (b) and the intermediate value theorem that
there would be 1 < x; < «x, for which g(1) = g(x1) = g(x2) = 0. By Rolle’s
Theorem, g’(x) would then have at least two zeros in x > 1. We shall show
that this is impossible and conclude that g(x) = 0 for x = 1. It suffices to
show that the function

hx) = 2" + P(P—;@xﬂ _ %

does not have two zeros in x > 1. But, by Rolle’s Theorem if 4(x) has two
zeros in x > 1 then A'(\) = 0 for some X > 1. But

and #'(\) = 0 means that
14 P_(P_;—LL) )\—2 =0

for some A > 1 (note p # 2) or
G=p)p_,_ (=2
4 4

which is a contradiction. Therefore (2) is nonnegative for all z.
Since (2) is nonnegative for all z the left hand side of (4) is nonnegative,
Using Fatou’s Lemma we see that

() e

is less than or equal to the lower limit as » — 0 of

@ (f [5—1 f:ﬂ 1+ rfie™|Pdx — %2 [7I? fiul® — 1:| dak)

with £ = 2. From (3) we see that if |z| < 1/2, (2) is bounded by 4|z|%, and

A=
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we see from (2) thatif |z] = 1/2 (2) is bounded by 4 |3 where 4 depends only
on p. Therefore (2) is bounded by A4|z|* + A4|z[?, and by A|z|*if 2 < p < 4.
Thus the left hand side of (4) is bounded by

(8)  Alfl* + Arr=Hfil

if 4 < p and by

Q) Alfl

if 2 < p = 4. Apply the dominated convergence theorem to (4) with & =1
and we see that

() [ i

is the limit when » — 0 of (7) with & = 1. But (7) does not depend on % by
our assumption (1), Fubini’s Theorem, and fact (a) being established previ-
ously. Thus

(10) f]le4d02§ f]f]]4d01.

Since this implies f[f2;4dag < o0, the same reasoning shows the reverse
inequality of (10) is also true and (b) is established.

One should note that if f, € L”(o;) we can establish (b) for any 0 < p < oo
and p 5 2. This results from the dominated convergence theorem applied to
(4) using (8) or (9).

If p is not an even integer and f; € L*(o;) we can establish

f‘fl[“d”l: flf2l“d02

for all positive integers / and hence that

Ifilles = {1l

For this we use an induction on ! and subtract appropriate multiples of
|z]2* from (2), modify (4) accordingly, and use dominated convergence.

Theorem B is now an immediate consequence of our Theorem A and the
proof in Forelli [1].

Proof of Theorem B. Let f € M. Since T'(1 + zf) = 1 + 27(f) and 7" is an
L? isometry,

f ll + Zf]pdql = f l]. —l— ZTf Ipd(72.
By Theorem A,

f|1+zf|4dcrl= f|1+sz[4daz

https://doi.org/10.4153/CJM-1975-016-7 Published online by Cambridge University Press


file:///ftfd*
https://doi.org/10.4153/CJM-1975-016-7

UNIT PRESERVING ISOMETRIES 137

and since f € L”(o1) both of these are finite. From here one need only copy

the proof of Proposition 2 in [1], with p = 4, noting that the infinite series are

finite binomial expansions valid for all z, to obtain that T is a homomorphism.
We must also show that

(11) f T(f)T(g)do> = f Jedos

for fand g in M. But part (a) of Theorem A shows that (11) follows from well
known facts about isometries of complex inner product spaces.
COROLLARY. Under the hypothesis of Theorem B, if f € M then

TSl = [Iflle
Proof. The proof is the same as in Forelli [2]. For any /,

[ 111 = [ ayyayy

and using the homomorphism property the above equals
[z 976G,

Hence, by part (b) of Theorem B

flel”drr2= f!fl“dol

for all / and the corollary follows since f € L*(01).
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