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It is well know that the 'dynamo' theory has a number of vetoes; e.g. axisymmetric, 
two-dimensional, central-symmetric, etc. dynamo are impossible. In principle, the 
problem is essentially three-dimensional in any coordinate system. This is the main 
difficulty of both the theory itself and its possible applications. In fact, one prefers to 
believe that, for example, a non-rigid body-rotating star or convection in the Earth's 
nucleus possesses axis symmetry. However, due to the above vetoes one has to add 
finer effects (Coriolis strength, density, inhomogeneity) to create asymmetrical 
convection. On the other hand, the authors try to find the most simple movements 
with minimum deviations from axial symmetry. Thus, the Herzenberg's dynamo 
(Herzenberg, 1958) is realized by two rotating cylinders, axes of which are parallel to 
each other (see also Galaitis, 1973; Galaitis and Freinberg, 1974), the Lortz's 
dynamo-spiral movement (Lortz, 1968; Ponomarenko, 1973). Nevertheless, the 
mentioned vetoes possess a common feature, the assumption regarding the sym
metry extends both to the movement and to the field. Hence, it makes sense to raise a 
question whether symmetric movements are able to generate an asymmetric field. A 
positive answer to this question, in particular, is given by Tverskoy's model (Tvers-
koy, 1966) - the toroidal vortex. The latter possesses axial symmetry. Nevertheless, 
the toroidal vortex is a complex motion; we will proceed along the path of a minimum 
simplification. 

Is dynamo possible in differential rotation? This motion is the simplest and likely 
the most wide-spread in nature. Besides, is dynamo possible in two-dimensional 
motion of the differential rotation type, that is, in the cylindrical system 

vr = vz= 0, 1^5*0 , tv, = tVp(r)? 

On the face of it, the answer must be negative as Zeldovich's system (Zeldovich, 
1956) exists which rules out a two-dimensional dynamo in the arbitrary (that is, not 
necessary two-dimensional) magnetic field. In this problem, however, the velocity is 
even one-dimensional as v depends only on r. However, the mentioned theory is 
proved for the unlimited conductive medium. If the conductive medium is situated at 
r < R9 and at r > R the medium will be unconductive (in particular, vacuum), then the 
veto can be removed and dynamo is possible. We will notice that no unlimited bodies 
exist in nature. 

Let us explain why the veto is taken away from the two-dimensional dynamo in the 
presence of vacuum. From induction equation 

^ = rot[vH]+„ m 4H (1) 
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equation for Hz results in given geometry 

-f+(yV)Hz = vmAH2. (2) 

In view of the fact that the behaviour Hz is described by the heat conductivity 
equation and Hz -+0 at r ->oo in the unlimited fluid, Hz -»0 at f-»oo, that is, Hz is 
damping. 

Then, assuming that Hz = 0, it is easy to prove that the equation for the vector-
potential of removed field components has also the form of conductivity equation. 
Hence, both Hx and Hy are suppressed. 

Now, let the vacuum be at r > R. Then, assuming that the permanence for media 
Ii = I, we will have the boundary conditions: field continuity, while the field in 
vacuum is potential, as well as 

1 . ^ - ^ = 0 (3) 
r d(p dz 

on the boundary. Condition (3) corresponds to zero reduction of the current 
component, normal toward the boundary. Now, conductivity Equation (2) with 
boundary conditions (3) must yield no field Hz damping! In general, all theorems of 
dynamo impossibility are proved when one of the field components separates from 
the other, that is, it behaves independently of them. At the same time, Hz is related to 

through boundary condition (3). It will be shown below that just this very fact 
takes away the veto from the one-dimensional dynamo. 

It seems that one might object that the vacuum boundary conditions on the sky 
body boundary are not very topical. The Sun, for instance, is surrounded by a highly 
conductive corona which directly passes into the solar wind. Are vacuum boundary 
conditions topical here? However, Hz field component does not separate from the 
other already in the presence of electric conductivity dependence upon r (thus vm is 
axisymmetric too). In fact, the equation for Hz has in this case the form: 

It can be seen from (4) that to conclude on damping is impossible again. Field 
generation exists in case (4) too. The assumption of inhomogeneous vm(r) is naturally 
associated with the sky body boundary itself; in the particular case of vacuum vm it 
changes sharply, in vacuum vm — oo. 

The rigid body rotation at r<r0 simplifies the calculations, although it is not 

(4) 

1. One-Dimensional Problem Solution in Vacuum 

Let us express the field v9 (r) in this way (Vainshtein, 1975): 
region I: v<p = <o0r at r < r0 ; 
region II: v(f>=0 at r>r0,r<R. (5) 
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important, in principle, whether there is a jump in angular velocity <o(r) or if the 
transition is smooth. Then, the equations for Hn H^, Hz have the form: 

d H z dHz — = -(o0—+vmAHz ; 
dt dip 

dHr a n , / i i a m 
— = -<o0—+vJAHr--2Hr-2-2—JE); 
ar d<p V r r dip / 

(6) 

dHy d(o0 1 „ ^ J a H r \ 

d<p dr \ r * r dip / dt ""dip "~r dr ' r n \ — * r ^ ' v ~r z dip 

The solution of the system (6) is to be naturally sought in the form: 

Hw =fw(r) exp [Et + i(mip + kz)]. (7) 
Similarly to (5), introduce the function f± = fr±if<p and we obtain Bessel equations 
for regions I, II and vacuum (region III): 

5 V f - ( l + ^ ) / , - 0 ; 
dV V dD \ V J dp p dp 

dp2
 D dD V v r 

(8) 

a p p dp \ p 
where in region I 

p=pr, p = J(E + vmk2 + ima)0)/ vm ; 
in region II 

p = xr, x=y/(E + vmk2)/vm; 

in region III 

p = fcr. 

We are looking for the solution of set (8) in the form: 
region I: 

fz = AIm(p), f± = B±I±(p) (limited in zero); 

region II: 
/, = CIm(p) + DKm(p), U = L±I±(p) + M±K±(p); 

region III: 
fz = FKm(p), f± = iFK±(p) (disappearing in infinity), 

where 

In region III we have made use of condition rot H = 0. 
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The unification of solutions in the III regions yields a set of algebraic equations for 
coefficients. 

The coupling condition is as follows: the continuity of all solutions and 

dr 
JU 

i dr 

dr 

(9) 

Nine equations and 10 coefficients one can obtain. The Equation (10) is obtained by 
using the condition divH = 0 (condition (3) is derived from the written ones). In 
order to derive this equation, take the divergence from (6), and we obtain: 

Ey — irruooy = vm Ay ; y = div H. (10) 

Further, in order y = 0, it is sufficient y to be equal to zero on the boundary with 
vacuum (this results from uniqueness of solution (10) in given boundary conditions). 
Writing div H = 0 on the boundary of the regions II—III and taking into account the 
fact that the field is continuously crossing the boundary, it is easy to understand that 
dHJd(p, dHjdz are also continuous on the boundary; from this 

dHr 

dr 
= dHr 

ii dr (ID 
in 

Condition (II) is the last equation to be found. The determinant of the tenth order is 
presented in the form of a two (co-)factor product, one of which does not yield 
dynamo. 

Let us assume that /3r0, xr0, kR»l. 
Below we will see that this situation corresponds to the great Reynolds number 

Rm —<D0rl/i/m » 1 . Now p » 1 on the boundaries, and one can use asymptotes 

Up) = (l/27rp)1 / 2[exp (p)+exp ( - p - ( m +1/2)™)], 
1/2 ( 1 2 ) Km(p) = ( 7r / 2p ) 1 / 2 - exp ( -p ) . 

The second factor of the determinant is simplified, considering that t h ( p « ± l , 
<p = /3r0+i(ir/2)(m + 5 ) , which is fulfilled with exponential accuracy. In this case, the 
given factor is divided, in its turn, into two factors, one of which yields the equation 

thxAr=T^; Ar = R-r0, (13) 

which does not yield dynamo. To the second factor corresponds the equation: 

_ A fc=F0 
th x Ar = x-^2~_ 

(The upper sign corresponds to th <p = +1) or in the non-dimensional form {q = x Ar) 

D-ylq2 + iC 
th = q2-DJq2 + iC 

(15) 
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If in (15) we assume D = kAr, C = ma>0(Ar)2/Vm, Re(q2 + iC)1/2>0. o>0 = 0, that is, 
C = 0 (absence of rotation, the trivial case), then (15) has no roots and one must use 
other factors of the determinant giving field damping. If ra = 0 (the purely axisym
metric case, that is both the velocity and H are axisymmetric), then C = 0, so that it is 
tantamount to o>0 = 0 and the dynamo is impossible (theorem by S. I. Braginsky, 
1964). 

If fe = 0, that is D = 0 (the purely two-dimensional case), then the equation is 
analogous to (13), only on the right side instead of x/fi there is fi/x. This equation 
also has no growing solutions (Ya. B. Zeldovich theorem (Zeldovich, 1956)), 

At 4r-»0 we obtain the rotating cylinder as a rigid-body in vacuum. It is natural 
that the dynamo is impossible (D = C = 0). It can be seen therefore that the field will 
be essentially three-dimensional and will possess all the three components. 

It can be easily seen that for the dynamo-solution, the root must lie in the region 
Re(<jr2-fc2)>0. Solution (15) should be looked for in C-D-plane by giving q. 
Assuming q = 1.00-i 0.50, we obtain graphically C = 0.11, D = -0.55. 

It is not difficult to verify that the given root corresponds to accepted assumptions 
and yields dynamo. In fact x Ar «/3 Ar « fc Ar » 1 is not in contradiction with the use 
of asymptotes (12), if r0»Ar; the latter condition corresponds to Rm = 
Crl/m(Ar)2 » 1 , i.e. to the great Reynolds number. Further 

E = ( * 2 - k 2 ) ^ = ^ ( 0 . 4 7 - i 1.00) (16) 

By using the condition C~I , we obtain Re E ~ mo>0, which is quite natural. 

2. Discussion 

The considered example supports the following arguments: dynamo occurs in all the 
cases when it is impossible to prove the contrary, using some standard rules. It seems 
that this affirmation is unlikely to be proved, nevertheless, it is practically always 
helpful. 

In order to be sure of the existence of the dynamo in a determined situation, the 
following procedure should be adopted: 

(1) Write the induction equation in the natural curvilinear coordinate system. 
(2) Verify whether one of the field components is not prevalent; in the affirmative, 

this would lead to damping and the dynamo is impossible, as the remaining 
components are sure to be damped (which can be proved by transition to the 
equation for vector-potential). 

Theorems on the impossibility of the dynamo were proved in just this way. 
The astonishing simplicity and symmetry of the model under consideration 

permits one to hope that, practically, the veto for the dynamo will be taken away for 
all the symmetric models. But then, more complex asymmetric motions will be the 
more so dynamo-instable. Thus we might suggest a thesis-assumption: all motions in 
nature are instable with respect to magnetic fluctuations. The dynamo problem can 
be, therefore, turned upside down by looking for such motions in real limited bodies 
without generation. 
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Since the dynamo-solution has a character of instability in relation to the magnetic 
field fluctuations, the latter will be excited at least by thermodynamical fluctuations 
no matter whether it corresponds to observational data or not. Therefore one may 
ask why the solar cycle period « 22 years, when <o0 ~10~ 6 s - 1 - i.e., the field growth 
time caused by differential rotation is less than one month - and why all the celestial 
bodies do not have a magnetic field, etc. On the other hand the model considered is 
similar to the model of a rotating galaxy; the increment ~ r d<o/dr ~ o>, therefore the 
field is growing in the time period of a galaxy rotation, i.e. rather rapidly. And finally, 
both the occurrence of the field and its strengthening on the solar surface (for 
instance sunspots) as well as its disappearance can be easily explained by differential 
rotation only, taking into account either the simplest dynamo, or 'antidynamo' 
(Vainshtein, 1973). The analysis of the most simple shift motions the differential 
rotation and the shift (Vainshtein, 1973), showed that even such simple motions 
could cause a reduction of the field's scale and later on its strengthening or effective 
destruction. That is why the idea of the 'frozen-in' is a very simplified picture. Taking 
into account the increasing contribution of electromagnetic forces with decreasing 
field scale one can come to the following dilemma: 

(1) If the electroconductivity is not very high (e.g. turbulent) and if in spite of the 
scale reduction, the electromagnetic forces remain insignificant, then the idea of the 
'frozen-in' field is very often inadequate. 

(2) If the electromagnetic forces contribution is essential, then the idea of the 
'frozen-in' field is valid, however, the field of velocities itself acquires a small scale 
structure and becomes complicated. 
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DISCUSSION 

Gilman: Your magnetic field produced by the dynamo must be non-axisymmetric. What form does it 
take? In particular are there wave numbers in the directions perpendicular to the shear of rotation for 
which dynamo occurs at the lowest magnetic Reynolds number? 

Vainshtein: There is dependence on r, z and <p. The dependence on z is proportional to Iikz where k is 
the wave number in the direction z the dependence on <p is proportional to Iinup, m = 1 , 2 , . . . ; Reynolds 
number must be great. 

Deinzer: Are these magnetic fields at all if there is an axisymmetric flow? I think they would be 
excluded by Cowling's theorem. 

Vainshtein: Cowling's theorem is proved for the case when both magnetic field and velocity field are 
axisymmetric. In my case the magnetic field is not axisymmetric. 
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Stix: I agree with Dr Weiss that the model presented here is not in conflict with Cowling's theorem. But 
there is another theorem that says that no toroidal motion can give rise to dynamo action. Rotation, no 
matter how differential, is such a toroidal motion. The theorem has recently been in an even more 
restrictive form by Busse who found that the magnetic Reynolds number based on the radial velocity 
component must exceed a critical value. So my question is whether the model contradicts this theorem. 
Another question is: What are your boundary conditions at infinity? 

Vainshtein: One cannot prove that the dynamo mechanism cannot act if the differential rotation only is 
present and conductivity is inhomogeneous. 

Stix: I was referring to the magnetic Reynolds number based on the radial velocity component, not to 
the one based on the differential rotation. 

Vainshtein: At infinity the magnetic field tends to zero. The generation of magnetic field can be in the 
presence of differential rotation without radial motion. 
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