A CHARACTERIZATION OF EXPONENTIAL FUNCTIONS WITH NON-LINEAR EXPONENTS

BY
HALINA ŚWIATAK

It is well known (see e.g. [1]) that the Cauchy functional equation

$$
f(x+y)=f(x) f(y)
$$

characterizes the function $f: x \rightarrow e^{\alpha x}$.
It was mentioned in [2] that the functions $f: x \rightarrow A \exp \left(\alpha x^{2 m}\right), g: x \rightarrow e^{\alpha x} / A$ can be characterized by the equation

$$
\begin{equation*}
f(x-y)=f(x) f(y) g\left((x-y)^{2 m}-x^{2 m}-y^{2 m}\right) \tag{1}
\end{equation*}
$$

but the proof was done only for $m=1$ which was considerably simple.
The purpose of this paper is to show that the functions $f: x \rightarrow A \exp \left(\alpha x^{2 m}\right)$, $g: x \rightarrow e^{\alpha x} / A$ are the only solutions of (1) in the class of functions
$Z=\{(f, g): f: R \rightarrow R, g: R \rightarrow R, f(x) \not \equiv 0, f$ or g is continuous at the point $x=0\}$.
The following lemmas will be appplied:
Lemma 1. If $g: R \rightarrow R, h: R \rightarrow R, h(R)=R$ and if h and $g \circ h: x \rightarrow g(h(x))$ are continuous functions, then g is also a continuous function.

Lemma 2. If $h:(-\delta, \delta) \rightarrow(-\varepsilon, \varepsilon)$ is a continuous and strictly monotonic function for which $h(0)=0$, then every function $g:(-\varepsilon, \varepsilon) \rightarrow R$ satsifying the condition $\lim _{u \rightarrow 0} g(h(u))=g(0)$ is continuous at the point $y=0$.

The proofs of these lemmas follow almost immediately from the definition of the limit and from the definition of a continuous function.

Lemma 3. If the function g is continuous at the point $x=0$ and satisfies equation (1), where $f(x) \not \equiv 0$, then f and g are continuous functions.

Proof. Notice first that the assumption $f(x) \neq 0$ guarantees that $f(x) g(x) \neq 0$ for $x \in R$. In fact; $f(y)=0$ for a certain y implies $f(x) \equiv 0$ and $g(\xi)=0$ implies $f(\eta-1)=0$, where η is a solution of the equation $(\eta-1)^{2 m}-\eta^{2 m}-1=\xi$.

Setting in (1) $y=0$ one obtains $f(x)=f(x) f(0) g(0)$ and hence

$$
\begin{equation*}
f(0) g(0)=1 \tag{2}
\end{equation*}
$$

Setting in (1) $x=0$ one obtains $f(-y)=f(0) g(0) f(y)$ i.e., by (2),

$$
\begin{equation*}
f(-y)=f(y) \tag{3}
\end{equation*}
$$

Received by the editors August 10, 1973.

The continuity of the function g at the point $x=0$ implies immediately the continuity of the function $f^{2}: x \rightarrow f(x)^{2}$ since, by (1),

$$
\lim _{x \rightarrow 0} f(x)^{2}=\lim _{x \rightarrow 0} \frac{f(0)}{g\left(-2 x^{2 m}\right)}=\frac{f(0)}{g(0)}=f(0)^{2}
$$

Setting in (1) $x=u / 2, y=-u / 2$ one obtains

$$
f(u)=f\left(\frac{u}{2}\right) f\left(-\frac{u}{2}\right) g\left(\left(1-\frac{1}{2^{2 m-1}}\right) u^{2 m}\right) .
$$

Hence, by (3),

$$
f(u)=f\left(\frac{u}{2}\right)^{2} g\left(\left(1-\frac{1}{2^{2 m-1}}\right) u^{2 m}\right)
$$

and, consequently,

$$
\lim _{u \rightarrow 0} f(u)=\lim _{u \rightarrow 0} f\left(\frac{u}{2}\right)^{2} g\left(\left(1-\frac{1}{2^{2 m-1}}\right) u^{2 m}\right)=f(0)^{2} g(0)=f(0)
$$

The continuity of the functions f and g at the point $x=0$ and equation (1) imply the continuity of the function f at an arbitrary point.

To prove that also the function g is continuous everywhere notice that the function $h: x \rightarrow(x-1)^{2 m}-x^{2 m}-1$ is a continuous function that maps R onto R. Setting in (1) $y=1$ one obtains

$$
g(h(x))=\frac{f(x-1)}{f(1) f(x)}
$$

and since f is a continuous function, the function $g \circ h: x \rightarrow g(h(x))$ is continuous everywhere. Now, Lemma 1 implies the continuity of the function g.

Lemma 4. If the function $f(f(x) \not \equiv 0)$ is continuous at the point $x=0$ and satisfies equation (1), the functions f and g are continuous everywhere.

Proof. Setting in (1) $x=2 u, y=u$ one obtains

$$
g\left(h_{1}(u)\right)=\frac{1}{f(2 u)} \quad \text { with } \quad h_{1}(u)=-2^{2 m} u^{2 m}
$$

Setting in (1) $x=-u, y=u$ one obtains

$$
g\left(h_{2}(u)\right)=\frac{f(-2 u)}{f(-u) f(u)} \quad \text { with } \quad h_{2}(u)=\left(2^{2 m}-2\right) u^{2 m}
$$

Let

$$
h(u)= \begin{cases}h_{1}(u) & \text { for } u \leq 0 \\ h_{2}(u) & \text { for } u>0\end{cases}
$$

The function h defined above is a continuous and strictly increasing function satisfying the condition $h(0)=0$. Since the function f is continuous at the point $u=0$,
equalities (4'), (4") and (2) imply

$$
\lim _{u \rightarrow 0} g(h(u))=\frac{1}{f(0)}=g(0)
$$

Applying Lemma 2 one concludes that the function g is continuous at the point $y=0$ and, by Lemma 3, the functions f and g are continuous everywhere.

Theorem. If the functions $f(f(x) \not \equiv 0)$ and g satisfy equation (1) and at least one of them is continuous at the point $x=0$, then

$$
\begin{align*}
& f(x)=A \exp \left(\alpha x^{2 m}\right) \tag{5}\\
& g(x)=e^{\alpha x} / A
\end{align*}
$$

where $A(A \neq 0)$ and α are constants.
Proof. Similarly as in the proof of Lemma 3 one can show that $f(x) g(x) \neq 0$. Lemmas 3 and 4 imply the continuity of the functions f and g and it follows from (1) that $\operatorname{sgn} f(x)=\operatorname{sgn} g(x)$ for all $x \in R$. Therefore it suffices to find only the positive continuous solutions f, g of (1) considering the equation

$$
\begin{equation*}
F(x-y)=F(x)+F(y)+G\left((x-y)^{2 m}-x^{2 m}-y^{2 m}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x)=\ln f(x), \quad G(x)=\ln g(x) \tag{7}
\end{equation*}
$$

The continuity of the functions F and G follows from the continuity of the functions f and g.

Multiplying (6) by $-2 m\left[(x-y)^{2 m-1}+y^{2 m-1}\right]$ and integrating with respect to y from α to β one obtains

$$
\begin{equation*}
\mathscr{T}_{1}(x)=\mathscr{T}_{2}(x) F(x)+\mathscr{T}_{3}(x)+\mathscr{T}_{4}(x), \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathscr{T}_{1}(x)=-2 m \sum_{i=0}^{2 m-2}\binom{2 m-1}{i}(-1)^{i} x^{2 m-1-i} \int_{x-\beta}^{x-\alpha} u^{i} F(u) d u, \\
& \mathscr{T}_{2}(x)=(x-\beta)^{2 m}-(x-\alpha)^{2 m}-\beta^{2 m}+\alpha^{2 m}, \\
& \mathscr{T}_{3}(x)=-2 m \sum_{i=0}^{2 m-2}\binom{2 m-1}{i}(-1)^{i} x^{2 m-1-i} \int_{x-\beta}^{x-\alpha} y^{i} F(y) d y, \\
& \mathscr{T}_{4}(x)=\int_{(x-\alpha)^{2 m}-x^{2 m}-\alpha^{2 m}}^{(x-\beta)^{2 m}-x^{2 m}-\beta^{2 m}} G(u) d u .
\end{aligned}
$$

The continuity of the functions F and G guarantees that the functions $\mathscr{T}_{1}, \mathscr{T}_{2}$, $\mathscr{T}_{3}, \mathscr{T}_{4}$ have continuous first derivatives. Therefore (8) implies that the function F has the continuous first derivative at all the points x such that $\mathscr{T}_{2}(x) \neq 0$. Since \mathscr{T}_{2} is a strictly monotonic function and $\mathscr{T}_{2}(0)=0$, the function F has the continuous first derivative in $R \backslash\{0\}$.

Notice now that the functions

$$
h_{i}: x \rightarrow(x-i)^{2 m}-x^{2 m}-i^{2 m} \quad(i=1,2)
$$

are strictly monotonic in R. (This follows from the continuity of h_{i}^{\prime} and from the fact that $h_{i}^{\prime}(x)=2 m\left[(x-i)^{2 m-1}-x^{2 m-1}\right] \neq 0$ which guarantees sgn $h_{i}^{\prime}(x)=$ const for all $x \in R$). Therefore h_{i} are invertible functions. Moreover, h_{i}^{-1} have the continuous first derivatives in R. Setting in (6) $y=1, h_{1}(x)=(x-1)^{2 m}-x^{2 m}-1=u_{1}, x=h_{1}^{-1}\left(u_{1}\right)$ one proves the existence of the continuous first derivative of the function G in $R \backslash\{0,-2\}$. Similarly, setting in (6) $y=2, h_{2}(x)=(x-2)^{2 m}-x^{2 m}-2^{2 m}=u_{2}, x=$ $h_{2}^{-1}\left(u_{2}\right)$ one proves the existence of the continuous first derivative of the function G in $R \backslash\left\{0,-2^{2 m+1}\right\}$. Thus the function G has the continuous first derivative in $R \backslash\{0\}$.

Setting in (6) $y=x-u$ one obtains

$$
\begin{equation*}
F(u)=F(x)+F(x-u)+G(k(x, u)), \tag{9}
\end{equation*}
$$

where $k(x, u)=u^{2 m}-x^{2 m}-(x-u)^{2 m}$.
If $x \in\langle 1,2\rangle$ and $|u| \leq 1 / 4, k(x, u) \leq\left(1 / 2^{4 m}\right)-1-(1-1 / 4)^{2 m}<-1$ and $x-u \geq 3 / 4$. Therefore the existence of the continuous first derivatives of the functions F and G in $R \backslash\{0\}$ implies that the right-hand side of (9) is differentiable with respect to $u \in\langle-1 / 4,1 / 4\rangle$ for every fixed $x \in\langle 1,2\rangle$. Moreover,

$$
u \rightarrow-F^{\prime}(x-u)+\frac{\partial}{\partial u} k(x, u) G^{\prime}(k(x, u))
$$

is a continuous function and (9) implies the existence of the continuous first derivative of the function F in $\langle-1 / 4,1 / 4\rangle$. Consequently, (6) implies the existence of the continuous first derivative of the function G in a neighborhood of the point $x=0$. This completes the proof of the fact that $F, G \in C^{1}(R)$. Now, analogous considerations allow one to prove that $F, G \in C^{2}(R)$.

Differentiating (6) with respect to x and y one obtains

$$
\begin{aligned}
F^{\prime \prime}(x-y)= & 2 m(2 m-1)(x-y)^{2 m-2} \\
& \times G^{\prime}\left((x-y)^{2 m}-x^{2 m}-y^{2 m}\right)+4 m^{2}\left[(x-y)^{2 m-1}-x^{2 m-1}\right] \\
& \times\left[(x-y)^{2 m-1}+y^{2 m-1}\right] G^{\prime \prime}\left((x-y)^{2 m}-x^{2 m}-y^{2 m}\right) .
\end{aligned}
$$

Setting in the last equation $y=0$ one obtains

$$
F^{\prime \prime}(x)=2 m(2 m-1) G^{\prime}(0) x^{2 m-2}
$$

and hence

$$
F(x)=\alpha x^{2 m}+a x+b \quad \text { with } \quad \alpha=G^{\prime}(0)
$$

Since, by (6), $F(y)=F(-y)$,

$$
\begin{equation*}
F(x)=\alpha x^{2 m}+b \tag{10}
\end{equation*}
$$

Substituting this into (6) one obtains

$$
\begin{equation*}
\alpha(x-y)^{2 m}=\alpha\left(x^{2 m}+y^{2 m}\right)+b+G\left((x-y)^{2 m}-x^{2 m}-y^{2 m}\right) . \tag{11}
\end{equation*}
$$

Setting in (11) $y=x$ yields $G\left(-2 x^{2 m}\right)=-2 \alpha x^{2 m}-b$ and hence $G(u)=\alpha u-b$ for $u \leq 0$. Setting in (11) $y=-x$ yields $G\left(\left(2^{2 m}-2\right) x^{2 m}\right)=\left(2^{2 m}-2\right) \alpha x^{2 m}-b$ and hence $G(u)=\alpha u-b$ for $u \geq 0$ which, together with (10) and (7), implies that the positive continuous solutions $f(f(x) \not \equiv 0), g$ of (1) have the form (5), where $A=e^{b}$ is an arbitrary positive constant. In view of previous remarks all the solutions f, g of (1) satisfying the assumptions of the theorem have the form (5), where $A(A \neq 0)$ is an arbitrary constant.

References

[^0]
[^0]: 1. J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
 2. H. Światak, On a class of functional equations with several unknown functions, Aequationes Math. (to appear).

 Université de Montréal, Montréal, Québec

