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Abstract
We study the following rainbow version of subgraph containment problems in a family of (hyper)graphs, which gen-
eralizes the classical subgraph containment problems in a single host graph. For a collection G = {𝐺1, 𝐺2, . . . , 𝐺𝑚}
of not necessarily distinct k-graphs on the same vertex set [𝑛], a (sub)graph H on [𝑛] is rainbow if there exists
an injection 𝜑 : 𝐸 (𝐻) → [𝑚], such that 𝑒 ∈ 𝐸 (𝐺𝜑 (𝑒) ) for each 𝑒 ∈ 𝐸 (𝐻). Note that if |𝐸 (𝐻) | = 𝑚, then 𝜑 is a
bijection, and thus H contains exactly one edge from each 𝐺𝑖 .

Our main results focus on rainbow clique-factors in (hyper)graph systems with minimum d-degree conditions.
Specifically, we establish the following:

(1) A rainbow analogue of an asymptotical version of the Hajnal–Szemerédi theorem, namely, if 𝑡 | 𝑛 and
𝛿(𝐺𝑖) ≥ (1 − 1

𝑡 + 𝜀)𝑛 for each 𝑖 ∈ [ 𝑛𝑡
(𝑡
2
)
], then G contains a rainbow 𝐾𝑡 -factor;

(2) Essentially, a minimum d-degree condition forcing a perfect matching in a k-graph also forces rainbow perfect
matchings in k-graph systems for 𝑑 ∈ [𝑘 − 1].

The degree assumptions in both results are asymptotically best possible (although the minimum d-degree condition
forcing a perfect matching in a k-graph is in general unknown). For (1), we also discuss two directed versions and
a multipartite version. Finally, to establish these results, we in fact provide a general framework to attack this type
of problem, which reduces it to subproblems with finitely many colors.

1. Introduction

1.1. Rainbow extremal graph theory

A natural variant of the extremal problems concerns rainbow substructures in edge-colored graphs.
From our knowledge, two types of host graphs have been studied: one class is the properly edge-colored
graphs, which was first considered by Keevash et al. [22] – they initiated a systematic study of the
rainbow Turán number, where for a fixed H and an integer n, the rainbow Turán number for H is the
maximum number of edges in a properly edge-colored graph on n vertices which does not contain a
rainbow H; the other class is the edge-colored multigraphs, which is equivalent to the graph system
language in the Abstract, and is the main object of study in this paper. Although the two problems are
different, a common scheme can be formulated as below. A k-uniform hypergraph, k-graph for short, is
a pair 𝐻 = (𝑉, 𝐸), where V is a finite set of vertices and 𝐸 ⊆

(𝑉
𝑘

)
. We identify a hypergraph H with its

edge set, writing 𝑒 ∈ 𝐻 for 𝑒 ∈ 𝐸 (𝐻). We write subgraph instead of sub-k-graph or subhypergraph for
brevity.
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Definition 1.1. A k-graph system G = {𝐺1, . . . , 𝐺𝑚} is a collection of not necessarily distinct k-graphs
on the same vertex set V. Then a k-graph H on V is rainbow if there exists an injection 𝜑 : 𝐸 (𝐻) → [𝑚],
such that 𝑒 ∈ 𝐸 (𝐺𝜑 (𝑒) ) for each 𝑒 ∈ 𝐸 (𝐻).

Since 𝜑 is an injection, it follows that all edges of H are from different members of G. When
𝑚 = 𝑒(𝐻), 𝜑 is a bijection, and thus H contains exactly one edge from each 𝐻𝑖 . Note that each 𝐺𝑖 can
be seen as the collection of edges with color i. Given a k-graph system G, the color set of a graph H,
denoted by 𝐶 (𝐻), is the index set of all edges, that is {𝑖 : 𝐸 (𝐺𝑖) ∩ 𝐸 (𝐻) ≠ ∅}. Note that if |𝐸 (𝐻) | = 𝑚,
then a rainbow H consists of exactly one edge from each 𝐺𝑖 . As for the edge-colored multigraphs, a
recent breakthrough of Aharoni et al. [2] establishes a rainbow version of the Mantel’s [41] theorem:
for 𝑮 = {𝐺1, 𝐺2, 𝐺3} on the same n-vertex set, if 𝑒(𝐺𝑖) > 𝜏𝑛2 for 𝑖 ∈ [3], where 𝜏 ≈ 0.2557, then 𝑮
contains a rainbow triangle. Moreover, the constant 𝜏 is best possible. Towards a better understanding
of the rainbow structures, Aharoni et al. [2] conjectured a rainbow version of the Dirac’s [42] theorem:
for |𝑉 | = 𝑛 ≥ 3 and G = {𝐺1, . . . , 𝐺𝑛} on V, if 𝛿(𝐺𝑖) ≥ 𝑛/2 for each 𝑖 ∈ [𝑛], then G contains a rainbow
Hamilton cycle. This was recently verified asymptotically by Cheng et al. [9], and completely by Joos
and Kim [21].

A natural next step is to study rainbow analogues of graph factors, which we define now. Given graphs
F and G, an F-tiling is a set of vertex-disjoint copies of F in G. A perfect F-𝑡𝑖𝑙𝑖𝑛𝑔 (or an F-factor) of G is
an F-tiling covering all the vertices of G. Finding sufficient conditions for the existence of an F-factor is
one of the central areas of research in extremal graph theory. The celebrated Hajnal–Szemerédi theorem
reads as follows.
Theorem 1.2 (Hajnal–Szemerédi [17], Corrádi–Hajnal [10] for 𝑡 = 3). Every n-vertex graph G with
𝑛 ∈ 𝑡N and 𝛿(𝐺) ≥ (1 − 1

𝑡 )𝑛 has a 𝐾𝑡 -factor. Moreover, the minimum degree condition is sharp.
A short and elegant proof was later given by Kierstead and Kostochka [26]. The minimum degree

threshold forcing an F-factor for arbitrary F was obtained by Kühn and Osthus [29, 30], improving
earlier results of Alon and Yuster [7] and Komlós et al. [27].

1.2. Our results

In this paper, we study rainbow clique-factors under a few different contexts. Our first result is an
asymptotical version of the rainbow Hajnal–Szemerédi theorem.
Theorem 1.3. For every 𝜀 > 0 and 𝑡 ∈ N, there exists 𝑛0 ∈ N, such that the following holds for all
integers 𝑛 ≥ 𝑛0 and 𝑛 ∈ 𝑡N. Let 𝑚 = 𝑛

𝑡

(𝑡
2
)

and G = {𝐺1, . . . , 𝐺𝑚} be an n-vertex graph system. If
𝛿(𝐺𝑖) ≥ (1 − 1

𝑡 + 𝜀)𝑛 for each i, then G contains a rainbow 𝐾𝑡 -factor.
The minimum degree conditions are asymptotically best possible, as seen by setting all 𝐺𝑖 to be

identical and then referring to the optimality of Theorem 1.2. In fact, this naive construction serves as a
simple lower bound for all “rainbow” problems, certifying that the rainbow version is at least “as hard
as” the single host graph version (although the aforementioned rainbow Mantel’s theorem says that the
rainbow version can be strictly “harder”).

It is natural to seek analogues of the Hajnal–Szemerédi theorem in the digraph and oriented graph
settings, where we consider factors of directed cliques, namely, tournaments. We consider digraphs with
no loops and at most one edge in each direction between every pair of vertices. Let 𝑇𝑘 be the transitive
tournament on k vertices, where a transitive tournament is an orientation of a complete graph D with
the property that if 𝑥𝑦 and 𝑦𝑧 are arcs in D with 𝑥 ≠ 𝑧, then the arc 𝑥𝑧 is also in D. The minimum
semidegree 𝛿0 (𝐺) of a digraph G is the minimum of its minimum out-degree 𝛿+(𝐺) and its minimum
in-degree 𝛿−(𝐺).

Czygrinow et al. [12] proved that every digraph G on n vertices with 𝛿+(𝐺) ≥ (1 − 1/𝑘)𝑛 contains
a perfect 𝑇𝑘 -tiling for integers 𝑛, 𝑘 with 𝑘 | 𝑛. Let T𝑘 be the family of all tournaments on k vertices,
Treglown [40] proved that given an integer 𝑘 ≥ 3, there exists an 𝑛0 ∈ N, such that the following holds.
Suppose 𝑇 ∈ T𝑘 , and D is a digraph on 𝑛 ≥ 𝑛0 vertices, where 𝑘 | 𝑛. If 𝛿0 (𝐷) ≥ (1 − 1/𝑘)𝑛, then
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there exists a T-factor. For more results, see [13, 40]. In this paper, we prove the following extensions
of Theorem 1.3 for digraphs.

Theorem 1.4. For every integer 𝑘 ≥ 3 and real 𝜀 > 0, there exists 𝑛0 ∈ N, such that the following
holds for all integers 𝑛 ≥ 𝑛0 and 𝑛 ∈ 𝑘N. If D = {𝐷1, . . . , 𝐷𝑚}, 𝑚 = 𝑛

𝑘

(𝑘
2
)
, is a collection of n-vertex

digraphs on the same vertex set such that 𝛿+(𝐷𝑖) ≥ (1 − 1
𝑘 + 𝜀)𝑛, then D contains a rainbow 𝑇𝑘 -factor.

Theorem 1.5. For every integer 𝑘 ≥ 3, 𝑇 ∈ T𝑘 , and real 𝜀 > 0, there exists 𝑛0 ∈ N, such that the
following holds for all integers 𝑛 ≥ 𝑛0 and 𝑛 ∈ 𝑘N. If D = {𝐷1, . . . , 𝐷𝑚}, 𝑚 = 𝑛

𝑘

(𝑘
2
)
, is a collection of

n-vertex digraphs on the same vertex set such that 𝛿0 (𝐷𝑖) ≥ (1 − 1
𝑘 + 𝜀)𝑛, then D contains a rainbow

T-factor.

We next discuss the partite setting. Suppose 𝑉1, . . . , 𝑉𝑘 are disjoint vertex sets each of order n, and
G is a k-partite graph on vertex classes 𝑉1, . . . , 𝑉𝑘 (that is, G is a graph on the vertex set 𝑉1 ∪ · · · ∪ 𝑉𝑘 ,
such that no edge of G has both end vertices in the same class). We define the partite minimum degree
of G, denoted by 𝛿′(𝐺), to be the largest m such that every vertex has at least m neighbors in each part
other than its own, that is

𝛿′(𝐺) := min
𝑖∈[𝑘 ]

min
𝑣 ∈𝑉𝑖

min
𝑗∈[𝑘 ]\{𝑖 }

|𝑁 (𝑣) ∩𝑉 𝑗 |,

where 𝑁 (𝑣) denotes the neighborhood of v. Fischer [15] conjectured that if 𝛿′(𝐺) ≥ (1 − 1/𝑘)𝑛, then
G has a 𝐾𝑘 -factor. Recently, an approximate version of this conjecture assuming the degree condition
𝛿′(𝐺) ≥ (1 − 1/𝑘 + 𝑜(1))𝑛 was proved independently by Keevash and Mycroft [23], and by Lo and
Markström [32] (a corrected exact version was given by Keevash and Mycroft [24], in fact, they obtain a
more general result for r-partite graphs with 𝑟 ≥ 𝑘). We extend this approximate version to the rainbow
setting.

Theorem 1.6. For every 𝜀 > 0 and integer k, there exists 𝑛0 ∈ N, such that the following holds for all
integers 𝑛 ≥ 𝑛0. If G = {𝐺1, . . . , 𝐺𝑛(𝑘2)

} is a collection of k-partite graphs with a common partition
𝑉1, . . . , 𝑉𝑘 each of size n, such that 𝛿′(𝐺𝑖) ≥ (1 − 1

𝑘 + 𝜀)𝑛, then G contains a rainbow 𝐾𝑘 -factor.

A matching in H is a collection of vertex-disjoint edges of H. A perfect matching in H is a matching
that covers all vertices of H. Given 𝑑 ∈ [𝑘 − 1], the minimum d-degree of a k-graph H, denoted by
𝛿𝑑 (𝐻), is defined as the minimum of 𝑑𝐻 (𝑆) over all d-sets S of𝑉 (𝐻), where 𝑑𝐻 (𝑆) denotes the number
of edges containing S. Another main result of this paper is to settle the rainbow version of minimum
d-degree-type results for perfect matchings in k-graphs for all 𝑑 ∈ [𝑘 − 1], in a sense that the minimum
d-degree condition which forces a perfect matching in a single k-graph is essentially sufficient to force
a rainbow perfect matching in a k-graph system. Note that Joos and Kim [21] proved that 𝛿(𝐺𝑖) ≥ 𝑛/2
guarantees a rainbow perfect matching in an n-vertex graph system.

It is well-known that perfect matchings are closely related to its fractional counterpart. Given a
k-graph H, a fractional matching is a function 𝑓 : 𝐸 (𝐻) → [0, 1], subject to the requirement that∑
𝑒:𝑣 ∈𝑒 𝑓 (𝑒) ≤ 1, for every 𝑣 ∈ 𝑉 (𝐻). Furthermore, if equality holds for every 𝑣 ∈ 𝑉 (𝐻), then

we call the fractional matching perfect. Denote the maximum size of a fractional matching of H
by 𝜈∗(𝐻) = max 𝑓 Σ𝑒∈𝐸 (𝐻 ) 𝑓 (𝑒). Let 𝑐𝑘,𝑑 be the minimum d-degree threshold for perfect fractional
matchings in k-graphs, namely, for every 𝜀 > 0 and sufficiently large 𝑛 ∈ N, every n-vertex k-graph H
with 𝛿𝑑 (𝐻) ≥ (𝑐𝑘,𝑑 + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
contains a perfect fractional matching. It is known that [5] every n-vertex

k-graph H with 𝛿𝑑 (𝐻) ≥ (max{𝑐𝑘,𝑑 , 1/2} + 𝑜(1))
(𝑛−𝑑
𝑘−𝑑

)
has a perfect matching, and this condition is

asymptotically best possible. However, determining the parameter 𝑐𝑘,𝑑 is a major open problem in this
field, and we refer to [16] for related results and discussions.

Theorem 1.7. For every 𝜀 > 0 and integer 𝑑 ∈ [𝑘 − 1], there exists 𝑛0 ∈ N, such that the following
holds for all integers 𝑛 ≥ 𝑛0 and 𝑛 ∈ 𝑘N. Every n-vertex k-graph system G = {𝐺1, . . . , 𝐺 𝑛

𝑘
} with

𝛿𝑑 (𝐺𝑖) ≥ (max{𝑐𝑘,𝑑 , 1
2 } + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
for each i contains a rainbow perfect matching.
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Related work. Aharoni and Howard [3] conjectured that given an n-vertex k-graph system
𝑮 = {𝐺1, . . . , 𝐺𝑚}, if 𝑒(𝐺𝑖) > max{

(𝑛
𝑘

)
−

(𝑛−𝑚+1
𝑘

)
,
(𝑘𝑚−1
𝑘

)
} for 𝑖 ∈ [𝑚], then 𝑮 contains a rain-

bow matching of size m. The conjecture is known for 𝑛 > 3𝑘2𝑚 by a result of Huang et al. [19], and
for 𝑚 < 𝑛/(2𝑘) and sufficiently large n by a recent result of Lu et al. [34]. For the case 𝑘 = 3, Lu
et al. [36] showed that for sufficiently large 𝑛 ∈ 3N, given a 3-graph system 𝑮 = {𝐺1, . . . , 𝐺𝑛/3}, if
𝛿1 (𝐺𝑖) >

(𝑛−1
2
)
−
(2𝑛/3

2
)

for 𝑖 ∈ [𝑛/3], then 𝑮 contains a rainbow perfect matching (note that the single
host 3-graph case was proved by Kühn et al. [28] and independently by Khan [25]).

On a slightly different setup, Huang et al. [18] obtained a generalization of the Erdős Matching Con-
jecture to properly colored k-graph systems G and verified it for 𝑛 ≥ 3𝑘2𝑚, where 𝑮 = {𝐺1, . . . , 𝐺𝑚}
and each 𝐺𝑖 is an n-vertex properly colored k-graph. For general F-factors, Coulson et al. [11] proved
that essentially the minimum d-degree threshold guaranteeing an F-factor in a single k-graph also forces
a rainbow F-factor in any edge-coloring of G that satisfies certain natural local conditions. We refer the
reader to [1, 4, 8, 14, 31, 33, 35, 38] for more results.

2. Proof ideas and a general framework for rainbow F-factors

Our proof is under the framework of the absorption method, pioneered by Rödlet al. [39], which reduces
the problem of finding a spanning subgraph to building an absorption structure and an almost spanning
structure. Tailored to our problem, the naive idea is to build a rainbow absorption structure and a rainbow
almost F-factor. Moreover, the rainbow absorption structure must be able to deal with (i.e., absorb) an
arbitrary leftover of vertices, as well as a leftover of colors.

2.1. A general framework for rainbow F-factors

To state our general theorem for rainbow F-factors, we need some general notation that captures all of
our contexts. We shall consider a directed k-graph (Dk-graph) H, with edge set 𝐸 (𝐻) ⊆

(𝑉 (𝐻 )
𝑘

)
×{+,−},

that is, each edge consists of k vertices and a direction taken from {+,−}. This way, a directed (2-)graph
can be recognized as a graph with an ordered vertex set, and edges following (or against) the order of
the enumeration are oriented by + (or −).

Given a Dk-graph 𝐻 = (𝑉, 𝐸), for 𝐸 ′ ⊆ 𝐸 , we write 𝐻 [𝐸 ′] for the subgraph of H with edge set 𝐸 ′

and vertex set ∪𝑒∈𝐸′𝐸 ′. For 𝑉 ′ ⊆ 𝑉 , if 𝐻 ′ ⊆ 𝐻 contains all edges of H with vertices in 𝑉 ′, then 𝐻 ′ is an
induced subgraph of H. Denote it by 𝐻 [𝑉 ′]. If there is an F-tiling in H whose vertex set is 𝑉 ′, then we
say that𝑉 ′ spans an F-tiling. Given another Dk-graph 𝐻1 = (𝑉1, 𝐸1), we set 𝐻∪𝐻1 := (𝑉 ∪𝑉1, 𝐸 ∪𝐸1).

Given a Dk-graph F with b vertices and f edges, a Dk-graph system G = {𝐺1, . . . , 𝐺 𝑛
𝑏 𝑓

} on vertex
V and a subset 𝑉 ′ ⊆ 𝑉 . Let G[𝑉 ′] = {𝐺1 [𝑉

′], . . . , 𝐺 𝑛
𝑏 𝑓

[𝑉 ′]} be the induced Dk-graph system on 𝑉 ′.
If |𝑉 ′ | ∈ 𝑏N and there exists a rainbow perfect F-tiling inside G[𝑉 ′] whose color set is 𝐶 ⊆ [𝑛 𝑓 /𝑏],
then we say that 𝑉 ′spans a rainbow F-tiling in G with color set C. Let 𝐴1 and 𝐴2 be two rainbow
Dk-graphs in G with color set 𝐶1 and 𝐶2, respectively, we set 𝐴1 ∪ 𝐴2 to be a Dk-graph with vertex
set 𝑉 (𝐴1) ∪ 𝑉 (𝐴2), edge set 𝐸 (𝐴1) ∪ 𝐸 (𝐴2), and color set 𝐶1 ∪ 𝐶2. The following general minimum
degree condition captures all of our contexts.

Definition 2.1. Let H be a Dk-graph and 𝑑 ∈ [𝑘 − 1], a minimum d-degree 𝛿∗𝑑 (𝐻) corresponding to
a certain (implicit) degree rule can be defined as follows. There exists ℓ ∈ N, such that for any d-set
𝑆 ⊆ 𝑉 (𝐻), let

𝑁∗(𝑆) := {𝐸1, . . . , 𝐸ℓ },

where 𝐸𝑖 is a set of edges of H that each contains S as a subset. Let deg∗(𝑆) := min𝑖∈[ℓ ] |𝐸𝑖 | and
𝛿∗𝑑 (𝐻) := min𝑆⊆(𝑉𝑑) deg∗(𝑆).

We list all the instances of minimum degrees used in this paper.
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◦ When H is a k-graph, we can take ℓ = 1 and 𝐸1 as all edges containing S, thus deg∗(𝑆) = |𝐸1 | and
𝛿∗𝑑 (𝐻) represents the standard minimum d-degree of H.

◦ When H is a k-partite 2-graph, we can take ℓ = 𝑘 − 1, where 𝐸𝑖 consists of the edges from 𝑆 = {𝑣} to
𝑉𝑖 for 𝑖 ∈ [𝑘] \ { 𝑗 : 𝑣 ∈ 𝑉 𝑗 }, thus deg∗(𝑆) = min{|𝐸𝑖 | : 𝑖 ∈ [𝑘] \ { 𝑗 : 𝑣 ∈ 𝑉 𝑗 }} and 𝛿∗1 (𝐻) represents
the minimum partite degree of H.

◦ When H is a directed graph and 𝑆 = {𝑣} for a given vertex v, we can take ℓ = 1 and take 𝐸1 as the
sets of out(in)-edges, thus, deg∗(𝑆) = |𝐸1 | and 𝛿∗1(𝐻) represents the minimum out(in)-degree of H.

◦ When H is a directed graph and 𝑆 = {𝑣} for a given vertex v, we can take ℓ = 2 and take 𝐸1, 𝐸2 as the
sets of in-edges and out-edges, respectively, thus, deg∗(𝑆) = min{|𝐸1 |, |𝐸2 |} and 𝛿∗1 (𝐻) represents
the minimum semidegree of H.
Throughout the rest of this paper, let F be a Dk-graph with b vertices and f edges. We first define an

absorber without colors. Given a set B of b vertices, a Dk-graph 𝐴0 = 𝐴0
1 ∪ 𝐴0

2 is called an F-absorber
for B if
◦ 𝑉 (𝐴0) = 𝐵 ∪𝐿1 ,
◦ 𝐴0

1 is an F-factor on L, and 𝐴0
2 is an F-factor on 𝐵 ∪ 𝐿.

Note that |𝑉 (𝐴0) | is always a constant in this paper. Naturally, we give the definition of rainbow F-
absorber as follows.
Definition 2.2 (Rainbow F-absorber). Let G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} be a Dk-graph system on V and F be
a Dk-graph with b vertices and f edges. For every b-set B in V and every f -set C in [𝑛 𝑓 /𝑏], 𝐴 = 𝐴1 ∪ 𝐴2
is called a rainbow F-absorber for (𝐵,𝐶) if
◦ 𝑉 (𝐴) = 𝐵 ∪𝐿,
◦ 𝐴1 is a rainbow F-factor on L with color set 𝐶1, and 𝐴2 is a rainbow F-factor on 𝐵 ∪ 𝐿 with color set

𝐶1 ∪ 𝐶.
A rainbow F-absorber for (𝐵,𝐶) works in the following way: 𝐴1 is a rainbow F-tiling with color set

𝐶1, thus, if the vertices of B and the colors C are available, then we can switch to 𝐴2 and get a larger
rainbow F-tiling. For example (see Figure 1), let G = {𝐺1, . . . , 𝐺𝑛} be a graph system on n-vertex set V.
For any 𝐵 = {𝑣1, 𝑣2, 𝑣3} and 𝐶 = {𝑖, 𝑗 , 𝑘}, we construct a rainbow triangle-absorber A for (𝐵,𝐶), where
𝑉 (𝐴) = 𝐵 ∪ {𝑣4, . . . , 𝑣12}. {𝑣4𝑣7𝑣8, 𝑣5𝑣9𝑣10, 𝑣6𝑣11𝑣12} is a family of rainbow triangles with color set
𝐶1, which serves as 𝐴1. {𝑣1𝑣7𝑣8, 𝑣2𝑣9𝑣10, 𝑣3𝑣11𝑣12, 𝑣4𝑣5𝑣6} is a family of rainbow triangles with color
set 𝐶1 ∪ {𝑖, 𝑗 , 𝑘}, which serves as 𝐴2. Now we introduce one of the main parameters 𝑐abs,∗

𝑑,𝐹 . Roughly
speaking, it is the minimum degree threshold, such that all b-sets are contained in many rainbow F-
absorbers.
Definition 2.3 (𝑐abs,∗

𝑑,𝐹 : Rainbow absorption threshold). Fix an F-absorber 𝐴0 = 𝐴0
1 ∪ 𝐴0

2, and let m
be the number of vertex disjoint copies of F in 𝐴0

2. Let 𝑐𝑑,𝐹 ,𝐴0 ∈ (0, 1) be the infimum of reals
𝑐 > 0, such that for every 𝜀 > 0, there exists 𝜀′ > 0, such that the following holds for sufficiently
large 𝑛 ∈ N, where 𝑑 ∈ [𝑘 − 1]. Let G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} be an n-vertex Dk-graph system on
V. If 𝛿∗𝑑 (𝐺𝑖) ≥ (𝑐 + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
for 𝑖 ∈ [𝑛 𝑓 /𝑏], then for every b-set B in V and every f -set C in

[𝑛 𝑓 /𝑏] with the form [(𝑖 − 1) 𝑓 , 𝑖 𝑓 ] for some 𝑖 ∈ [𝑛/𝑏], there are at least 𝜀′𝑛(𝑚−1) (𝑏+1) rainbow
F-absorbers A with color set 𝐶 (𝐴0

1) ∪ 𝐶 whose underlying graph is isomorphic to 𝐴0, such that
𝐶 (𝐴0

1) = [(𝑖1 −1) 𝑓 +1, 𝑖1 𝑓 ] ∪ [(𝑖2 −1) 𝑓 +1, 𝑖2 𝑓 ] ∪ · · · ∪ [(𝑖𝑚−1 −1) 𝑓 +1, 𝑖𝑚−1 𝑓 ], where 𝑖 𝑗 ∈ [𝑛/𝑏] for
each 𝑗 ∈ [𝑚 − 1] and 𝑖 𝑗1 ≠ 𝑖 𝑗2 for distinct 𝑗1, 𝑗2 ∈ [𝑚 − 1]. Let 𝑐abs,∗

𝑑,𝐹 := inf 𝑐𝑑,𝐹 ,𝐴0 , where the infimum
is over all F-absorbers 𝐴0.

We next define a threshold parameter for the rainbow almost F-factor in a similar fashion. We use the
following auxiliary b-graph 𝐻𝐹 . Given a Dk-graph F with b vertices and f edges, and an n-vertex Dk-
graph system H = {𝐻1, . . . , 𝐻 𝑓 } on V, let 𝐻𝐹 be the (undirected) b-graph with vertex set 𝑉 (𝐻𝐹 ) = 𝑉
and edge set 𝐸 (𝐻𝐹 ) = {𝑉 (𝐹 ′) : 𝐹 ′ is a rainbow copy of 𝐹 with color set [ 𝑓 ]}.

1As usual, 𝐴 ∪𝐵 denotes the disjoint union of A and B.

https://doi.org/10.1017/fms.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.92


6 Y. Cheng et al.

Figure 1. A rainbow triangle-absorber A for (𝐵,𝐶).

Definition 2.4 (𝑐cov,∗
𝑑,𝐹 : Rainbow almost F-factor threshold). Let 𝑐cov,∗

𝑑,𝐹 ∈ (0, 1) be the infimum of reals
𝑐 > 0, such that for every 𝜀 > 0, the following holds for sufficiently large 𝑛 ∈ N. Let H = {𝐻1, . . . , 𝐻 𝑓 }

be an n-vertex Dk-graph system. If 𝛿∗𝑑 (𝐻𝑖) ≥ (𝑐 + 𝜀)
(𝑛−𝑑
𝑘−𝑑

)
for every 𝑖 ∈ [ 𝑓 ], then the b-graph 𝐻𝐹 has a

perfect fractional matching.

The property of “having a perfect fractional matching” is required in 𝐻𝐹 , which is a single host
graph. This definition (and our proofs supporting it) establishes a close relation between the rainbow
F-factor problem and the classical F-factor problem with no colors.

Now we are ready to state our general result on rainbow F-factors.

Theorem 2.5. Let F be a Dk-graph with b vertices and f edges. For any 𝜀 > 0 and integer 𝑑 ∈ [𝑘−1], the
following holds for sufficiently large 𝑛 ∈ 𝑏N. Let G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} be an n-vertex Dk-graph system
on V. If 𝛿∗𝑑 (𝐺𝑖) ≥ (max{𝑐abs,∗

𝑑,𝐹 , 𝑐cov,∗
𝑑,𝐹 } + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
for 𝑖 ∈ [𝑛 𝑓 /𝑏], then G contains a rainbow F-factor.

Theorem 2.5 reduces the rainbow F-factor problem to two subproblems, namely, the enumeration of
rainbow F-absorbers and the study of perfect fractional matchings in 𝐻𝐹 . In our proofs of Theorems 1.3–
1.7, the first subproblem is done by greedy constructions of the 𝐾𝑡 -absorbers with the minimum degree
condition. Note that the second subproblem is trivial by definition for Theorem 1.7. For Theorems 1.3–
1.6, we achieve it by converting the problem to the setting of complexes (downward-closed hypergraphs)
and then applying a result of Keevash and Mycroft [23] on perfect fractional matchings, which is a nice
application of the Farkas’s Lemma for linear programming. To conclude, we remark that the main benefit
from Theorem 2.5 is that both of these two subproblems only concern finitely many colors. From this
aspect, Theorem 2.5 irons out significant difficulties on the rainbow spanning structure problem due to
an unbound number of colors. Thus, it is likely that Theorem 2.5 will find more applications in this area.

3. Notation and preliminary

For a hypergraph H, the 2-degree of a pair of vertices is the number of edges containing this pair
and Δ2 (𝐻) denotes the maximum 2-degree in H. For reals 𝑎, 𝑏, and c, we write 𝑎 = (1 ± 𝑏)𝑐 for
(1 − 𝑏)𝑐 ≤ 𝑎 ≤ (1 + 𝑏)𝑐. We need the following result which was attributed to Pippenger [37] (see
Theorem 4.7.1 in [6]), following Frankl and Rödl [43]. A cover in a hypergraph H is a set of edges, such
that each vertex of H is in at least one edge of the set.
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Lemma 3.1 [37]. For every integer 𝑘 ≥ 2, 𝑟 ≥ 1, and 𝑎 > 0, there exist 𝛾 = 𝛾(𝑘, 𝑟, 𝑎) > 0 and
𝑑0 = 𝑑0(𝑑, 𝑟, 𝑎), such that the following holds for every 𝑛 ∈ N and 𝐷 ≥ 𝑑0. Every k-graph 𝐻 = (𝑉, 𝐸)
on V of n vertices in which all vertices have positive degrees and which satisfies the following conditions:

◦ For all vertices 𝑥 ∈ 𝑉 but at most 𝛾𝑛 of them, 𝑑𝐻 (𝑥) = (1 ± 𝛾)𝐷.
◦ For all 𝑥 ∈ 𝑉 , 𝑑𝐻 (𝑥) < 𝑟𝐷.
◦ Δ2 (𝐻) < 𝛾𝐷.

contains a cover of at most (1 + 𝑎) (𝑛/𝑘) edges.

The following well-known concentration results, that is Chernoff bounds, can be found in Appendix
A in [6] and Theorem 2.8, inequalities (2.9) and (2.11) in [20]. Denote a binomial random variable
with parameters n and p by 𝐵𝑖(𝑛, 𝑝). Bernoulli’ distribution is the discrete probability distribution of
a random variable which takes the value 1 with probability p and the value 0 with probability 1–p.
Janson’s inequality [6].

Lemma 3.2 (Chernoff inequality for small deviation). If 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 , where 𝑋1, . . . , 𝑋𝑛 are mutually

independent random variables, each 𝑋𝑖 has Bernoulli distribution with expectation 𝑝𝑖 and 𝛼 ≤ 3/2, then

P[|𝑋 − E[𝑋] | ≥ 𝛼E[𝑋]] ≤ 2𝑒−
𝛼2
3 E[𝑋 ] .

In particular, when 𝑋 ∼ 𝐵𝑖(𝑛, 𝑝) and 𝜆 < 3
2𝑛𝑝, then

P[|𝑋 − 𝑛𝑝 | ≥ 𝜆] ≤ 𝑒−Ω(𝜆2/(𝑛𝑝)) .

Lemma 3.3 (Chernoff inequality for large deviation). If 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 , where 𝑋1, . . . , 𝑋𝑛 are mutually

independent random variables, each random variable 𝑋𝑖 has Bernoulli distribution with expectation 𝑝𝑖
and 𝑥 ≥ 7E[𝑋], then

P[𝑋 ≥ 𝑥] ≤ 𝑒−𝑥 .

We also need the Janson’s inequality to provide an exponential upper bound for the lower tail of a
sum of dependent zero-one random variables.

Lemma 3.4 (Theorem 8.7.2 in [6]). Let Γ be a finite set and 𝑝𝑖 ∈ [0, 1] be a real for 𝑖 ∈ Γ. Let Γ𝑝 be a
random subset of Γ, such that the elements are chosen independently with P[𝑖 ∈ Γ𝑝] = 𝑝𝑖 for 𝑖 ∈ Γ. Let
M be a family of subsets of Γ. For every 𝐴𝑖 ∈ 𝑀 , let 𝐼𝐴𝑖 = 1 if 𝐴𝑖 ⊆ Γ𝑝 and 0 otherwise. Let 𝐵𝑖 be the
event that 𝐴𝑖 ⊆ Γ𝑝 . For 𝐴𝑖 , 𝐴 𝑗 ∈ 𝑀 , we write 𝑖 ∼ 𝑗 if 𝐵𝑖 and 𝐵 𝑗 are not pairwise independent, in other
words, 𝐴𝑖 ∩ 𝐴 𝑗 ≠ ∅. Define 𝑋 = Σ𝐴𝑖 ∈𝑀 𝐼𝐴𝑖 , 𝜆 = E[𝑋], Δ =

∑
𝑖∼ 𝑗
P[𝐵𝑖 ∧ 𝐵 𝑗 ], then

P[𝑋 ≤ (1 − 𝛾)𝜆] < 𝑒−𝛾
2𝜆/[2+(Δ/𝜆) ] .

4. Rainbow Absorption Method

4.1. Rainbow Absorption Lemma

In this section, we prove a rainbow version of the absorption lemma via probabilistic method. The only
difference is that we use the following auxiliary hypergraph which makes it applicable to the rainbow
setting.

Definition 4.1. We call a hypergraph H a (1, 𝑏)-graph, if 𝑉 (𝐻) can be partitioned into 𝐴∪ 𝐵 and 𝐸 (𝐻)

is a family of (1 + 𝑏)-sets, each of which contains exactly one vertex in A and b vertices in B.
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For a (1, 𝑏)-graph H with partition 𝐴 ∪𝐵, a (1, 𝑑)-subset D of 𝑉 (𝐻) is a (𝑑 + 1)-tuple, where
|𝐷 ∩ 𝐴| = 1 and |𝐷 ∩ 𝐵 | = 𝑑. A (1, 𝑏)-graph H with partition classes 𝐴, 𝐵 is balanced if 𝑏 |𝐴| = |𝐵 |.
We say that a set 𝑆 ⊆ 𝑉 (𝐻) is balanced if 𝑏 |𝑆 ∩ 𝐴| = |𝑆 ∩ 𝐵 |.

Given an n-vertex Dk-graph system G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} on V, we first construct a sequence of
hypergraphs 𝐻 ′

𝐹1
, . . . , 𝐻 ′

𝐹𝑛/𝑏
, each of which is a b-graph with vertex set 𝑉 (𝐻 ′

𝐹𝑖
) = 𝑉 and edge set

𝐸 (𝐻 ′
𝐹𝑖
) = {𝑒 ∈

(𝑉
𝑏

)
: e spans a rainbow copy of F with color set 𝐼𝑖 = [(𝑖 − 1) 𝑓 + 1, 𝑖 𝑓 ]}. We define an

auxiliary (1, 𝑏)-graph 𝐻G of G as follows.

Definition 4.2. Let 𝐻G be an auxiliary (1, 𝑏)-graph of G with vertex set 𝑉 ′ = [𝑛/𝑏] ∪ 𝑉 and edge set
{{𝑖} ∪ 𝑒 : 𝑖 ∈ [𝑛/𝑏], 𝑒 ∈ 𝐻 ′

𝐹𝑖
}.

For any edge 𝑒 ∈ 𝐸 (𝐻G), if 𝐴 ⊆ 𝑉 (𝐻G) and |𝐴| is divisible by 𝑏+1, then 𝐴 ∈
( (𝑏+1)𝑛

𝑎

)
is an absorber

for e, if 𝑒 ⊆ 𝐴, there is a perfect matching in 𝐻G [𝐴] and there is a perfect matching in 𝐻G [𝐴 \ 𝑒]. Let
L(𝑒) denote the set of absorbers for e in 𝐻G.

Lemma 4.3 (Rainbow Absorption Lemma). Let F be a Dk-graph with b vertices and f edges and 𝐴0 be
a rainbow F-absorber. The maximum vertex-disjoint copies of F of 𝐴0 is m. For every 𝜀 > 0, there exist
𝛾, 𝛾1, and 𝑛0, such that the following holds for all integers 𝑛 ≥ 𝑛0. Suppose that G = {𝐺1, . . . , 𝐺 𝑛

𝑏 𝑓
} is

an n-vertex Dk-graph system on V and 𝛿∗𝑑 (𝐺𝑖) ≥ (𝑐abs,∗
𝑑,𝐹 + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
and 𝐻G is the auxiliary (1, 𝑏)-graph

of G, then there exists a matching M in 𝐻G with size at most 2𝛾(𝑚 − 1)𝑛, such that for every balanced
set 𝑈 ⊆ ([𝑛/𝑏] ∪𝑉) \𝑉 (𝑀) of size at most 𝛾1𝑛, 𝑉 (𝑀) ∪𝑈 spans a matching in 𝐻G.

Proof. Let 1/𝑛 � 𝛾1 � 𝛼 � 𝛾 � 𝜀′ � 𝜀. Note that a matching of size m in 𝐻G corresponds to a
rainbow F-absorber in 𝑮. Choose a family F of matchings of size 𝑚 − 1 from 𝐻G by including each
matching of size 𝑚 − 1 independently at random with probability

𝑝 = 𝛾/𝑛(𝑚−1) (𝑏+1)−1.

Note that |F |, |L(𝑒) ∩ F | are binomial random variables with expectations

E|F | ≤ 𝛾𝑛 and

E|L(𝑒) ∩ F | ≥ 𝛾𝜀′𝑛 for any 𝑒 ∈ 𝐸 (𝐻G).

The latter inequality holds since for any edge e of 𝐻G, |L(𝑒) | ≥ 𝜀′𝑛(𝑚−1) (𝑏+1) by the minimum degree
assumption and Definition 2.3. By Lemma 3.2, with probability 1 − 𝑜(1), the family F satisfies the
following properties.

(1) |F | ≤ 2E|F | ≤ 2𝛾𝑛,
(2) |L(𝑒) ∩ F | ≥ 1

2E|L(𝑒) ∩ F | ≥ 1
2𝛾𝜀

′𝑛 for any 𝑒 ∈ 𝐸 (𝐻G).

Moreover, we can also bound the expected number of pairs of intersecting members of F by

𝑛(𝑚−1) (𝑏+1) (𝑚 − 1)2(𝑏 + 1)2𝑛(𝑚−1) (𝑏+1)−1𝑝2 ≤
1
8
𝛾𝜀′𝑛.

Thus, by Markov’s Inequality [6], we derive that with probability at least 1/2, F contains at most 1
4𝛾𝜀

′𝑛
pairs of intersecting members of F . Remove one member from each of the intersecting pairs in F . Thus,
the resulting family, say F ′, consists of pairwise disjoint matchings of size 𝑚 − 1 that satisfies

(1) |F ′ | ≤ 2𝛾𝑛,
(2) |L(𝑒) ∩ F | ≥ 1

2𝛾𝜀
′𝑛 − 1

4𝛾𝜀
′𝑛 ≥ 𝛼𝑛 for any 𝑒 ∈ 𝐸 (𝐻G).

Therefore, the union of members in F ′ is a matching in 𝐻G of size at most 2𝛾(𝑚−1)𝑛 and can (greedily)
absorb a balanced set U of size at most 𝛾1𝑛 since 𝛾1 � 𝛼. �
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Figure 2. Illustration of the rainbow absorbers (with directions omitted).

4.2. Enumeration of rainbow absorbers

In this section, we give two examples of rainbow absorbers. The first one is as follows. Recall that 𝑇𝑘 is
the transitive tournament on k vertices.

4.2.1. Rainbow 𝑇𝑘 -absorber
For the proof of Theorem 1.4, we show that

𝑐abs,+
1,𝑇𝑘 ≤ 1 −

1
𝑘
. (1)

For any k-set 𝑆 = {𝑢1, 𝑢2, . . . , 𝑢𝑘 } in V and every
(𝑘
2
)
-set 𝐶 = [( 𝑗 − 1)

(𝑘
2
)
+ 1, 𝑗

(𝑘
2
)
], where 𝑗 ∈ [ 𝑛𝑘 ], we

define a rainbow 𝑇𝑘 -absorber A for (𝑆, 𝐶) as follows (see Figure 2).

◦ 𝐴1 = 𝐴 − 𝑆 = {𝑇1
𝑘 , . . . , 𝑇

𝑘
𝑘 } is a rainbow 𝑇𝑘 -tiling with 𝐶 (𝑇 𝑖𝑘 ) = [( 𝑗𝑖 − 1)

(𝑘
2
)
+ 1, 𝑗𝑖

(𝑘
2
)
], where

𝑗𝑖 ∈ [𝑛/𝑘] for 𝑖 ∈ [𝑘] and 𝐴2 = {𝑇0
𝑘 , 𝑇

1′
𝑘 , . . . , 𝑇 𝑘

′

𝑘 } is a rainbow 𝑇𝑘 -tiling with 𝐶 (𝑇0
𝑘 ) = 𝐶 and

𝐶 (𝑇 𝑖
′

𝑘 ) = [( 𝑗𝑖 − 1)
(𝑘
2
)
+ 1, 𝑗𝑖

(𝑘
2
)
], where 𝑗𝑖 ∈ [𝑛/𝑘] for 𝑖 ∈ [𝑘] .

◦ We can choose a rainbow 𝑇0
𝑘 that is isomorphic to 𝑇𝑘 with color set C, such that 𝑉 (𝑇0

𝑘 ) =
{𝑣1, 𝑣2, . . . , 𝑣𝑘 }, where 𝑣𝑖 ∈ 𝑉 (𝑇 𝑖𝑘 ) and 𝑉 (𝑇 𝑖

′

𝑘 ) = 𝑉 (𝑇 𝑖𝑘 )\{𝑣𝑖} ∪ {𝑢𝑖}, 𝑖 ∈ [𝑘].
◦ 𝑐(𝑢𝑖𝑥) = 𝑐(𝑣𝑖𝑥) for each 𝑥 ∈ 𝑉 (𝐴1\𝑉 (𝑇0

𝑘 )), and 𝑐(𝑥𝑦) in 𝑇 𝑖𝑘 is the same as 𝑐(𝑥𝑦) in 𝑇 𝑖
′

𝑘 for 𝑖 ∈ [𝑘]

and 𝑥, 𝑦 ∈ 𝑉 (𝐴1\𝑉 (𝑇0
𝑘 )).

Suppose 𝛿(𝐷+
𝑖 ) ≥ (1 − 1/𝑘 + 𝜀)𝑛 for 𝑖 ∈ [ 𝑛𝑘

(𝑘
2
)
]. For any k-set S in V and every

(𝑘
2
)
-set 𝐶 =

[( 𝑗 − 1)
(𝑘
2
)
+ 1, 𝑗

(𝑘
2
)
], where 𝑗 ∈ [ 𝑛𝑘 ], we denote the family of rainbow 𝑇𝑘 -absorbers for (𝑆, 𝐶) by

A(𝑆, 𝐶).

Claim 4.4. For any k-set 𝑆 = {𝑢1, 𝑢2, . . . , 𝑢𝑘 } in V and every
(𝑘
2
)
-set 𝐶 = [( 𝑗 − 1)

(𝑘
2
)
+ 1, 𝑗

(𝑘
2
)
] where

𝑗 ∈ [ 𝑛𝑘 ], we have |A(𝑆, 𝐶) | ≥ 𝜀𝑘
2+𝑘𝑛𝑘

2+𝑘 .

Proof. Fixing a k-set 𝑆 = {𝑢1, 𝑢2, . . . , 𝑢𝑘 } in V and a
(𝑘
2
)
-set𝐶 = [( 𝑗−1)

(𝑘
2
)
+1, 𝑗

(𝑘
2
)
] for some 𝑗 ∈ [ 𝑛𝑘 ],

we construct rainbow absorbers for (𝑆, 𝐶). We choose [( 𝑗𝑖 − 1)
(𝑘
2
)
+ 1, 𝑗𝑖

(𝑘
2
)
] for 𝑖 ∈ [𝑘] arbitrarily,
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there are ( 𝑛𝑘 − 1) ( 𝑛𝑘 − 2) · · · ( 𝑛𝑘 − 𝑘) ≥ 𝜀𝑘𝑛𝑘 choices. Next, we choose a rainbow 𝑇0
𝑘 with color set C.

Due to the minimum out-degree of 𝐷𝑖 , the number of choices for 𝑇0
𝑘 is at least

(𝑛 − 𝑘)

(
(1 −

1
𝑘
+ 𝜀)𝑛 − (𝑘 + 1)

)
· · ·

(
1
𝑘
+ (𝑘 − 1)𝜀𝑛 − (2𝑘 − 1)

)
≥ 𝜀𝑘𝑛𝑘 .

Now we fix one such 𝑈 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }. For each 𝑖 ∈ [𝑘] and each pair {𝑢𝑖 , 𝑣𝑖}, suppose we
succeed in choosing a set 𝑆𝑖 , such that 𝑆𝑖 is disjoint to𝑊𝑖−1 = ∪ 𝑗∈[𝑖−1]𝑆 𝑗∪𝑆∪𝑈, then𝑉 (𝑇 𝑖

′

𝑘 ) = 𝑆𝑖∪{𝑢𝑖}

spans a rainbow 𝑇𝑘 in D with color set [( 𝑗𝑖 − 1)
(𝑘
2
)
+ 1, 𝑗𝑖

(𝑘
2
)
] while so does 𝑉 (𝑇 𝑖𝑘 ) = 𝑆𝑖 ∪ {𝑣𝑖}.

For the first vertex in 𝑆1, the number of choices is at least (1 − 2
𝑘 + 2𝜀)𝑛 − 2𝑘 , for the last vertex in

𝑆1, the number of choices is in 𝑘𝜀𝑛 − (3𝑘 − 1). Since 1
𝑛 � 𝜀, the number of choices for 𝑆1 is at least

(
(1 −

2
𝑘
+ 2𝜀)𝑛 − 2𝑘

)
· · · (𝑘𝜀𝑛 − (3𝑘 − 1)) ≥ 𝜀𝑘−1𝑛𝑘−1.

Similarly, the minimum out-degree implies that for 𝑖 ∈ [2, 𝑘], there are at least 𝜀𝑘−1𝑛𝑘−1 choices for
𝑆𝑖 and, in total, we obtain 𝜀𝑘

2+𝑘𝑛𝑘
2+𝑘 rainbow 𝑇𝑘 -absorbers for S. �

4.2.2. Rainbow edge-absorber
For the proof of Theorem 1.7, we show that

𝑐abs,d
𝑑,𝐹 ≤

1
2
. (2)

Given an n-vertex k-graph system G on V with 𝛿𝑑 (𝐺𝑖) ≥ ( 1
2 + 𝜀)

(𝑛−𝑑
𝑘−𝑑

)
for 𝑖 ∈ [𝑛/𝑘], we first construct a

(1, 𝑘)-graph 𝐻G with vertex set [𝑛/𝑘] ∪𝑉 and edge set {{𝑖}∪ 𝑒 : 𝑒 ∈ 𝐻𝑖 , 𝑖 ∈ [𝑛/𝑘]}. Next, we construct
a specific rainbow edge-absorber. For any k-set 𝑇 = {𝑣1, . . . , 𝑣𝑘 } in V and every color 𝑐1 ∈ [𝑛/𝑘], we
give a rainbow absorber 𝐴 = 𝐴1 ∪ 𝐴2 for (𝑇, 𝑐1) as follows.

◦ 𝐴1 = {𝑀2, . . . , 𝑀𝑘 } is a set of 𝑘 − 1 disjoint edges in 𝐻G, where 𝑐𝑖 ∈ 𝑀𝑖 (𝑖 ∈ [2, 𝑘]).
◦ There is a vertex 𝑢𝑖 (𝑖 ∈ [2, 𝑘]) from each 𝑉 (𝑀𝑖), such that {𝑢2, . . . , 𝑢𝑘 , 𝑣1, 𝑐1} ∈ 𝐸 (𝐻G) and

(𝑉 (𝑀𝑖) \ {𝑢𝑖}) ∪ {𝑣𝑖} ∈ 𝐸 (𝐻G) for 𝑖 ∈ [2, 𝑘]. Let 𝐴2 be {{𝑢2, . . . , 𝑢𝑘 , 𝑣1, 𝑐1}, (𝑉 (𝑀2) \ {𝑢2}) ∪
{𝑣2}, . . . , (𝑉 (𝑀𝑘 ) \ {𝑢𝑘 }) ∪ {𝑣𝑘 }}.

For any k-set T in V and every color 𝑐1 ∈ [𝑛/𝑘], we denote the family of such rainbow edge-absorbers
for (𝑇, 𝑐1) by A(𝑇, 𝑐1).

Claim 4.5. |A(𝑇, 𝑐1) | ≥ 𝜀2𝑘−2𝑛𝑘−1 (𝑛−1
𝑘−1

) 𝑘
/2.

Proof. Fix 𝑐1 ∈ [𝑛/𝑘] and 𝑇 = {𝑣1, . . . , 𝑣𝑘 } ⊆ 𝑉 . Choose (𝑐2, . . . , 𝑐𝑘 ) arbitrarily from [𝑛/𝑘], and
there are at least ( 𝑛𝑘 −1) · · · ( 𝑛𝑘 − (𝑘 −1)) ≥ 𝜀𝑘−1𝑛𝑘−1 choices. Fix such (𝑐2, . . . , 𝑐𝑘 ). Next, we construct
𝑀2, . . . , 𝑀𝑘 , and note that there are at most (𝑘 − 1)

(𝑛−1
𝑘−2

)
≤ 𝜀

(𝑛−1
𝑘−1

)
edges which contain 𝑐1, 𝑣1, and 𝑣 𝑗

for some 𝑗 ∈ [2, 𝑘]. Due to the minimum degree assumption, there are at least 1
2
(𝑛−1
𝑘−1

)
edges containing

𝑣1 and 𝑐1 but none of 𝑣2, . . . , 𝑣𝑘 . We fix such one edge {𝑐1, 𝑣1, 𝑢2, . . . , 𝑢𝑘 } and set 𝑈1 = {𝑢2, . . . , 𝑢𝑘 }.
For each 𝑖 ∈ [2, 𝑘] and each pair {𝑢𝑖 , 𝑣𝑖}, suppose we succeed in choosing a set 𝑈𝑖 , such that 𝑈𝑖 is
disjoint with 𝑊𝑖−1 = ∪ 𝑗∈[𝑖−1]𝑈 𝑗 ∪ 𝑇 and both 𝑈𝑖 ∪ {𝑢𝑖 , 𝑐𝑖} and 𝑈𝑖 ∪ {𝑣𝑖 , 𝑐𝑖} are edges in �̃�, then for a
fixed 𝑖 ∈ [2, 𝑘], we call such a choice 𝑈𝑖 good.

Note that in each step 𝑖 ∈ [2, 𝑘], there are 𝑘 + (𝑖−1) (𝑘 −1) ≤ 𝑘2 vertices in 𝑊𝑖−1, thus the number of
edges with color 𝑐𝑖 intersecting 𝑢𝑖 and at least one other vertex in𝑊𝑖−1 is at most 𝑘2 (𝑛−1

𝑘−2
)
. So the minimum

degree assumption implies that for each 𝑖 ∈ [2, 𝑘], there are at least 2𝜀
(𝑛−1
𝑘−1

)
−2𝑘2 (𝑛−1

𝑘−2
)
≥ 𝜀

(𝑛−1
𝑘−1

)
choices

for 𝑈𝑖 , and, in total, we obtain 𝜀2𝑘−2𝑛𝑘−1 (𝑛−1
𝑘−1

) 𝑘
/2 rainbow absorbers for (𝑇, 𝑐1). �
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5. Rainbow almost cover

The goal of this section is to prove the following lemma, an important component of the proof of
Theorem 2.5.

Lemma 5.1 (Rainbow almost cover lemma). Let F be a Dk-graph with b vertices and f edges. For
every 𝜀, 𝜙 > 0 and integer 𝑑 ∈ [𝑘 − 1], the following holds for sufficiently large 𝑛 ∈ 𝑏N. Suppose that
G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} is an n-vertex Dk-graph system on V, such that 𝛿∗𝑑 (𝐺𝑖) ≥ (𝑐cov,∗

𝑑,𝐹 + 𝜀)
(𝑛−𝑑
𝑘−𝑑

)
for

𝑖 ∈ [𝑛 𝑓 /𝑏], then G contains a rainbow F-tiling covering all but at most 𝜙𝑛 vertices.

For a k-graph H, a fractional cover is a function 𝜔 : 𝑉 (𝐻) → [0, 1], subject to the re-
quirement

∑
𝑣:𝑣 ∈𝑒 𝜔(𝑣) ≥ 1 for every 𝑒 ∈ 𝐸 (𝐻). Denote the minimum fractional cover size by

𝜏∗(𝐻) = min𝜔 Σ𝑣 ∈𝑉 (𝐻 )𝜔(𝑣). The conclusion 𝜈∗(𝐻) = 𝜏∗(𝐻) for any hypergraph follows from the
linear programming (LP)-duality. For n-vertex k-graphs, we trivially have 𝜈∗(𝐻) = 𝜏∗(𝐻) ≤ 𝑛

𝑘 .
We construct another (1, 𝑏)-graph �̃� on [

𝑛 𝑓
𝑏 ] ∪ 𝑉 with edge set 𝐸 (�̃�) = {{𝑖} ∪ 𝑒 : 𝑒 ∈ 𝐻𝑖 for all

𝑖 ∈ [𝑛 𝑓 /𝑏]}. A (1, 𝑘 − 1)-subset S of 𝑉 (�̃�) contains one vertex in [
𝑛 𝑓
𝑏 ] and 𝑘 − 1 vertices in V. Let

𝛿1,𝑘−1 (�̃�) := min{deg�̃� (𝑆) : 𝑆 is a (1, 𝑘 − 1)-subset of 𝑉 (�̃�)}, where deg�̃� (𝑆) denotes the number of
edges in �̃� containing S. The proof of the following claim is by now a standard argument on fractional
matchings and covers.

Claim 5.2. If each 𝐻 ′
𝐹𝑖

contains a perfect fractional matching for 𝑖 ∈ [ 𝑛𝑏 ], then the auxiliary (1, 𝑏)-
graph 𝐻G of G contains a perfect fractional matching.

Proof. By the duality theorem, we transform the maximum fractional matching problem into the
minimum fractional cover problem. Since 𝜏∗(𝐻G) = 𝜈∗(𝐻G) ≤

𝑛
𝑏 , it suffices to show that 𝜏∗(𝐻G) ≥

𝑛
𝑏

to obtain 𝜈∗(𝐻G) = 𝑛
𝑏 . Let 𝜔 be the minimum fractional cover of 𝐻G, and take 𝑖1 ∈ [𝑛/𝑏], such that

𝜔(𝑖1) := min𝑖∈[𝑛/𝑏] 𝜔(𝑖). We may assume that 𝜔(𝑖1) = 1 − 𝑥 < 1, since otherwise, 𝜔([𝑛/𝑏]) ≥ 𝑛
𝑏 , and

we are done. By definition, we get 𝜔(𝑒) ≥ 1 − 𝜔(𝑖1) = 𝑥 for every 𝑒 ∈ 𝐻 ′
𝐹𝑖1

. We define a new weight

function 𝜔′ on V by setting 𝜔′(𝑣) = 𝜔 (𝑣)
𝑥 for every vertex 𝑣 ∈ 𝑉 . Thus, 𝜔′ is a fractional cover of 𝐻 ′

𝐹𝑖1

because for each 𝑒 ∈ 𝐻 ′
𝐹𝑖1

, 𝜔′(𝑒) = 𝜔 (𝑒)
𝑥 ≥ 1. Recall that 𝐻 ′

𝐹𝑖1
has a perfect fractional matching, and

thus, 𝜔′(𝑉) ≥ 𝜏∗(𝐻 ′
𝐹𝑖1

) ≥ 𝑛
𝑏 which implies that 𝜔(𝑉) ≥ 𝑥𝑛

𝑏 . Therefore,

𝜔([
𝑛

𝑏
] ∪𝑉) ≥ (1 − 𝑥)

𝑛

𝑏
+
𝑥𝑛

𝑏
=

𝑛

𝑏
.

Hence, 𝜏∗(𝐻G) = 𝑛
𝑏 , that is 𝐻G contains a perfect fractional matching. �

In this section, given an n-vertex Dk-graph system G, we shall construct an auxiliary (1, 𝑏)-graph
𝐻G of G and a sequence of random subgraphs of 𝐻G. Then, we use the properties of them to get a “near
regular” spanning subgraph for the sake of applying Lemma 3.1.

The proof is based on a two-round randomization, which is already used in [5, 34, 36]. Since we
work with balanced (1, 𝑏)-graphs, we need to make sure that each random graph is balanced. In order
to achieve this, we modify the randomization process by fixing an arbitrarily small and balanced set
𝑆 ⊆ 𝑉 (𝐻G). This is done in Fact 1.

Let 𝐻G be the auxiliary (1, 𝑏)-graph of G with partition classes A, B, and 𝑏 |𝐴| = |𝐵 |, where A is the
color set and 𝐵 = 𝑉 . Let 𝑆 ⊆ 𝑉 (𝐻G) be a set of vertices, such that |𝑆∩ 𝐴| = 𝑛0.99/𝑏 and |𝑆∩ 𝐵 | = 𝑛0.99.
The desired subgraph 𝐻 ′′ is obtained by two rounds of randomization. As a preparation to the first
round, we choose every vertex randomly and uniformly with probability 𝑝 = 𝑛−0.9 to get a random
subset R of 𝑉 (𝐻G). Take 𝑛1.1 independent copies of R, and denote them by 𝑅𝑖+, 𝑖 ∈ [𝑛1.1], that is each
𝑅𝑖+ is chosen in the same way as R independently. Define 𝑅𝑖− = 𝑅𝑖+ \ 𝑆 for 𝑖 ∈ [𝑛1.1].

Fact 1. Let 𝑛, 𝐻G, 𝐴, 𝐵, 𝑆, and 𝑅𝑖−, 𝑅𝑖+ be given as above. Then, with probability 1 − 𝑜(1), there exist
subgraphs 𝑅𝑖 , 𝑖 ∈ [𝑛1.1], such that 𝑅𝑖− ⊆ 𝑅𝑖 ⊆ 𝑅𝑖+ and 𝑅𝑖 is balanced.
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The following two lemmas together construct the desired sparse regular k-graph we need.

Lemma 5.3. Given an n-vertex Dk-graph system G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} on V, let 𝐻G be the auxiliary
(1, 𝑏)-graph of G. For each 𝑋 ⊆ 𝑉 (𝐻G), let 𝑌+

𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖+}| and 𝑌𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖}|. Let �̃�
be with vertex set [ 𝑛 𝑓𝑏 ] ∪ 𝑉 and edge set 𝐸 (�̃�) = {{𝑖} ∪ 𝑒 : 𝑒 ∈ 𝐺𝑖 for all 𝑖 ∈ [𝑛 𝑓 /𝑏]}. Then with
probability at least 1 − 𝑜(1), we have

(1) |𝑅𝑖 | = (1/𝑏 + 1 + 𝑜(1))𝑛0.1 for all 𝑖 ∈ [𝑛1.1].
(2) 𝑌{𝑣 } = (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆 and 𝑌{𝑣 } ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆.
(3) 𝑌{𝑢,𝑣 } ≤ 2 for all {𝑢, 𝑣} ⊆ 𝑉 (𝐻G).
(4) 𝑌𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 (𝐻G).
(5) Suppose that 𝑉 (𝑅𝑖) = 𝐶𝑖 ∪ 𝑉𝑖 , we have 𝛿1,𝑑 (�̃� [

⋃
𝑗∈𝐶𝑖

[( 𝑗 − 1) 𝑓 + 1, 𝑗 𝑓 ] ∪ 𝑉𝑖]) ≥ (𝑐cov,∗
𝑑,𝐹 +

𝜀/4)
( |𝑅𝑖+∩𝐵 |−𝑑

𝑘−𝑑

)
− |𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 |

( |𝑅𝑖+∩𝐵 |−𝑑−1
𝑘−𝑑−1

)
≥ (𝑐cov,∗

𝑑,𝐹 + 𝜀/8)
( |𝑅𝑖∩𝐵 |−𝑑

𝑘−𝑑

)
.

Lemma 5.4. Let 𝑛, 𝐻G, 𝑆, 𝑅𝑖 , 𝑖 ∈ [𝑛1.1] be given as in Lemma 5.3, such that each 𝐻G [𝑅𝑖] is a balanced
(1, 𝑏)-graph and has a perfect fractional matching 𝜔𝑖 . Then there exists a spanning subgraph 𝐻 ′′ of
𝐻∗ = ∪𝑖𝐻G [𝑅𝑖], such that

◦ 𝑑𝐻 ′′ (𝑣) ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆,
◦ 𝑑𝐻 ′′ (𝑣) = (1 + 𝑜(1))𝑛0.2 for all 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆,
◦ Δ2 (𝐻

′′) ≤ 𝑛0.1.

The proofs follow the lines as in [5, 34, 36], and thus, we put them in the Appendix.

Proof of Lemma 5.1. By the definition of 𝑐cov,∗
𝑑,𝐹 , Lemma 5.3 (5), and Claim 5.2, there exists a perfect

fractional matching𝜔𝑖 in every subgraph𝐻G [𝑅𝑖], 𝑖 ∈ [𝑛1.1]. By Lemma 5.4, there is a spanning subgraph
𝐻 ′′ of 𝐻∗ = ∪𝑖𝐻G [𝑅𝑖], such that 𝑑𝐻 ′′ (𝑣) ≤ (1 + 𝑜(1))𝑛0.2 for each 𝑣 ∈ 𝑆, 𝑑𝐻 ′′ (𝑣) = (1 + 𝑜(1))𝑛0.2

for all 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆 and Δ2 (𝐻
′′) ≤ 𝑛0.1. Hence, by Lemma 3.1 (by setting 𝐷 = 𝑛0.2), 𝐻 ′′ contains

a cover of at most 𝑛+𝑛/𝑏
1+𝑏 (1 + 𝑎) edges which implies that 𝐻 ′′ contains a matching of size at least

𝑛+𝑛/𝑏
1+𝑏 (1 − 𝑎(1 + 𝑏 − 1)), where a is a constant satisfying 0 < 𝑎 < 𝜙/(1 + 𝑏 − 1). Hence, 𝐻G contains a

matching covering all but at most 𝜙(𝑛 + 𝑛/𝑏) vertices. �

6. The proof of Theorem 2.5

Proof. Suppose that 1
𝑛 � 𝜙 � 𝛾1 � 𝛾 � 𝜀′ � 𝜀, where 𝜀′, 𝛾, 𝛾1 are defined in Lemma 4.3 and

𝜙, 𝜀 in Lemma 5.1. Let 𝐻G be the auxiliary (1, 𝑏)-graph of G. By Lemma 4.3, we get a matching M
in 𝐻𝑮 of size at most 2𝛾(𝑚 − 1)𝑛, such that for every balanced set 𝑈 ⊆ [𝑛/𝑏] ∪ 𝑉 \ 𝑉 (𝑀) of size at
most 𝛾1𝑛, 𝑉 (𝑀) ∪ 𝑈 spans a matching in 𝐻G. Let 𝑮 ′ = {𝐺 ′

1, . . . , 𝐺
′
𝑛 𝑓 /𝑏

} be the induced Dk-graph
system of 𝑮 on 𝑉 ′, where 𝑉 ′ := 𝑉 \ 𝑉 (𝑀). Denote the subsystem of 𝑮 ′ by 𝑮 ′

𝐼 = {𝐺 ′
𝑖 | 𝑖 ∈ 𝐼 =

[𝑛 𝑓 /𝑏]\
⋃
𝑗∈𝑉 (𝑀 )∩[𝑛/𝑏] [( 𝑗 − 1) 𝑓 + 1, 𝑗 𝑓 ]}. We still have 𝛿𝑑 (𝐺

′
𝑖) ≥ (max{𝑐abs,∗

𝑑,𝐹 , 𝑐cov,∗
𝑑,𝐹 } + 𝜀

2 )
(𝑛−𝑑
𝑘−𝑑

)
for

𝑖 ∈ 𝐼, since 2𝛾(𝑚−1)𝑛
(𝑛−𝑑−1
𝑘−𝑑−1

)
≤ 𝜀

2
(𝑛−𝑑
𝑘−𝑑

)
. Then, we construct the new auxiliary (1, 𝑏)-graph 𝐻𝑮′

𝐼
of 𝑮 ′

𝐼 .
By Lemma 5.1, 𝐻𝑮′

𝐼
contains a matching 𝑀1 covering all but at most 𝜙|𝑉 ′ | ≤ 𝜙(𝑛 + 𝑛/𝑏) vertices.

Suppose 𝑊1 = [𝑛/𝑏] ∪𝑉 \ (𝑉 (𝑀) ∪𝑉 (𝑀1)), hence, |𝑊1 | ≤ 𝜙(𝑛 + 𝑛/𝑏) ≤ 𝛾1𝑛 and 𝑊1 is balanced. By
Lemma 4.3, 𝑉 (𝑀) ∪𝑊1 spans a matching 𝑀2 in 𝐻G and therefore 𝑀1 ∪ 𝑀2 is a perfect matching in
𝐻G, which yields a rainbow F-factor in 𝑮. �

In the next few sections, we prove our results in Section 1 (Theorems 1.4 – 1.7), and by Theorem 2.5,
it suffices to specify the 𝛿∗𝑑 we use and bound the parameters 𝑐abs,∗

𝑑,𝐹 and 𝑐cov,∗
𝑑,𝐹 . Note also that we will not

present a proof of Theorem 1.3, as it follows from either of the two directed extensions.
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7. The proofs of Theorems 1.4 and 1.5

For Theorem 1.4, to apply Theorem 2.5, we set 𝛿∗1 as the minimum out-degree 𝛿+. Given that 𝛿+(𝐷𝑖) ≥
(1 − 1

𝑘 + 𝜀)𝑛 for 𝑖 ∈ [ 𝑛𝑘
(𝑘
2
)
], by Theorem 2.5, it remains to prove that 𝑐abs,+

1,𝑇𝑘 , 𝑐cov,+
1,𝑇𝑘 ≤ 1 − 1

𝑘 .
Similarly, for Theorem 1.5, we set 𝛿∗1 as the minimum semidegree 𝛿0. Given 𝑇 ∈ T𝑘 and 𝛿0 (𝐷𝑖) ≥

(1 − 1
𝑘 + 𝜀)𝑛 for 𝑖 ∈ [ 𝑛𝑘

(𝑘
2
)
], by Theorem 2.5, it remains to prove that 𝑐abs,0

1,𝑇 , 𝑐cov,0
1,𝑇 ≤ 1 − 1

𝑘 .
Since the proofs are similar, we only show that 𝑐abs,+

1,𝑇𝑘 , 𝑐cov,+
1,𝑇𝑘 ≤ 1 − 1

𝑘 for Theorem 1.4. Recall that 𝑇𝑘
is the transitive tournament on k vertices. Note that 𝑐abs,+

1,𝑇𝑘 ≤ 1 − 1
𝑘 is exactly (1).

We partition the n-vertex digraph system D into [𝑛/𝑘] subsystems D1, . . . ,D𝑛/𝑘 , where D𝑖 =
{𝐷

(𝑖−1) (𝑘2)+1, . . . , 𝐷𝑖(𝑘2)
}. Define 𝐻𝑇𝑘 ,𝑖 as the k-graph which consists of rainbow copies of 𝑇𝑘 on D𝑖

with color set [(𝑖 − 1)
(𝑘
2
)
+ 1, 𝑖

(𝑘
2
)
]. We shall show that each 𝐻𝑇𝑘 ,𝑖 has a perfect fractional matching.

Claim 7.1. For 𝑖 ∈ [𝑛/𝑘], 𝐻𝑇𝑘 ,𝑖 has a perfect fractional matching.

A k-complex is a hypergraph J, such that every edge of J has size at most k, ∅ ∈ 𝐽 and is closed under
inclusion, that is if 𝑒 ∈ 𝐽 and 𝑒′ ⊆ 𝑒, then 𝑒′ ∈ 𝐽. We refer to the edges of size r in J as r-edges of J
and write 𝐽𝑟 to denote the r-graph on 𝑉 (𝐽) formed by these edges. We introduce the following notion
of degree in a k-system J. For any edge e of J, the degree 𝑑 (𝑒) of e is the number of (|𝑒 |+1)-edges 𝑒′ of
J which contains e as a subset (note that this is not the standard notion of degree used in k-graphs, in
which the degree of a set is the number of edges containing it). The minimum r-degree of J, denoted by
𝛿𝑟 (𝐽), is the minimum of 𝑑 (𝑒) taken over all r-edges 𝑒 ∈ 𝐽. Trivially, 𝛿0 (𝐽) = |𝑉 (𝐽) |. So every r-edge
of J is contained in at least 𝛿𝑟 (𝐽) (𝑟 + 1)-edges of J. The degree sequence of J is

𝛿(𝐽) = (𝛿0 (𝐽), 𝛿1 (𝐽), . . . , 𝛿𝑘−1(𝐽)).

Lemma 7.2 (Lemma 3.6, [23]). If the complex J satisfies 𝛿(𝐽) ≥ (𝑛, 𝑘−1
𝑘 𝑛, 𝑘−2

𝑘 𝑛, . . . , 1
𝑘 𝑛), then 𝐽𝑘

contains a perfect fractional matching.

To prove Claim 7.1, we construct the clique k-complex 𝐽𝑖 for each 𝑫𝑖 , 𝑖 ∈ [𝑛/𝑘], which has vertex
set V and edge set 𝐸 (𝐽𝑖𝑟 ), where each edge is a rainbow 𝑇𝑟 with color set [(𝑖 − 1)

(𝑘
2
)
+ 1, (𝑖 − 1)

(𝑘
2
)
+
(𝑟
2
)
]

for each 𝑟 ∈ [𝑘] and 𝑖 ∈ [𝑛/𝑘]. Note that for each i, the top level 𝐽𝑖𝑘 is exactly 𝐻𝑇𝑘 ,𝑖 . By the out-degree
condition, we get

𝛿(𝐽𝑖) ≥ (𝑛, (1 − 1/𝑘 + 𝜀)𝑛, . . . , (1/𝑘 + 𝜀)𝑛).

Therefore, Claim 7.1 follows from Lemma 7.2, and we are done.
For completeness, we include the short proof of Lemma 7.2 given in [23]. Given points x1, . . . , x𝑠 ∈

R
𝑑 , we define their positive cone as 𝑃𝐶 (x1, . . . , x𝑠) := {

∑
𝑗∈[𝑠] 𝜆 𝑗x 𝑗 : 𝜆1, . . . , 𝜆𝑠 ≥ 0}. Recall that V

is the n-vertex set, for any 𝑆 ⊆ 𝑉 , the characteristic vector 𝜒(𝑆) of S is the binary vector in R𝑛, such
that 𝜒(𝑆)𝑖 = 1 if and only if 𝑖 ∈ 𝑆. Given a k-graph H, if H has a perfect fractional matching 𝜔, then
1 ∈ 𝑃𝐶 (𝜒(𝑒) : 𝑒 ∈ 𝐻), since

∑
𝑒∈𝐻 𝜔(𝑒)𝜒(𝑒) = 1. The well-known Farkas’ lemma reads as follows.

Lemma 7.3 (Farkas’ lemma). Suppose v ∈ R𝑛\𝑃𝐶 (𝑌 ) for some finite set 𝑌 ⊆ R𝑛. Then there is some
a ∈ R𝑛, such that a · y ≥ 0 for every y ∈ 𝑌 and a · v < 0.

Proof of Lemma 7.2. Suppose that 𝐽𝑘 does not contain a perfect fractional matching, this means that
1 ∉ 𝑃𝐶 (𝜒(𝑒) : 𝑒 ∈ 𝐽𝑘 ). Then, by Lemma 7.3, there is some a ∈ R𝑛, such that a · 1 < 0 and a · 𝜒(𝑒) ≥ 0
for every 𝑒 ∈ 𝐽𝑘 . Let 𝑉 = {𝑣1, . . . , 𝑣𝑛} and a = (𝑎1, . . . , 𝑎𝑛), satisfying 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛.

We first build a k-edge 𝑒 = {𝑣𝑑1 , . . . , 𝑣𝑑𝑘 } ∈ 𝐽𝑘 , such that 𝑑 𝑗 ≤ 𝑗−1
𝑘 𝑛 + 1, 𝑗 ∈ [𝑘] as follows. Choose

𝑑1 = 1 and, having chosen 𝑑1, . . . , 𝑑 𝑗 , the choice of 𝑑 𝑗+1 is guaranteed by 𝛿 𝑗 (𝐽) ≥ (1− 𝑗/𝑘)𝑛. As 𝑒 ∈ 𝐽𝑘 ,
we have a · 𝜒(𝑒) ≥ 0. Consider {𝑆𝑖 = {𝑣𝑖 , 𝑣𝑖+𝑛/𝑘 , . . . , 𝑣𝑖+(𝑘−1)𝑛/𝑘 } : 𝑖 ∈ [𝑛/𝑘]} which form a partition
of V, thus

∑
𝑖∈[𝑛/𝑘 ] a · 𝜒(𝑆𝑖) = a · 1 < 0. However, as the indices of vertices of e precede those of 𝑆𝑖

one-by-one and 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛, we have for each i, a · 𝜒(𝑆𝑖) ≥ a · 𝜒(𝑒) ≥ 0, a contradiction. �
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8. The proof of Theorem 1.6

For Theorem 1.6, we set 𝛿∗1 as the minimum partite-degree 𝛿′. Let G = {𝐺1, . . . , 𝐺𝑛(𝑘2)
} be a collection

of k-partite graphs with a common partition𝑉1, . . . , 𝑉𝑘 , each of size n, such that 𝛿′(𝐺𝑖) ≥ (1−1/𝑘 +𝜀)𝑛
for 𝑖 ∈ [𝑛

(𝑘
2
)
]. By Theorem 2.5, it remains to prove that 𝑐abs,′

1,𝐾𝑘
, 𝑐cov,′

1,𝐾𝑘
≤ 1 − 1

𝑘 . The conclusion that
𝑐abs,′

1,𝐾𝑘
≤ 1 − 1

𝑘 can be similarly derived as (1) in Section 4.2.1 and thus omitted. We next show how to
obtain 𝑐cov,′

1,𝐾𝑘
≤ 1 − 1

𝑘 .
Let H be a k-graph, and let P be a partition of 𝑉 (𝐻). Then we say a set 𝑆 ⊆ 𝑉 (𝐻) is k-partite if it

has one vertex in any part of P , and that H is k-partite if every edge of H is k-partite. Let V be a set
of vertices, let P be a partition of V into k parts 𝑉1, . . . , 𝑉𝑘 , and let J be a k-partite k-system on V. For
each 0 ≤ 𝑗 ≤ 𝑘 − 1, we define the partite minimum j-degree 𝛿∗𝑗 (𝐽) as the largest m, such that any j-edge
e has at least m extensions to a ( 𝑗 + 1)-edge in any part not used by e, that is

𝛿∗𝑗 (𝐽) := min
𝑒∈𝐽 𝑗

min
𝑒∩𝑉𝑖=∅

|{𝑣 ∈ 𝑉𝑖 : 𝑒 ∪ {𝑣} ∈ 𝐽}|.

The partite degree sequence is 𝛿∗(𝐽) = (𝛿∗0 (𝐽), . . . , 𝛿
∗
𝑘−1(𝐽)).

To obtain 𝑐cov,′
1,𝐾𝑘

, we use the following lemma, which is a special case of [23, Lemma 7.2]. Again we
present the short proof of Lemma 8.1 given in [23].

Lemma 8.1. Let V be a set partitioned into k parts 𝑉1, . . . , 𝑉𝑘 , each of size n, and let J be a k-partite
k-system on V, such that

𝛿∗(𝐽) ≥

(
𝑛,

(𝑘 − 1)𝑛
𝑘

,
(𝑘 − 2)𝑛

𝑘
, . . . ,

𝑛

𝑘

)
.

Then 𝐽𝑘 contains a perfect fractional matching.

Proof. Suppose that 𝐽𝑘 does not contain a perfect fractional matching, this means that 1 ∉ 𝑃𝐶 (𝜒(𝑒) :
𝑒 ∈ 𝐽𝑘 ). Then, by Lemma 7.3, there is some a ∈ R𝑘𝑛, such that a · 1 < 0 and a𝜒(𝑒) ≥ 0 for every
𝑒 ∈ 𝐽𝑘 . Let 𝑉 = {𝑣1,1, . . . , 𝑣1,𝑛, 𝑣2,1, . . . , 𝑣2,𝑛, . . . , 𝑣𝑘,1, . . . , 𝑣𝑘,𝑛} and

a = (𝑎1,1, . . . , 𝑎1,𝑛, 𝑎2,1, . . . , 𝑎2,𝑛, . . . , 𝑎𝑘,1, . . . , 𝑎𝑘,𝑛),

satisfying that 𝑎
𝑗 , ( 𝑗−1)𝑛

𝑘 +1 ≤ · · · ≤ 𝑎 𝑗 ,𝑛 ≤ 𝑎 𝑗 ,1 ≤ . . . ≤ 𝑎
𝑗 , ( 𝑗−1)𝑛

𝑘
for each 𝑗 ∈ [𝑘].

We first build a k-edge 𝑒 = {𝑣1,𝑑1 , 𝑣2,𝑑2 . . . , 𝑣𝑘,𝑑𝑘 } ∈ 𝐽𝑘 , such that 𝑑 𝑗 ≤ 𝑗−1
𝑘 𝑛+ 1, 𝑗 ∈ [𝑘] as follows.

Choose 𝑑1 = 1 and, having chosen 𝑑1, . . . , 𝑑 𝑗 , the choice of 𝑑 𝑗+1 is guaranteed by 𝛿 𝑗 (𝐽) ≥ (1 − 𝑗/𝑘)𝑛.
As 𝑒 ∈ 𝐽𝑘 , we have a · 𝜒(𝑒) ≥ 0. Consider {𝑆𝑖 = {𝑣1,𝑖 , 𝑣2,𝑖 , . . . , 𝑣𝑘,𝑖} : 𝑖 ∈ [𝑛]} which forms a partition
of V, thus

∑
𝑖∈[𝑛] a · 𝜒(𝑆𝑖) = a · 1 < 0. However, we have for each i, a · 𝜒(𝑆𝑖) ≥ a · 𝜒(𝑒) ≥ 0, as

𝑎
𝑗 , ( 𝑗−1)𝑛

𝑘 +1 ≤ · · · ≤ 𝑎 𝑗 ,𝑛 ≤ 𝑎 𝑗 ,1 ≤ . . . ≤ 𝑎
𝑗 , ( 𝑗−1)𝑛

𝑘
for each 𝑗 ∈ [𝑘], a contradiction. �

We partition the 𝑘𝑛-vertex k-partite graph system G on V into n subsystems G1, . . . ,G𝑛, where G𝑖 =
{𝐺

(𝑖−1) (𝑘2)+1, . . . , 𝐺𝑖(𝑘2)
} for 𝑖 ∈ [𝑛]. The clique k-complex 𝐽𝑖 of a k-partite graph system𝑮𝑖 is with vertex

set V and edge set 𝐸 (𝐽𝑖𝑟 ), where each edge is a rainbow 𝐾𝑟 with color set [(𝑖−1)
(𝑘
2
)
+1, (𝑖−1)

(𝑘
2
)
+
(𝑟
2
)
]

for each 𝑟 ∈ [𝑘] and 𝑖 ∈ [𝑛]. In G, by the degree condition, we get for each 𝑖 ∈ [𝑛],

𝛿∗(𝐽𝑖) ≥

(
𝑛,

(
1 −

1
𝑘
+ 𝜀

)
𝑛, . . . ,

(
1
𝑘
+ 𝜀

)
𝑛

)
.

By Lemma 8.1, 𝐽𝑖𝑘 contains a perfect fractional matching. Therefore, 𝑐cov,′
1,𝐾𝑘

≤ 1 − 1
𝑘 .
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9. The proof of Theorem 1.7

Note that 𝑐abs,d
𝑑,𝐹 ≤ 1

2 is given in (2). By Definition 2.4, we trivially have 𝑐cov,d
𝑑,𝐹 ≤ 𝑐𝑘,𝑑 , where F is an

edge. By Theorem 2.5, the proof of Theorem 1.7 is completed.

10. Concluding remarks

In this paper, we studied the rainbow version of clique-factor problems in graph and hypergraph systems.
The most desirable question is to prove an exact version of the rainbow Hajnal–Szemerédi theorem,
which we put as a conjecture here.

Conjecture 10.1. Let G = {𝐺1, 𝐺2, . . . , 𝐺 𝑛
𝑡 (

𝑡
2)
} be an n-vertex graph system. If 𝛿(𝐺𝑖) ≥ (1 − 1

𝑡 )𝑛 for
𝑖 ∈ [ 𝑛𝑡

(𝑡
2
)
], then G contains a rainbow 𝐾𝑡 -factor.

Appendix A. The postponed proofs

Below, we restate and prove Fact 1 and Lemmas 5.3 and 5.4.

Fact 1. Let 𝑛, 𝐻G, 𝐴, 𝐵, 𝑆 and 𝑅𝑖−, 𝑅𝑖+ be given as above. Then, with probability 1 − 𝑜(1), there exist
subgraphs 𝑅𝑖 , 𝑖 ∈ [𝑛1.1], such that 𝑅𝑖− ⊆ 𝑅𝑖 ⊆ 𝑅𝑖+ and 𝑅𝑖 is balanced.

Proof. Recall that |𝐴| = 𝑛/𝑏, |𝐵 | = 𝑛, |𝑆 ∩ 𝐴| = 𝑛0.99/𝑏 and |𝑆 ∩ 𝐵 | = 𝑛0.99, thus

E[|𝑅𝑖+ ∩ 𝐴|] = 𝑛0.1/𝑏,

E[|𝑅𝑖+ ∩ 𝐴 ∩ 𝑆 |]7 = 𝑛0.09/𝑏,

E[|𝑅𝑖+ ∩ 𝐵 |] = 𝑛0.1,

E[|𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 |]77 = 𝑛0.09.

By Lemma 3.2, we have

P[| |𝑅𝑖+ ∩ 𝐴| − 𝑛0.1/𝑏 | ≥ 𝑛0.08] ≤ 𝑒−Ω(𝑛0.06) ,

P[| |𝑅𝑖+ ∩ 𝐴 ∩ 𝑆 | − 𝑛0.09/𝑏 | ≥ 𝑛0.08] ≤ 𝑒−Ω(𝑛0.07) ,

P[| |𝑅𝑖+ ∩ 𝐵 | − 𝑛0.1 | ≥ 𝑛0.08] ≤ 𝑒−Ω(𝑛0.06) ,

P[| |𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 | − 𝑛0.09/𝑏 | ≥ 𝑛0.08] ≤ 𝑒−Ω(𝑛0.07) .

Thus, with probability 1 − 𝑜(1), for all 𝑖 ∈ [𝑛1.1],

|𝑅𝑖+ ∩ 𝐴| ∈ [𝑛0.1/𝑏 − 𝑛0.08, 𝑛0.1/𝑏 + 𝑛0.08],

|𝑅𝑖+ ∩ 𝐴 ∩ 𝑆 | = (1 + 𝑜(1))𝑛0.09/𝑏,

|𝑅𝑖+ ∩ 𝐵 | ∈ [𝑛0.1 − 𝑛0.08, 𝑛0.1 + 𝑛0.08],

|𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 | = (1 + 𝑜(1))𝑛0.09.

Therefore, |𝑏 |𝑅𝑖+ ∩ 𝐴| − |𝑅𝑖+ ∩ 𝐵 | | ≤ (𝑏 + 1)𝑛0.08 < min{|𝑅𝑖+ ∩ 𝐴 ∩ 𝑆 |, |𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 |}. Hence, with
probability 1 − 𝑜(1), 𝑅𝑖 can be balanced for 𝑖 ∈ [𝑛1.1]. �

Lemma 5.3. Given an n-vertex Dk-graph system G = {𝐺1, . . . , 𝐺𝑛 𝑓 /𝑏} on V, let 𝐻G be the auxiliary
(1, 𝑏)-graph of G. For each 𝑋 ⊆ 𝑉 (𝐻G), let 𝑌+

𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖+}| and 𝑌𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖}|. Let �̃�
be with vertex set [ 𝑛 𝑓𝑏 ] ∪ 𝑉 and edge set 𝐸 (�̃�) = {{𝑖} ∪ 𝑒 : 𝑒 ∈ 𝐺𝑖 for all 𝑖 ∈ [𝑛 𝑓 /𝑏]}. Then, with
probability at least 1 − 𝑜(1), we have
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(1) |𝑅𝑖 | = (1/𝑏 + 1 + 𝑜(1))𝑛0.1 for all 𝑖 ∈ [𝑛1.1].
(2) 𝑌{𝑣 } = (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆, and 𝑌{𝑣 } ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆.
(3) 𝑌{𝑢,𝑣 } ≤ 2 for all {𝑢, 𝑣} ⊆ 𝑉 (𝐻G).
(4) 𝑌𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 (𝐻G).
(5) Suppose that 𝑉 (𝑅𝑖) = 𝐶𝑖 ∪ 𝑉𝑖 , we have 𝛿1,𝑑 (�̃� [

⋃
𝑗∈𝐶𝑖

[( 𝑗 − 1) 𝑓 + 1, 𝑗 𝑓 ] ∪ 𝑉𝑖]) ≥ (𝑐cov,∗
𝑑,𝐹 +

𝜀/4)
( |𝑅𝑖+∩𝐵 |−𝑑

𝑘−𝑑

)
− |𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 |

( |𝑅𝑖+∩𝐵 |−𝑑−1
𝑘−𝑑−1

)
≥ (𝑐cov,∗

𝑑,𝐹 + 𝜀/8)
( |𝑅𝑖∩𝐵 |−𝑑

𝑘−𝑑

)
.

Proof. Note that E[|𝑅𝑖+|] = (1/𝑏 + 1)𝑛0.1,E[|𝑅𝑖−|] = ((1/𝑏 + 1)𝑛 − (1/𝑏 + 1)𝑛0.99)𝑛−0.9 = (1/𝑏 +

1)𝑛0.1 − (1/𝑏 + 1)𝑛0.09. By Lemma 3.2, we have

P[| |𝑅𝑖+| − 𝑛0.1(1/𝑏 + 1) |≥ 𝑛0.095] ≤ 𝑒−Ω(𝑛0.09) ,

P[| |𝑅𝑖−| − ((1/𝑏 + 1)𝑛0.1 − (1/𝑏 + 1)𝑛0.09) | ≥ 𝑛0.095] ≤ 𝑒−Ω(𝑛0.09) .

Hence, with probability at least 1 − 𝑂 (𝑛1.1)𝑒−Ω(𝑛0.09) , for the given sequence 𝑅𝑖 in Fact 1, 𝑖 ∈ [𝑛1.1],
satisfying 𝑅𝑖− ⊆ 𝑅𝑖 ⊆ 𝑅𝑖+, we have |𝑅𝑖 | = (1/𝑏 + 1 + 𝑜(1))𝑛0.1.

For each 𝑋 ⊆ 𝑉 (𝐻G), let 𝑌+
𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖+}| and 𝑌𝑋 := |{𝑖 : 𝑋 ⊆ 𝑅𝑖}|. Note that the random

variables 𝑌+
𝑋 have binomial distributions 𝐵𝑖(𝑛1.1, 𝑛−0.9 |𝑋 | ) with expectations 𝑛1.1−0.9 |𝑋 | and 𝑌𝑋 ≤ 𝑌+

𝑋 .
In particular, for each 𝑣 ∈ 𝑉 (𝐻G), E[𝑌+

{𝑣 }
] = 𝑛0.2, by Lemma 3.2, we have

P[| |𝑌+
{𝑣 } | − 𝑛0.2 |≥ 𝑛0.19] ≤ 𝑒−Ω(𝑛0.18) .

Hence, with probability at least 1 − 𝑂 (𝑛)𝑒−Ω(𝑛0.18) , we have 𝑌{𝑣 } = (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆
and 𝑌{𝑣 } ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆.

Let 𝑍𝑝,𝑞 = |𝑋 ∈
(𝑉 (𝐻G)

𝑝

)
: 𝑌+
𝑋 ≥ 𝑞 |. Then,

E[𝑍𝑝,𝑞] ≤

( 𝑛
𝑏 + 𝑛

𝑝

) (
𝑛1.1

𝑞

)
(𝑛−0.9𝑝𝑞) ≤ 𝐶𝑛𝑝+1.1𝑞−0.9𝑝𝑞 .

Hence, by Markov’s Inequality, we have

P[𝑍2,3 = 0] = 1 − P[𝑍2,3 ≥ 1] ≥ 1 − E[𝑍2,3] = 1 − 𝑜(1),
P[𝑍1+𝑏,2 = 0] = 1 − P[𝑍1+𝑏,2 ≥ 1] ≥ 1 − E[𝑍1+𝑏,2] = 1 − 𝑜(1),

that is with probability at least 1− 𝑜(1), every pair {𝑢, 𝑣} ⊆ 𝑉 (𝐻G) is contained in at most two sets 𝑅𝑖+,
and every edge is contained in at most one set 𝑅𝑖+. Thus, the conclusions also hold for 𝑅𝑖 .

Fix a (1, 𝑑)-subset 𝐷 ⊆ 𝑉 (�̃�), and let 𝑁𝐷 (�̃�) be the neighborhood of D in �̃�. Recall that R is
obtained by choosing every vertex randomly and uniformly with probability 𝑝 = 𝑛−0.9, let 𝐷𝐸𝐺𝐷 be
the number of edges { 𝑓 | 𝑓 ⊆ 𝑅 and 𝑓 ∈ 𝑁𝐷 (�̃�)}. Therefore, 𝐷𝐸𝐺𝐷 =

∑
𝑓 ∈𝑁𝐷 (�̃� ) 𝑋 𝑓 , where 𝑋 𝑓 = 1

if f is in R and 0 otherwise. We have

E[𝐷𝐸𝐺𝐷] = 𝑑�̃� (𝐷) × (𝑛−0.9)𝑘−𝑑 ≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀)

(
𝑛 − 𝑑

𝑘 − 𝑑

)
𝑛−0.9(𝑘−𝑑)

≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀/3)

(
|𝑅 ∩ 𝐵 | − 𝑑

𝑘 − 𝑑

)
= Ω(𝑛0.1(𝑘−𝑑) ).

For two distinct intersecting edges 𝑓𝑖 , 𝑓 𝑗 ∈ 𝑁𝐷 (�̃�) with | 𝑓𝑖 ∩ 𝑓 𝑗 | = ℓ for ℓ ∈ [𝑘 − 𝑑 − 1], the
probability that both of them are in R is

P[𝑋 𝑓𝑖 = 𝑋 𝑓𝑗 = 1] = 𝑝2(𝑘−𝑑)−ℓ ,

https://doi.org/10.1017/fms.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.92


Forum of Mathematics, Sigma 17

for any fixed ℓ, we have

Δ =
∑
𝑓𝑖∩ 𝑓𝑗≠∅

P[𝑋 𝑓𝑖 = 𝑋 𝑓𝑗 = 1] ≤
𝑘−𝑑−1∑
ℓ=1

𝑝2(𝑘−𝑑)−ℓ
(
𝑛 − 𝑑

𝑘 − 𝑑

) (
𝑘 − 𝑑

ℓ

) (
𝑛 − 𝑘

𝑘 − 𝑑 − ℓ

)

≤

𝑘−𝑑−1∑
ℓ=1

𝑝2(𝑘−𝑑)−ℓ𝑂 (𝑛2(𝑘−𝑑)−ℓ) = 𝑂 (𝑛0.1(2(𝑘−𝑑)−1) ).

Applying Lemma 3.4 with Γ = 𝐵, Γ𝑝 = 𝑅 ∩ 𝐵, and 𝑀 = 𝑁�̃� (𝐷)(a family of (𝑘 − 𝑑)-sets), we have

P[𝐷𝐸𝐺𝐷 ≤ (1 − 𝜀/12)E[𝐷𝐸𝐺𝐷]] ≤ 𝑒−Ω( (E[𝐷𝐸𝐺𝐷 ])2/Δ) = 𝑒−Ω(𝑛0.1) .

Therefore, by the union bound, with probability 1 − 𝑜(1), for all (1, 𝑑)-subsets 𝐷 ⊆ 𝑉 (�̃�), we have

𝐷𝐸𝐺𝐷 > (1 − 𝜀/12)E[𝐷𝐸𝐺𝐷] ≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀/4)

(
|𝑅 ∩ 𝐵 | − 𝑑

𝑘 − 𝑑

)
.

Summarizing, with probability 1 − 𝑜(1), for the sequence 𝑅𝑖 , 𝑖 ∈ [𝑛1.1], satisfying 𝑅𝑖− ⊆ 𝑅𝑖 ⊆ 𝑅𝑖+, all
of the following hold.

(1) |𝑅𝑖 | = (1/𝑏 + 1 + 𝑜(1))𝑛0.1 for all 𝑖 ∈ [𝑛1.1].
(2) 𝑌{𝑣 } = (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆, and 𝑌{𝑣 } ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆.
(3) 𝑌{𝑢,𝑣 } ≤ 2 for all {𝑢, 𝑣} ⊆ 𝑉 (𝐻G).
(4) 𝑌𝑒 ≤ 1 for all 𝑒 ∈ 𝐸 (𝐻G).
(5) 𝐷𝐸𝐺 (𝑖)

𝐷 ≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀/4)

( |𝑅𝑖+∩𝐵 |−𝑑
𝑘−𝑑

)
for all (1, 𝑑)-subsets of 𝐷 ⊆ 𝑉 (�̃�) and 𝑖 ∈ [𝑛1.1].

Thus, by Property (5) above, we conclude that suppose 𝑉 (𝑅+
𝑖 ) = 𝐶+

𝑖 ∪ 𝑉+
𝑖 and 𝑉 (𝑅𝑖) = 𝐶𝑖 ∪ 𝑉𝑖 , the

following holds.

𝛿1,𝑑 (�̃� [
⋃
𝑗∈𝐶+

𝑖

[( 𝑗 − 1) 𝑓 + 1, 𝑗 𝑓 ] ∪𝑉+
𝑖 ]]) ≥ (𝑐cov,∗

𝑑,𝐹 + 𝜀/4)
(
|𝑅𝑖+ ∩ 𝐵 | − 𝑑

𝑘 − 𝑑

)
.

After the modification, we still have

𝛿1,𝑑 (�̃� [
⋃
𝑗∈𝐶𝑖

[( 𝑗 − 1) 𝑓 + 1, 𝑗 𝑓 ] ∪𝑉𝑖]]) ≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀/4)

(
|𝑅𝑖+ ∩ 𝐵| − 𝑑

𝑘 − 𝑑

)
− |𝑅𝑖+ ∩ 𝐵 ∩ 𝑆 |

(
|𝑅𝑖+ ∩ 𝐵| − 𝑑 − 1

𝑘 − 𝑑 − 1

)

≥ (𝑐cov,∗
𝑑,𝐹 + 𝜀/8)

(
|𝑅𝑖 ∩ 𝐵| − 𝑑

𝑘 − 𝑑

)
.

�

Lemma 5.4. Let 𝑛, 𝐻G, 𝑆, 𝑅𝑖 , 𝑖 ∈ [𝑛1.1] be given as in Lemma 5.3, such that each 𝐻G [𝑅𝑖] is a balanced
(1, 𝑏)-graph and has a perfect fractional matching 𝜔𝑖 . Then there exists a spanning subgraph 𝐻 ′′ of
𝐻∗ = ∪𝑖𝐻G [𝑅𝑖], such that

◦ 𝑑𝐻 ′′ (𝑣) ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆,
◦ 𝑑𝐻 ′′ (𝑣) = (1 + 𝑜(1))𝑛0.2 for all 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆,
◦ Δ2 (𝐻

′′) ≤ 𝑛0.1.

Proof. By the condition that each 𝐻G [𝑅𝑖] has a perfect fractional matching 𝜔𝑖 , we select a generalized
binomial subgraph 𝐻 ′′ of 𝐻∗ by independently choosing each edge e with probability 𝜔𝑖𝑒 (𝑒), where 𝑖𝑒
is the index i, such that 𝑒 ∈ 𝐻G [𝑅𝑖]. Recall that Property (4) guarantees the uniqueness of 𝑖𝑒.
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For 𝑣 ∈ 𝑉 (𝐻 ′′), let 𝐼𝑣 = {𝑖 : 𝑣 ∈ 𝑅𝑖}, 𝐸𝑣 = {𝑒 ∈ 𝐻∗ : 𝑣 ∈ 𝑒}, and 𝐸 𝑖𝑣 = 𝐸𝑣 ∩ 𝐻G [𝑅𝑖], then
𝐸 𝑖𝑣 , 𝑖 ∈ 𝐼𝑣 forms a partition of 𝐸𝑣 and |𝐼𝑣 | = 𝑌{𝑣 }. Hence, for 𝑣 ∈ 𝑉 (𝐻 ′′),

𝑑𝐻 ′′ (𝑣) =
∑
𝑒∈𝐸𝑣

1 =
∑
𝑖∈𝐼𝑣

∑
𝑒∈𝐸 𝑖

𝑣

𝑋𝑒,

where 𝑋𝑒 is the Bernoulli random variable with 𝑋𝑒 = 1 if 𝑒 ∈ 𝐸 (𝐻 ′′) and 𝑋𝑒 = 0 otherwise. Thus, its
expectation is 𝜔𝑖𝑒 (𝑒). Therefore

E[𝑑𝐻 ′′ (𝑣)] =
∑
𝑖∈𝐼𝑣

∑
𝑒∈𝐸 𝑖

𝑣

𝜔𝑖𝑒 (𝑒) =
∑
𝑖∈𝐼𝑣

1 = 𝑌{𝑣 } .

Hence, E[𝑑𝐻 ′′ (𝑣)] = (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆 and E[𝑑𝐻 ′′ (𝑣)] ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆. Now
by Chernoff’s inequality, for 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆,

P[|𝑑𝐻 ′′ (𝑣) − 𝑛0.2 | ≥ 𝑛0.15] ≤ 𝑒−Ω(𝑛0.1) ,

and for 𝑣 ∈ 𝑆,

P[𝑑𝐻 ′′ (𝑣) − 𝑛0.2 ≥ 𝑛0.15] ≤ 𝑒−Ω(𝑛0.1) .

Taking a union bound over all vertices, we conclude that, with probability 1 − 𝑜(1), 𝑑𝐻 ′′ (𝑣) =
(1 + 𝑜(1))𝑛0.2 for all 𝑣 ∈ 𝑉 (𝐻G) \ 𝑆 and 𝑑𝐻 ′′ (𝑣) ≤ (1 + 𝑜(1))𝑛0.2 for 𝑣 ∈ 𝑆.

Next, note that for distinct 𝑢, 𝑣 ∈ 𝑉 (𝐻G),

𝑑𝐻 ′′ ({𝑢, 𝑣}) =
∑

𝑒∈𝐸𝑢∩𝐸𝑣

1 =
∑

𝑖∈𝐼𝑢∩𝐼𝑣

∑
𝑒∈𝐸 𝑖

𝑢∩𝐸
𝑖
𝑣

𝑋𝑒,

and

E[𝑑𝐻 ′′ ({𝑢, 𝑣})] =
∑

𝑖∈𝐼𝑢∩𝐼𝑣

∑
𝑒∈𝐸 𝑖

𝑢∩𝐸
𝑖
𝑣

𝜔𝑖 (𝑒) ≤ |𝐼𝑢 ∩ 𝐼𝑣 | ≤ 2.

Thus, by Lemma 3.3,

P[𝑑𝐻 ′′ ({𝑢, 𝑣}) ≥ 𝑛0.1] ≤ 𝑒−𝑛
0.1
,

then by a union bound, we have Δ2 (𝐻
′′) ≤ 𝑛0.1 with probability 1 − 𝑜(1). �
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