
THE CURRENT THEORY OF ANALYTIC SETS 

D. W. BRESSLER AND M. SION 

1. Introduction. In this paper we describe the outlines of the theory 
of analytic sets from the point of view of recent work on the subject. Our aim 
is to present the concepts and some of the principal results in a setting useful 
to workers in analysis, especially those workers not familiar with the field or its 
current developments. No attempt has been made to include all the results con
cerning analytic sets—not even in a particular category. There are some excel
lent monographs (12; 18) as well as chapters in books (2, 8, 9, 15, 17) where the 
subject is treated extensively. These, however, do not contain the recent results 
and consider only metric spaces. Our emphasis is on a general topological 
setting. 

Three Borel families, the family of Souslin sets, and the family of analytic 
sets are introduced in Section 3. Sections 4 and 5 are concerned with relations 
between these families. Section 6 is concerned with approximation theorems and 
miscellaneous results. Many of these theorems are generalizations of known 
ones. Although an attempt has been made to make this paper reasonably self-
contained, the proofs of several theorems have been omitted, because they are 
too long, or highly technical, or similar to others which are given. 

Analytic sets were first introduced by Souslin (27) in 1917, and an extensive 
theory was developed during the following two decades. After that, interest in 
the subject diminished considerably. In the early fifties, however, several iso
lated results appeared in different fields and brought renewed interest in the 
subject. In the past few years the theory has been extended considerably. 

Perhaps the best known of recent results is Choquet's theorem in potential 
theory about the capacitability of analytic sets (5). Choquet's theorem is con
cerned with approximation from below. So are many of the recent results. Also 
typical is the fact that although he was not primarily interested in analytic 
sets per se, Choquet was led to their use by the methods of proof. It is now 
apparent that this is no accident. In many problems involving approximation 
from below the natural family to consider is that of analytic sets, not some 
Borel family. On this point, readers may find Section 6 of particular interest. 

2. Notation. 

2.0. 0 is both the empty set and the number zero. 
2.1. co is the set of natural numbers (including zero). 
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2.2. For n in co, n = \m\ m Ç co and 0 < m < «}. 
2.3. S is the set of all sequences of natural numbers; i.e., all functions on co 

to co. 
2.4. Sn is the set of all ordered (n + l)-tuples of natural numbers; i.e., all 

functions on ft to co. 

If / is a function and A is a set, then 

2.5. f [A] is the direct/-image of A, i.e., 

f[A] = {y: y = f(x) for some x Ç A } ; 

2.6./_1[^4] is the counter/-image of A, i.e. 

/-1[^4] = {x: y = f(x) for some y £ A}; 

2.7. /|-4 is the restriction of / to A, i.e., the function g on A H\ domain / 
such that for each x £ A C\ domain / , g(x) = fix). 

Let H be a family of sets. Then 

2.8. Ha = [A: A = \Jnt(aBn for some sequence 5 of sets in i î } , 
2.9. iJs = {A: A = r\newBn for some sequence 5 of sets in iJ} , 
2.10. H* = (#,)«. 

3. Definitions of Borel, Souslin, and analytic families. In this 
section, the five families of sets with which this paper is concerned are intro
duced. First, the formal definitions are given, and then some remarks are made 
on ways in which these families arise. 

In 3.1 and 3.2 it is helpful to think of H as a family of subsets of some space 
X which covers X. 

3.1. Definitions: The Borel Families. 
3.1.1. Borelian H is the smallest family which contains H and is closed to 

countable, non-vacuous union and intersection. 
3.1.2. Borel ring H is the smallest family which contains H and is closed to 

countable, non-vacuous union and set difference. 
3.1.3. Borel field H is the smallest family which contains H and is closed to 

countable (including vacuous) union and complementation with respect to 
yjaeHa. 

3.2. Definition. Souslin H is the family of all sets A such that 

A = \J H h{s\n) 
seS ntu 

for some function h on ^Jn€iaSn to H. 

3.3. Definition. For X a topological space, Analytic in X is the family of all 
sets A such that 

A = f[a] 

https://doi.org/10.4153/CJM-1964-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-021-7


ANALYTIC SETS 209 

for some a £ K'ai and some continuous function / on a to X, where K' is the 
family of closed, compact sets in a topological space X'. 

The Borel families, in general distinct, are well known and their very defi
nitions indicate the types of set operations which give rise to them. 

T h e set operation involved in the definition of the Souslin family is the 
operation (jtf). T o see how it arises, consider the following si tuation which 
occurs frequently in analysis. Let A be an arb i t rary set and let / be a function 
on A. In order to s tudy properties of f[A ], the set A is in some way decomposed, 
thereby introducing a decomposition of f[A]. Now suppose ty is a family of 
subsets of A which covers A. If, for each x £ A, Fx = j a f $ : i f a ) , then 

f[A] = u n /[«]. 
xeA atFx 

One is therefore led to consider sets of the form 

(3.4) U O h(a), 
XtA a eFx 

where h is a set function with domain $ . 
I t has been suggested by some tha t this be taken as the definition of a 

Souslin set. Such a definition, however, seems to be too broad. For most of the 
present development of the theory, it seems necessary to require t h a t ^ be 
countable. I t then turns out t h a t this is equivalent to assuming t ha t A is the 
space S of all sequences to co and t ha t $ is the family of all sets a of the form 

a = {s Ç S: Si = Xi for i = 0, . . . , n) 

for some n £ œ and x £ Sn'. If in addit ion it be required t h a t the h (a) belong to 
a given family H, then (3.4) yields the sets of Definition 3.2. 

Analytic sets come up natural ly when one is interested in continuous images 
of Borel sets. In fact, it was in order to show t h a t in Euclidean space a con
t inuous image of a Borel set is not necessarily Borel t h a t Souslin introduced 
the operation (s/). His fundamental result was the following: If H is the family 
of closed linear sets then Souslin H contains sets which are not Borel and Souslin H 
coincides with the family of continuous images of ©5 sets. 

For this reason, Lusin (11, 12), working in metric spaces, defined an analyt ic 
set as a continuous image of a ®Sl where @ is the family of open sets in a com
plete, separable, metric space. Then , Choquet (4, 6) , working in topological 
spaces, defined an analyt ic set as a continuous image of a Ka^ set, where K 
is the family of compact sets in a compact Hausdorff space. Recently, Sion 
(22), working in abs t rac t spaces, defined an (/, i J ) -analyt ic set as the image 
u n d e r / o f an H^s set satisfying certain conditions. The definition given in 3.3 
is a slight modification of Choquet ' s definition. 

4. Non-topological properties of Borel and Souslin families. This 
section is concerned with quite general relations between the Borel and Souslin 
families when no topological s t ructure is assumed on the underlying space. 
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In 4.1 through 4.4 are listed the main relations between the various families. 
The inclusions in 4.1 and 4.2 are, in general, proper. Lemmas 4.5 through 4.8 
are concerned with interchanging the order of the operations VJ and f*\. They 
are needed in the proofs of many theorems. Amongst other things, 4.5 and 4.6 
indicate situations where a Souslin set is Borelian. Proofs and some remarks 
follow the list. 

4.1. THEOREM. H C Borelian H C Borel ring 77 C Borel field 77. 

4.2. THEOREM. Borelian 77 C Souslin 77. 

4.3. THEOREM. Souslin Souslin 77 = Borelian Souslin 77 = Souslin H. 

4.4. THEOREM. If A £ Souslin H and 12 is the first non-countable ordinal, then 
there exist transfinite sequences B and C such that for each a £ 12 

Ba Ç Borelian H, Ca G Borel ring H, 

and 

HBa = A = U Ca. 

4.5. LEMMA. If h is such a function on WW€W Sn' that for each n Ç co 
(i) if x Ç Sn

f and y £ Sn' and x ^ y, then h{x) C\h{y) = 0, and 

(ii) if x Ç S'n+i, then h(x) C h(x\n), then 

u n h(s\n) = n u *(*|n) = n u *(*). 
seS new new seS weco zeSn' 

4.6. LEMMA. Le£ k £ S, T = {s G 5 : s* < ktfor each i £ co}, and for n Ç co 
/^ TV = {x f 5 / : x f < &ijfor eac/z: i £ n}. If h is such a function on ^Jn€<aSn 
that for each n Ç co awci x £ JTVH, &(x) C /^(x|n), ^ ^ 

u n ft(*|n) = n u A(5|n) = n u *(*). 
5 « r wew neco se!T new xeTn' 

4.7. COROLLARY. 7/ 77 5̂ closed to finite union and intersection and A Ç Souslin 
27, 2/zew 

.4 = U H ft(*l"), 
se S ntoi 

where h is such a function on \Jn€(aSn to 77 that for each n Ç co, x Ç S'n+i and 
j 6 co 

A(x) C A(x|n) 

and 
A(*o, . . . , xn,j) C A(xo, . . . , xn, j + 1). 

4.8. LEMMA. Let A X B be the Cartesian product of A with B. Let AB be the 
set of functions on B to A. If F is any function on S X co, then 

n u F(s,n) = u n/?(*(»),»). 
rceco seS <^eSw new 
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Proofs and remarks. 

Proof 0/4.8. This lemma is a special case of the following proposition which 
is actually equivalent to the axiom of choice : 

If X and Y are any sets and F is any function on X X F, then 

O U F(pc,y) = U H F(x,f(x)). 
xtX ytY feYx xeX 

For if 

P e n u F(*,y), 

then for each x G X there is 3/ Ç F with p g i*\x, 3/). Using the axiom of 
choice, for x £ X, let f(x) be such tha t / (x) € F and /> 6 F(x,f(x)). Then 

^ n F(x,f(x)) 
xtX 

and 

H U F f o y ) C U n F(x,f(x)). 
xtX yeY ftYx xeX 

Conversely, if for some/ € F x and for each x £ X p 6 F(x,f(x)), then 

Proof of 4.1. By definition if C Borelian if. The formulas 

Pi «n = O!o — U («0 — «n) 
and 

a - 0 = X - {(X -a) U 0 ) , 

where X = W76iï-Y, enable one to conclude that Borel ring H is closed to 
countable intersection and Borel field H is closed to set difference. 

Proof of 4.2 and 4.3. It is easy to verify that Ha and H& are contained in 
Souslin H. Thus, if Souslin Souslin H C Souslin H, then Souslin H is closed 
to countable union and countable intersection. Hence, Borelian H C Borelian 
Souslin H C Souslin H. 

In view of these remarks it is enough to show that Souslin Souslin H C Sous
lin H. 

Let A G Souslin Souslin H. Then for some / on WWWJSn' to Souslin H, 

A = U n/(x|m), 
xeS mew 

and for each x Ç 5 and m G «, 

/(x|m) = U ng(*lw;;y|n), 
2/cS new 
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where g(x\m; ) is some function on U t a , Sn' to H. Thus 

A = U H U ng(* |« ; :y |n ) 
xtS mew yeS new 

= U U O O g ( x | m ; ê O ) | n ) 
xeS ^ e S " mew new 

in accordance with 4.8. 
Now let c be such a sequence of natural numbers that for each n Ç co, cw < n 

and {i: c* = w} is infinite. Let the elements of this set be ordered so that 

{i: Ci = n) = {Nj(n): cNj{n) = n for each j Ç co}. 

Let 0 be a one-to-one function on co onto w Xw. For x 6 5, let x' and x" be 
the members of S defined by 

0(x&) = (xj/, xk") for & Ç co. 

For w G a), let &w be the largest 7 in co such that 

•Njfo) < n 

and let 

A(x|n) = g(x0', . . . , x'Cn; *'Vo(c»>, • • • , *"**„(*.)). 

Then 

O A(*l*0 = 0 0 gCx'Irajx'VoCm)' . . . ,x"Nkmtm)) 
new mew new 

Cn=W 

C nf(x'\m). 
mew 

Thus 
O \Jh(x\n) CA. 

xeS new 

On the other hand, for s Ç S and J Ç S", let x be the member of S defined by 

<f>(xn) = (sn, êi(cn)) for n Ç co, 

where i is such that Ni(cn) = iz. Then 

O n g ( s | w ; £ ( m ) | r i ) ( : H O &(*|m) 
mew new mew new 

= O h(x\m), 
mew 

so that 

A C U O A(*|w). 
xeS mew 

Thus 
4̂ = U O h(x\n) Ç SousliniJ. 

z e S new 
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References for 4tA. This theorem is due to Sierpinski (16). A proof of it can 
also be found in (9, p. 7). 

Proof of 4.5. Always 

U PI Hs\n) C H U h(s\n) = H U h(x). 
seS new new seS new xeSn' 

Now suppose 

P e n u *(*). 
new xeSn' 

For each w G co let x(n) be such a member of 5 / that p G A(x(w)). The hypo
theses guarantee that 

Thus, there is an 5 G S such that 

s\n = xw 

and 

p G nMs\n). 
new 

Proof of 4.6. Always 

U n h(s\n) C H U M ^ ) = H U *(*). 
seT new new seT new xeTn' 

Conversely, suppose 

P e n u *(*). 
weco xeTn 

It remains to prove the existence of an s in 2" such that 

p e n h(s\n). 
new 

This can be done as follows. 
For n and m in co, w < ra, and x G TV, let 

Bm(x) = {y G T: y\n = x and £ G M?)}-

Now for each n G co there is x G 7Y with J3m(x) ^ 0 for every m e co and 
m ^ n. For otherwise, since TV is finite and Bm+i(x) C Bm(oc), there exists 
m £ co with Bm(x) = 0 for every x Ç TV. But this is not so because for some 
y G TV, p G A (y) and y|râ G TV. 

Therefore, by recursion, for each n G co there is such an x(w) G 7"»' that 
x^n+l)\n = x(n) and p G h(x(n)). Thus there is s in J" with s\n = x(w) for each 
w G co, and for this s 

p e n h(s\n). 
new 

It is to be noted that the sole use of the fixed bound on the members of T 
and Tn is to ensure that Tn' is finite for each n G co. 
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Proof of 4.7. Let 

A = U Df(s\n), 
seS new 

where / is on Uwea} Sn' to H. For n Ç co and x Ç S / let 

g(*) = D_f(x\k). 
ken 

Then g is on Uwcw Sn' to H, and if n Ç co and x 6 S'n+i> 

g(x) C g(*|n) 

and 

4 = U n g(s\n). 
seS new 

For w Ç co, x G 5 / , and fe 6 co let 

h(x0, ...,xn,k) = U g(x0, . . . , xnJ). 
jek 

Then fe is on Uncw Sft' to iJ. If n £ co, x 6 5 / , and j Ç co, then h(xo, . . . , xn, j) C 
&(xo, . . . , xn, j + 1), and if n £ co and x G S'n+i, then 

&(x) C /^(x|n). 

Now 
4̂ = U n*(* |n ) C U nh(s\n). 

seS new seS new 

Conversely, for 5 £ 5 and n Ç co let 

r = {i Ç 5 : ^ < 5j for each i Ç coj 

and 

TV = {x G 5ra': x* < Si for each i £ n}. 

By 4.6, 

n A(s|n) = n u gOo,..., ^-i,i) 
new new jesn 

C O U «(*) = U Dg(s\n) CA. 
new xeTn seT new 

Thus 
U nh(s\n) CA, 
seS new 

and the proof is complete. 

5. Relations between Borel, Souslin, and analytic families in topo
logical spaces. This section is concerned with relations between the Borel, 
Souslin, and analytic families when a topological structure is assumed on the 
underlying space X. 
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The definitions of the terms used are collected in 5.1. The theorems are col
lected in three subsections. Part A complements the results of Section 4 by 
putting topological conditions on the family H. In Part B some results are 
given on the separation of Souslin sets by Borel sets which lead to criteria for 
determining when a Souslin set belongs to a Borel family. Part C contains some 
results on images of analytic and Borel sets which enable one to determine 
when an analytic set belongs to a Borel family. Proofs and remarks follow 
Part C. 

5.1. Definitions. 
5.1.1. K(X) is the family of all closed, compact sets inX. 
5.1.2. %(X) is the family of all closed sets in X. 
5.1.3. ©(X) is the family of all open sets in X. 

When there is no danger of ambiguity the variable uXn will be dropped 
from the above three notations. 

5.1.4. X has property I if and only if X is Hausdorff and A — B Ç Kff(X) 
for each A and B in K{X). 

5.1.5. A and B can be separated by F if and only if there exist A' and Br in 
F such that A C A', B C B', and A' C\ B' = 0. 

5.1.6. fis countable-to-one if and only if/ -1[{x}] is countable for each x. 

A. General re la t ions . 

5.2. THEOREMS. 

5.2.1. Souslin K(X) C Analytic in X. 

5.2.2. If X is Hausdorff, then Analytic in X C Souslin \§(X). 

5.2.3. If X is Hausdorff and X 6 Ka(X), then Souslin K(X) = Analytic in 
X = Souslin 5(X). 

5.3. THEOREM. Borelian Analytic in X = Analytic in X. 

5.4. THEOREM. If X is Hausdorff and A and B belong to K, then A — B 6 
Analytic in X if and only if A — B Ç Ka. 

5.5. THEOREM. X has property I if and only if X is Hausdorff and Borelian 
K = Borel ring K. 

5.6. THEOREM. If X is a metric space, then Borelian g = Borel ring g = 
Borel field g. 

5.7. THEOREM. / / X is a complete, separable metric space, then Analytic in 
X = Souslin g = {A: A = / [ / ] for some continuous function f on J, the set of 
irrational numbers, to X). 
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B. Separation theorems. 

5.8. THEOREM. / / A and B are disjoint and belong to Souslin K, then A and B 
can be separated by Borelian K. 

5.9. COROLLARY. A and X — A belong to Souslin K if and only if A and X — 
A belong to Borelian K. 

5.10. THEOREM. If X is a complete, separable metric space, A and B are dis
joint and belong to Souslin % ( = Analytic in X), then A and B can be separated 
by Borelian g ( = Borel field g). 

5.11. COROLLARY. If X is a complete, separable metric space, then A and X — 
A belong to Souslin % if and only if A and X — A belong to Borelian % if and 
only if A belongs to Borelian %. 

5.12. Remark. Theorems 5.8 and 5.10, in view of their corresponding corol
laries, are easily extended to the case of separating a sequence of disjoint 
Souslin sets by a sequence of disjoint Borelian sets. See (9, pp. 393-395). 

C. Images of analytic and Borel sets. 

5.13. THEOREM. If A £ Analytic in X and f is a continuous function on A to 
Y, then f [A] G Analytic in Y. 

5.14. THEOREM. If X and Y are Hausdorff, X G Ka(X), A G Analytic in Y, 
and f is a continuous function on X to Y, then f~l[A] G Analytic in X. 

5.15. THEOREM. If X has property 1, A G Borel ring K(X), f is a continuous 
and countable-to-one function on A to some Hausdorff space Y, and Y G Ka(Y), 
then f [A] G Borelian K(Y) andf[A] has property I. 

5.16. THEOREM. If X and Y are complete, separable metric spaces, A G Analy
tic in J (= Souslin %{X)) and f is a Borel function on A to Y (i.e., f~l[ci\ G 
Borelian %{X) for each a G ®(F)) , then f[A] G Analytic in Y (= Souslin 
g(F)). 

5.17. THEOREM. If X and Y are complete, separable metric spaces, A G Borelian 
% (X) and, f is a Borel and countable-to-one function on A to Y, then f[A ] G 
Borelian 5 ( F ) . 

Proofs and remarks. The following lemma is useful here and in Section 6. 

5.18. LEMMA. Let D C X', f be a continuous function on D to X, and A be a 
descending sequence of closed, compact sets in X' such that r \ e w An (Z D. 

bA&A. If Gis open in X and f[r\nwAn]QG, then for somen G œ,f[Dr\An] 
C G, and 

5.18.2. If X is Hausdorff, then 

f[n AJ = nf[Dn An] = n closure/^ n An\. 

https://doi.org/10.4153/CJM-1964-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-021-7


ANALYTIC SETS 217 

Proof of 5.18. Suppose G is open in X and let G' = /_ 1[G]. Then G' is open in 
D, i.e., Gr = G" C\ D, where G" is open in X', and 

n ^ C G ' C G". 
neœ 

Hence for some n 6 co, An C G" and therefore D C\ An C G" = G' so that 
f[D H 4 n ] C G. 

Next suppose X is Hausdorff and 3/ ̂ f[r\n€ù}An]. Since PiW€W^4w is compact, 
so is f[r\n€œ An], and there is an open set G contained in X such that 

fin An~\ C G and 3/ # closure G. 

By 5.18.1 for some n £ co, 

closure /[Z) Pi 4̂ J C closure G and y $ closure/[Z) P\ ̂ 4n], 

Thus 

H closure/[P H 4 J C / f o ^ 1 . 
n ceo \—n eu J 

On the other hand one always has 

An An~] cnf[Dn AH] C n closure/[# n ^ j . 
Lncw J ntu> new 

Proof of 5.2.1. This theorem was first proved by Choquet (6) for the case 
where X is Hausdorff. 

Order the elements of S as follows : 
If 5 and t are in S and s 9e t, let n be the least natural number for which 

sn y* tn and then define 
s < tii and only if sn < tn. 

For x G 5n ' , let 
©(#) = {5 Ç 5: s|n = x}. 

Then in the topology on 5 induced by the above ordering, 

©(*) G i^ (S) . 

Now if A £ Souslin K(X), then, in accordance with 4.7. 

.4 = U O h(s\n), 
seS una 

where for each s £ S and n £ co, 

A(51» + 1) C A(^|n) 6 i£(X). 

Let X ' = X X 5, with the product topology, let 

Bn = U (*(*) X © 0 ) ) , 
xeSn' 

and let 
2> = H S». 

new 

Since 5 / is countable, Z) 6 Kffs(X'). 
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Let P be the projection function on pairs such that P(x, y) = x. The proof 
will be completed by showing that 

A = P[D] 

so that A G Analytic in X. 
If p G A, then for some s £ S, 

p e n h(s\n), 
new 

and 
(fi,s) G O (h(s\n) X®(s\n)) C £>. 

neoo 

Up e P[2?], then, by 4.5, 

P € P f n U (*(*) X ®(*))~| 

= P [ U O (h(s\n) X @(s|ft))l 
L seS new J 

c u n ft(*|»i) 
seS new 

= A 

Proof of 5.2.2. This result is due to Sion (19). 
Let A = f[D], where / i s a continuous function on D, 

D = n Ud(*', j) , 

and d(i,j) G i^C^O for each i and 7 in w. For w Ç co and x G 5,/ let 

L un J 

Then closure B (x) G g (^0 » and 

4̂ = / f n u^*,j)l 

= / [ u n d(i, stj~\ 
L ses ïeco J 

= ujf nd(i,si)'] 
seS L ïeco J 

= u / f n nd(«,*ol 

= U C\f\D H n d(», *«)! , by 5.18.2, 
scS new L ten J 

= U n closure £ ( s |n) 

G Souslin g(X). 

Theorem 5.2.3 follows readily from 5.2.2. 
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Proof of 5.3. This result is due to Choquet (5). 
For each n G o> let An G Analytic in X. Thus for n G co 

where 
/„ is a continuous function on Z>w, 

and 
£>» G 2Cr«CX'(n)) for some X™. 

Without loss of generality it can be assumed that the spaces X(n) are disjoint. 
Let 

B = U An. 
new 

To see that B G Analytic in X, let Y be the topological union space with com
ponents Xin) for n G w, and let 

Then 

Let g be on E to X such that for each n G co 

Then g is continuous on E, and 

J5 = g[£] G Analytic in X. 

Let 
C= HAn. 

neco 

To see that C G Analytic in X, let Z be the topological cartesian product space 
with components Xin\ the one-point compactifications of the Xw, for n G w, 
and let 7? be the cartesian product of the Z>n. Then F is the intersection of the 
cylinders 

dn = {x G Z: xK f DM) for n G <a. 

Since each dw G Kas (Z), the same is true of F. 
Let 

H = {x G F\fn(Xn) = /o(#o) for each w G co}. 

Then i J is the intersection of F and a closed subset of Z so that H G Ka^{Z). 
Let &(#) = fo(xo) for each x £ H. Then & is continuous on if, and it is easy 

to verify that 
C = h[H] G Analytic in X. 

Thus, Analytic in X is closed to countable union and intersection, and 

Borelian Analytic in X = Analytic in X. 
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Proof of 5.4. This result is due to Sion (21). T h e proof uses Theorem 6.6 
given in the next section. There is no circularity in the a rgument , however. 

Clearly, if A - B Ç Ka, then A - B G Analyt ic in X. 
Suppose A — B 6 Analyt ic in X. By 6.6 A — B is Lindelôf (i.e., each open 

covering of A — B can be reduced to a countable open covering of A — 5 ) . Let 

G = {0 :0 G © a n d B C £} , 

and let 

F = {a: a = X — closure 0 for some 0 Ç G\. 

Since X is Hausdorfï, F is an open covering of X — £ , and hence a countable 
subfamily Ff covers A — B. Let G' be such a countable subfamily of G t h a t 

j ^ ' = {a: a = X — closure fi for some fi Ç. G'}, 

and let 

H = {y:y = A - p for some 0 € G '} . 

Then i f is a countable family of compact sets whose union is A — B so t h a t 
,4 - 3 € X„. 

Proof of 5.5. This result is due to Sion (21). 
Suppose X has proper ty I. Let i f be a maximal family such t h a t K Q H and 

if A and 5 are in H, then yl and A — B are in Borelian K. I t is easily checked 
t h a t H is closed to countable union and intersection so t h a t H = Borelian K. 
Thus , if A and B are in Borelian K, then A — B Ç Borelian K. Hence 

Borel ring K C Borelian K and so Borel ring K = Borelian K. 

Suppose X is Hausdorfï and Borel ring K = Borelian K. If A and B are in 
K, then A - B Ç Borelian X", and , in view of 5.3, A — B £ Analyt ic in X . 
Hence, by 5.4, i - 5 ^ , . 

Theorem 5.6 is a well-known elementary result. 

Proof of 5.7. Let X be a complete, separable, metric space and let 

C(J) = {A: A = f[J] for some continuous f on J to X}. 

I t is enough to show t h a t 

C(J) C Analyt ic in X C Souslin g C C(7) . 

T h e first inclusion follows from the fact t h a t / is a Kff^ T h e second follows from 
5.2.2. T h e third inclusion is due to Lusin (10) and is proved as follows. 

For A in Souslin g it is always possible to pu t 

A = U Pi d(s\m), 
seS meœ 
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where for s Ç S and m Ç co 

d(s\m + 1) C d(s\m) G 8 
and 

lim diam d(s\n) = 0. 
n 

Let 
Z = j ^ : x G 5 and d(x\m) 9e 0 for each m Ç co}. 

Then for x Ç Z, P\mew d(x|râ) is a singleton, and g can be defined on Z by 

g(x) e n d(x|w). 
raeco 

It follows that 
4 = g[Z]. 

A metric can be introduced on S so that S is a complete, separable metric 
space. Under this metric Z is closed in S and g is continuous on Z. Hence 
(9, p. 343) 

Z = h[J] 

for some continuous function h on / , and 

A = g[h[J]] 6 C( / ) . 

Remark on 5.7. The fact that, in any separable metric space X, 

Analytic in X = C(J) 

has been proved independently by Choquet (6) and Sion (20). This can be 
seen with the help of 6.6. If A Ç Analytic in X, then by 6.6, A is separable and, 
by 5.2.2. A £ Souslin %. Hence A is a continuous image of / . 

Proof of 5.8. In the case of a compact Hausdorff space this result is due to 
Sneider (24, 25, 26). The present form is due to Sion. See also (19, Theorem 
4.3). 

Let 
A = U H g(s\n) and 5 = U Pi Hs\n) 

seS new seS new 

with g(s\n) and /*(s|w) in K and (in view of 4.7) 

g(s|w + 1) C g(s|n) and h{s\n + 1) C h(s\n) 

for each s £ S and n £ o). 
For w Ç (o and £ 6 S / let 

©'(/>) = {£': />' € S'«+i and £'|n = />}, 

©(£) = {s: s £ S and s|ri = p)y 

G{p) = U H g(s|rô), 
se©(p) mew 

#(£) = U H A(s|m). 
s e © ( p ) raeco 
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The proof of the theorem can be obtained with the aid of the following 
statement. 

Statement. Under the hypotheses of the theorem, if n Ç co, p € Sn', q € 5 / , 
and G(p) and H(p) cannot be separated by Borelian K, then for some p' Ç 
©'(£) and q' £ ©'(g), G(£') and iï(g') cannot be separated by Borelian K. 

If the statement is false, then for each p' Ç ©'(/>) and g' Ç ©'(<?), there are 
a(p', qf) and £(£', <?') in Borelian K such that 

G{p')C*(p',q'), HWCPip'.q'), 
«(p',q')rM3(p',q') = 0. 

Let 

*= u n «(*>', <z') 

and 

0'= u n j8^,a'). 

Then a7 P\ /3' = 0 and since ©'(/>) and ©'(#) are countable, a' and 0' belong to 
Borelian K. Moreover, 

G(p)= U G(p')C<*' 

and 
ff(g) = U H{q') C 0' 

«'«©'(«) 

in contradiction to the hypotheses of the statement. 
Returning to the proof of the theorem, if A and B cannot be separated by 

Borelian K, then there are 5 and t in 5 such that for each n G co, 

G(s\n) and H(t\n) cannot be separated by Borelian K. 

Let 
G' = Pi g(s|n) and H' = C\ h(t\n). 

n «co n ceo 

Then G' and fl7 belong to K, G' C -4, and H' C B so that 

G' r\H' = 0. 

Consequently, for some m Ç co, 
g0|m) r\H' = o, 

and for some w G w, 

A(*|n) n g 0 | r a ) = 0, 

so that for some & Ç co, 

g(s\k) r\h(t\k) = 0. 
But 

G(s|fc) = U _ H g(s|n) C g(s|fc) 
xe<S(s |A;) weco 
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and 

H{t\k) = U H h(x\n) C h(t\k), 
xe<B(t\k) new 

in contradiction to the above, and this completes the proof. 

Proposition 5.9 is an immediate corollary of 5.8. 
Theorem 5.10 is due to Lusin (11, p. 52; 12, p. 155). See also (9, p. 393). 

The proof is similar to that of 5.8. 
Theorem 5.11 is due to Souslin (27). See also (9, p. 395). This result is a 

corollary of 5.10. 
Theorem 5.13 follows immediately from the transitivity of continuity. 

Proof o/5.14. In view of 5.2.2, A Ç Souslin g (F ) so that 

A = U H h(s\n), 
seS new 

where h(s\n) 6 J ( F ) for each s £ S and n £ co. Consequently 

f-\A] = U C\r\KAn)\ £ Souslin g(X) = Analytic inX, 
seS new 

in accordance with 5.2.3. 
Theorem 5.15 was first given by Lusin for the case of a countable-to-one 

projection of a Borel set contained in Euclidean space; see (12, p. 178). The 
present form is due to Sion (21, Theorem 4.7). The details of the proof involve 
technical notions which are not introduced here. Under the hypotheses of the 
theorem, it is argued in (21) that / | /4] is a continuous and countable-to-one 
image of a Kai(X

f) set for some X' which has property I. From this it follows 
that / |yl] 6 Borelian K[Y] and also, being Hausdorff, tha t /^4] has property/ . 

Proof of 5.16. This theorem was first given by Lusin (10, Theorem III ) for 
the case of real analytic sets. For further results of this type see (9, §34, III 
and §35, VII). 

Let Px and PY be the projection functions on X X Y to X and Y respec
tively. (For (x, y) Ç X X Y, Px(x, y) = x and PY(x, y) = y>) 

Since/is a Borel function on A to Y, 

f = {(x, y) : y = f(x)} 6 Analytic in ( X X F). 

By 5.14, 

A X Y = Px~
l[A] e Analytic in (X X F), 

so that 

/ H (A X F) e Analytic in (XX F). 

Thus, by 5.13, 

f[A] = PY(JC\ {A X F)] Ç Analytic in F. 
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Proof of 5.17. According to a theorem of Braun (3, Theorem 3) 

f[A] = Y - B for some B G Analytic in F. 

According to Lusin's Theorem 5.16 

f[A] G Analytic in Y. 

Thus by Souslin's Theorem 5.11 

f[A] G Borelian g ( F ) . 

Remarks on the proof of 5.17. The result of Braun which was used in the 
proof of 5.17 is a result of the theory of sieve operations {operations des cribles). 
For the definitions and theory of sieve operations see (11, 12, 18). 

In the case of a one-to-one Borel function Theorem 5.17 was first given by 
Lusin (11, pp. 59-60; 12, p. 259). 

6. Approximation from below. This section is concerned with what we 
believe to be the key property of analytic sets which makes them useful in 
analysis. Many seemingly unrelated theorems are consequences of it. Stated 
informally it is essentially the following: if an analytic set has a property P 
satisfying certain conditions, then there exists a compact set contained in it 
which has a property Q closely related to P. Frequently Q = P. Thus, in a very 
broad sense, analytic sets can be approximated from below by compacta. 

In Part A this general result is stated formally. In Part B are collected 
several theorems, each of which is a consequence of the general approximation 
theorem 6.3. 

A. A general approximation theorem. 

6.1. DEFINITION. P is a capacitance in X if and only if P is a family of 
subsets of X such that: 

1. If A is an ascending sequence and {Jn€C*An G P , then for some n G co, 
An G P , and 

2. If A G P and A C B C X, then B G P . 

6.2. DEFINITION. His (/, P , Q)-monotone if and only if for each descending 
sequence a, if an G H and f[an] G P for each n G co and r\euan C domain / , 
then f[r\ 

H is (P, Q)-monotone if and only if H is (/, P , Q)-monotone where/(x) = x 
for each x. 

6.3. THEOREM. Let H be a family of subsets of X which is closed to finite union 
and intersection, and let A G Souslin H. If P is a capacitance in X and A G P , 
then there exists a descending sequence a such that 

an G H C\ P for each n G co 
and 

HanCA. 
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6.4. COROLLARY. Let H be a family of subsets of X which is closed to finite 
union and intersection, and let A G Souslin H. If P is a capacitance in X, H is 
(P, Q)-monotone and A G P , then there exists a G H 8 such that a d A and 
a£ Q. 

6.5. COROLLARY. Let K' be the family of closed, compact sets in some space X'. 
Let D G K'<r8 and letf be a continuous function on D to X. (Thus,f[D] is Analytic 
in X,) If P is a capacitance in X, Kr is (f, P , Q)-monotone and f[D] G P , then 
there exists a compact set a such that a C f[D] and a G Q. 

Proofs and remarks. 

Proof of 6.3. This result is due to Sion (22, Theorem 5.6). 
Let 

A = U nh(s\n), 
stS neœ 

where, for each n G co and x G Sn', h(x) G H. In view of 4.7 it can be assumed 
that for each n G o> and x G 5'n+i, 

h(x) C A(#|rï). 

For any two sequences x and 3/ let x < y if and only if for some n £ 00, x\n — 1 
= y\n — 1 and xw < yn. For x G Sn' let 

Pc = {s G S: s < x} 
and 

B(x) = U O *(5|n). 

Then 
4̂ = UB(j) 

jew 

and 

-B(x) = U B(XQ, . . . ,Xn,j). 
jeœ 

Suppose P is a capacitance and A G P . Since -B(j) C ^ ( j + 1) for j G co, there 
is k0 G co such that B(k0) G P . Then, since 

B(x0, . . . , *n, j) C B(xo, . . . , xn, j + 1) 

for x G S»' and 7 G co, there is &i G eu such that J3(&o, &i) G P . Proceeding by 
recursion, there is a sequence k £ S such that 5(fe|n) G P for each n ^ co. Let 

£/n = {# G 5 / : XÏ < kt for i = 0, . . . , n\ 

and 

«n = U h(x). 
xiUn 

Then, an+i C «w G i^and since 5(&|n) C an, aw G P . Finally, by Lemma 4.6 
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C\a„= D U *(*) 
new new xiUn 

= H U h(s\n) 

= U Dh(s\n) CA. 
s<& n cw 

Proposition 6.4 is an immediate consequence of 6.3 and 6.2. 

Proof of 6.5. This result is due to Sion (22). 
L e t P ' = [a9: a' C I ' a n d / M G P } . 
Since P is a capacitance in X, P' is a capacitance in X'. Also Z) G K'^tCZ 

Souslin i£'. Suppose f[D] G P . Then D £ P' and by 6.3 there is*a descending 
sequence a such that for each n G co 

a»' ZK'nP', i.e.,/[««'] 6 P , 

and 

PI « / C 2?. 
new 

Let 
|8 = O of»' and a = /[/3]. 

new 

Then ft £ K' and a C/[£*]• Since/ i s continuous on D, a is compact. Since K' 
is (/, P , Ç)-monotone, a G Ç. 

B. Miscellaneous results. In this part are listed several results, most 
of which are well known. They lie in various fields and were proved at dif
ferent times independently of each other. It is shown that they are all conse
quences of 6.4 or 6.5. The definitions of the concepts involved in the theorems 
together with some remarks are given in the proofs. 

6.6. THEOREM. If A G Analytic in X, then A is Lindelbf. 

6.7. THEOREM. If A G Analytic in X and fx is a capacity of order (la) on X, 
then A is fi-capa citable. 

6.8. THEOREM. If n is a Carathéodory outer measure on X, H is a family of 
jjL-mea s arable sets which is closed to finite union and intersection, A G Souslin H, 
and \xA < c°, then for each t less than p.A there exists a G H& such that a C A 
and t < pa. 

6.9. THEOREM. If /x is a Carathéodory outer measure and H is the family of 
/J,-measurable sets and A G Souslin H, then A is n-measurable. 

6.10. THEOREM. Let F be the family of closed sets in X, and let Y be a space 
having a countable base. Let A G Souslin P, and let f be such a function on A to 
Y that for each open set U in F, f~l[U] G Souslin F and A — f~l[U] G Souslin 
F. {Thus f is a B or el function on A.) If /z is a Carathéodory outer measure on X 
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such that fiA < & and closed sets in X are ^-measurable, then for each e > 0 
there exists a closed set C contained in A such that fx(A — C) < e and f is con
tinuous on C. 

6.11. THEOREM. Let X be Hausdorff, A Ç Analytic in X, 

B = {a: a C A, a £ Analytic in X and A — a £ Analytic in X}, 

and let n be a Carathéodory outer measure on A such that [xA = 1 and closed sets 
are ^-measurable. Then {A, B, /x) is a perfect probability space; i.e., if Y has a 
countable base, f is a B-measurable function on A to Y ( /_ 1[^] £ B for each open 
U in Y), E C Yj and f~l[E] Ç B, then there exists F such that F is a countable 
union of compacta, F C E, and vif'^F]) = ^{f~l[E}). 

6.12. REMARKS. The proof of Theorem 6.3 can be modified (23, Theorem 
4.1) to prove theorems which yield directly the separation Theorem 5.8 (see 
22, Theorems 5.8 and 5.13) as well as the following results. 

6.12.1. Let X be a complete, separable metric space, s > 0, and fis* be Haus
dorff s-dimensional outer measure. If A G Analytic in X and A has non a-finite 
Us*-measure, then there is a compact set a contained in A which has non a-finite 
Hs*-measure. 

This theorem was first given by Davies (7). 

6.12.2. If X is a complete, separable metric space, A Ç Analytic in X and A 
is not countable, then A contains a non-empty, perfect subset and therefore has the 
power of the continuum. 

For real analytic sets this theorem is due to Souslin (10). 

Proofs and remarks. 

Proof of 6.6. This result is due to Sion (20). A set is Lindelôf if and only if 
each open covering of it can be reduced to a countable open covering. Suppose 
A G Analytic in X and there is an open covering G of A that cannot be reduced 
to a countable open covering. Let 

P = Q = \a C X: a cannot be covered by a countable subfamily of G\. 

Then P is a capacitance in X and A Ç P. Using Lemma 5.18.1 to check that 
6.5 is applicable, one concludes that there is a compact set a contained in A 
such that a Ç Q. This is a contradiction. 

Proof of 6.7. This result, for the case where A is contained in a countable 
union of compacta, was first proved by Choquet (5). The theorem as stated is 
due to Sion (20). 

fjL is a capacity of order (la) on X if and only if /x is such a function on the 
family of all subsets of X to the reals that 

(i) for each ascending sequence A, 
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\xAn < Mfi+i < Hm \xAn = ju(U An\ , 

and 
(ii) for each compact set A and for each e > 0, there exists an open set B 

such t h a t A C.B and \xB < /x̂ 4 + e. 
4̂ is ^-capacitable if and only if 

\iA = suplfxA : a (Z A and a is closed and compac t} . 

Let A G Analytic in X. T o see t h a t A is /z-capacitable, let t < /JLA and let 

P = {a: a C X and /x<* > t}. 

and 
<2 = {o;:a C X a n d fiA > / } . 

Use (i) to check t ha t P is a capacitance in X , and use (ii) with 5.18.1 to 
check t h a t K' is (/, P , Q)-monotone if K' is the family of closed compact sets of 
an arb i t ra ry space X' and / is an a rb i t ra ry continuous function with domain 
contained in Xr. Since A = f[D] for some D £ Kff^{Xf), for some space X' and 
some continuous f u n c t i o n / on D, by 6.5 there is a compact set a contained in 
A such t h a t a Ç Q. T h a t is fia > £. 

Proof of 6.8. Let t < ^A, and let 

M*a: = inf{/jj8: /3 is /x-measurable and a C #} , 
P = {a: a C X and / < ^(aP\A)}. 
Q = {a: a C X and t < /**«}• 

Then P is a capacitance in X , 4̂ G P , and H is (P , Q)-monotone. By 6.4 there 
is a in Ht such t ha t a C A and a G P , i.e., £ < Ai*a = /xa. 

Proof of 6.9. This is a classical result due to Lusin (10; see also 13, 15, p . 
50) . 

jLt is a Cara théodory outer measure on X if and only if /JL is such a function on 
the family of all subsets of X t h a t 

M0 = 0, 

and for each sequence A of subsets of X 

O<H(\JA%) < E M». 
\n ew / n eco 

4̂ is ju-measurable if and only if ixT = n(T C\ A) + n(T — ^4) for each 

rex. 
Let i f be the family of all /z-measurable sets and let A Ç Souslin H. 
For T C X and a C X let 

VT(&) = inî{ JJL(P f~\ (3): f3 is /z-measurable and a C 0} . 

Then 4̂ is ^-measurable if and only if A is /x^-measurable for each P C X with 
/zP < oo. 
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Let T C X with pT < °° and let t < fxT(A). By 6.8 there is a G ffa ( = # ) 
such that « C ^ and / < /xr(^4). It follows that 4̂ is /xr-measurable. 

Proof of 6.10. This is an analogue of the classical Vitali-Lusin theorem. The 
restrictions on the function are stronger, but the conditions on the measure are 
weaker. 

Let e > 0, and let {[/*: i G o>} be a base for the topology of F. Then by 
6.8, for each i G co there are C, au and fft in Psuch that 

CCA and n(A - C) < |e , 

^ C / - W i ] and v(f-*[Ut) - at) < e/2**, 

and 

PtCA- f-i[Ut] and M(4 - /^[ t f*] - ft) < €/2*H 

Let 

Then C G ^ C C i , 

MW - O < M(̂ 4 - C) + £ MW -at- 00 
few 

< K + E (M(TW*] - «0 + MW - r 1 ! ^ ] - i»0) < «, 

and, for each i G w, C r\f~l[Ui] = C C\ (X — fit). Thus, for each i G co, 
/_1[£A] i s open in C, and therefore/is continuous on C. 

Proof of 6.11. This is a slight generalization of a result due to Blackwell 
(1). The method of proof is different. 

Let E C Y, f'^E] G B, e > 0 and let 

P = {a: a C f~l[E] and /x(a — f~l[F}) > e for each F such that P is a 
countable union of compacta and F <Z E\, 

and 

Q = {a: a C / - 1 [ £ ] and /z(o: — / - 1 | P ] ) > * for each F such that P is a 
countable union of compacta and F C E}. 

Then P is a capacitance in X and, by 5.18.2, K' is (g, P , Q)-monotone when
ever K' is the family of closed compact sets in a space X' and g is a continuous 
function to X with domain in K'oi ( = Kff8(X')). Then by 6.5, if f-^E] G P , 
there is a compact set a contained in /_1[E] such that a G Q. Using 5.2.2 and 
6.10, let C be closed and such that C (Z A, n(A — C) < e, a n d / is continuous 
on C. U D = /[a P\ C], then P is compact, D (Z E, and 

/i (a - / " T O < n(a - C ) < MG4 - C) < e, 

which contradicts the fact that « G (?. Hence/_ 1[E] $ P . 

ieco 
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