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BAIRE CATEGORY AND LAURENT EXTENSIONS 

DANIEL R. FARKAS 

Based on a s t ra tegy of Kaplansky ([3]), Dixmier proved tha t a prime, separ­
able C*-algebra is primitive ([1]). As a consequence, when the C*-closure of a 
countable discrete group is prime, it is primitive. T h e a rgument m a y be re­
garded as a clever application of the Baire Category Theorem to the spectrum 
of irreducible representations. 

The present note is the first step in adapt ing this technique to abs t rac t group 
algebras. For which groups G is the primitive ideal space of k[G] a Baire space? 
One corollary of our main result is t h a t the space is Baire when k is an uncount­
able field and G is a polycyclic-by-finite group. This gives an a l ternate proof 
of a special case of Passman 's theorem tha t such a k[G] will be primit ive when 
its center is k ([4], p. 379). 

Our proofs differ in style from group algebra methods. T h e predominant ly 
ring theoretic a rguments were inspired by ([2]). Basically, we show tha t when 
R is a well-behaved ring whose primitive ideal space is Baire then a twisted 
Lauren t extension R<r[x, x~l] also has a primitive ideal space which is Baire. 

The au thor is indebted to E. Green for pat ient ly and critically listening to 
the evolving versions of this paper. 

1. T h e space of p r i m i t i v e idea l s . Suppose R is any associative ring 
(with 1). T h e set of all (left) primitive ideals of R comes equipped with the 
Jacobson topology. Here a collection of primitive ideals is closed if it is pre­
cisely the set of all primitive ideals lying over some ideal of R. We shall denote 
this space by Priv R. Of part icular interest is whether Priv R is a Baire space: 
Is the countable intersection of dense open sets always dense? 

We begin with an algebraic version of Kaplansky ' s observation ([3]). By a 
separating set for R we mean a countable set of nonzero elements of R with the 
proper ty t ha t every nonzero ideal of R meets this set. 

T H E O R E M 1. Suppose R is a prime, semiprimitive ring. If R has a separating 
set and Priv R is Baire then R is a primitive ring. 

Proof. Let Y be the separat ing set for R. If y £ Y then 

Uy = {P e P r i v a i y $ P} 

is clearly an open subset of Priv R. Since R has no radical, Uy ^ 0. 
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Because R is prime, and semiprimitive Priv R is an irreducible topological 
space. T h a t is, every nonempty open set is dense. Hence H ^ y Uy ^ 0. Choose 
a primitive ideal Q in the intersection. If Q ^ 0 then Q H Y is nonempty. But 
then we can find y Ç F with 3/ G Ç, i.e. Q d Uy. We conclude tha t (2 = 0. 

In honor of this theorem we define R to be a Kaplansky ring provided the 
primitive ideal space of every homomorphic image of R is a Baire space. 

Recall t ha t a noetherian ring is a Jacobson ring when each prime image is 
semiprimitive. 

LEMMA 2. Suppose Ris a Jacobson ring which is (one-sided) noetherian. Then 
R is Kaplansky if and only if Priv R/P is Baire for every prime ideal P in R. 

Proof. One direction is obvious, so assume Priv R/P is Baire whenever P is 
prime. If I is an arbi t rary ideal of R, there are only finitely many primes 
P i , . . . , Pm minimal over / . If we set Rt = R/P\ then we can regard each 
Priv Rt as a closed subspace of Priv R/I with 

Priv R/I = (Priv #1) U U (Priv Rm). 

Remove any component which is redundant (i.e. in the union of the remaining 
subspaces). 

Now suppose { Us\ s £ Sf] is a countable collection of dense open subsets of 
Priv R/I. Then Us C\ Priv R7 ^ 0 for each 5 G y and each i. Otherwise, Us is 
contained in the union of a proper subcollection of the Priv Rj} a closed set. 
Since Us is dense, this implies t ha t Priv R7- can be deleted from the union. 

Therefore Us P\ Pr'w Rt is a nonempty relatively open subset of the irre­
ducible space Priv i ^ . Hence (DS£&> Us) Pi Priv Rt is dense in P r i v i ^ . The 
result follows. 

Finally, we shall need some technical results. If a is an automorphism of R 
then a extends to a topological automorphism of Priv R. A subset X ÇZ Priv R 
is a-invariant when a(X) Ç X and a-stable when a(X) = X. A similar defi­
nition can be made for the ideals of R. We say tha t R is a-prime provided the 
product of two nonzero o--invariant ideals is nonzero. 

LEMMA 3. Suppose R is a a-prime semiprimitive ring. If Priv R is Baire then 
the countable union of proper a-stable closed subspaces remains proper. 

Proof. I t suffices to show tha t if U is a nonempty cr-stable open subset of 
Pr iv R then U is dense. So suppose V is open and U C\ V = 0. Then 
W = Udçz <rd(V) is still open and U H W = 0. Let I be the intersection of all 
primitive ideals lying over the complement of U and J be the intersection of all 
primitives over the complement of W. Both ideals are c-stable and / P\ / = 0. 
But / ^ 0 since U ^ 0. Hence J = 0; V = 0. 

Notice t ha t when a is the identi ty automorphism, the converse of Lemma 3 
is true. I t is useful to remember the ideal-theoretic interpretat ion of this lemma. 
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If {Is\ s £ £/?\ is a countable collection of cr-stable ideals of R such t ha t every 
primitive ideal lies over some Is then there is a / 6 5 with 11 = 0. 

LEMMA 4. Suppose R is a prime, semiprimitive noeiherian ring. Assume that 
whenever {Ps\ s £ S^} is a countable collection of nonzero prime ideals of R there 
is a primitive ideal which does not lie over any P t. Then Priv R is Baire. 

Proof. Apply the a rgument of Lemma 2 to the ' ' converse" of Lemma 3. 

2. T w i s t e d L a u r e n t e x t e n s i o n s . For the remainder of this paper R will 
always denote a (one-sided) noetherian ring and a will be an automorphism of 
R. When R is a ^-algebra we will assume tha t a fixes all elements of k. 

By the twisted Lauren t extensions 5 = Ra[x, x~l] we mean the collection 
of all finite sums 

X ) i € z ^ x \ rt e R 

with the obvious addit ion and 

xrx~l = a(r) for all r Ç R. 

The usual a rgument for the Hilbert Basis Theorem shows t ha t S is noetherian. 
T h e properties of 5 which we shall need can be found in [2]. Although t ha t 

paper deals with Ore extensions (twisted polynomial rings) the results we sum­
marize below carry over to Lauren t extensions wi thout difficulty. 

If P is a prime ideal of 5 then P C\ R is a a-prime ideal of R. This , in turn , 
forces P r\ R to be a semiprime ideal of R. In addit ion, (P C\ R)S is a prime 
ideal of S. If P is nonzero and P C\ R = 0 then any ideal which properly con­
tains P meets the regular elements (i.e. nonzero divisors) of R. Consequent ly 
such a P is minimal among the nonzero prime ideals of S. 

For our purposes, the major theorem of [2] s tates t ha t if R is a Jacobson ring 
then so is S. 

We are now able to s ta te the main theorem of this paper. 

T H E O R E M 5. Suppose R is a noetherian Jacobson algebra over the uncountable 
field k. If R is a Kaplansky ring then so is S = Ra[x, x - 1 ] . 

T h e proof will be found in the next section. 

One lemma of [2] requires a bit of t inkering before it can be used. 
If ^ = S i = M rjXj is a nonzero element of 5 with both ru and rv nonzero, define 
deg (i/0 = v — u. Set deg (0) = — GO , for good measure. When / is a nonzero 
ideal of 5 it is easy to see t ha t the elements of minimal degree in / have the same 
degree as the elements of minimal degree in / P\ Ra[x] with nonzero cons tant 
term. Call this degree, deg ( / ) . We define T*(I) (respectively r * ( / ) ) to be 0 
together with the leading (resp. cons tant ) coefficients of the elements in 
/ P\ Ra[x] with degree deg (I). Clearly r*(7) and r*(7) are c-stable ideals of R. 
Notice t ha t ii I 9e 0 then T*(I) and r*(7) are nonzero. 
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Set n(I) = T*(I) r\ T*(I). If 5 is prime and 7 ^ 0 then a-primality forces 

M(0 * 0. 
LEMMA 6. Suppose I is an ideal of S with deg (I) > 0. Fix c G M CO- 7/ 

<£> Ç 5 //£ere is a positive integer w and an r G i^aM wi/fe deg r < deg / such that 

cwiç = r (mod I). 

Proof. Wri te p = y^)=u <PjXj where <pj G R. We first assume tha t u ^ 0 and 
argue by induction on v. Clearly we may assume v §: deg I. If C(pv = 0 then we 
are done. Otherwise, choose p £ I C\ Rff[x] of degree deg (I) with leading 
coefficient c<pv. Apply induction to c<p — pxv~deg 7. 

Now assume u ^ 0 and argue by induction on —u. The case — u = 0 is 
covered by the first paragraph. So suppose — u < 0. If C(pu = 0 then we are 
done. Otherwise, choose a G / C\ Ra[x] of degree deg (I) with constant coeffi­
cient c<pu. Apply induction to c<p — qxu. 

3. K a p l a n s k y r ings . 

LEMMA 7. Assume S = Ra[x, x~l] is a prime ring and H is a nonzero prime 
ideal of S with H C\ R = 0. If Priv R is Baire then Priv S/H is Baire. 

Proof. L e t ^ be the collection of all maximal left ideals M of R such tha t 
SM + H = S. Set © = \SP G Priv R\ SP = ann R/M for some M G Jt\. I t 
is easy to check tha to /# and & are c-stable. 

We first show tha t \L(H) Ç M for all M Ç.J/. Choose at^ M such tha t 

J^x^t = 1 (mod i f ) . 

Since H C\ R = 0 and H ^ 0, we have deg (H) > 0; Lemma 6 applies. Given 
c G M (if) there is a positive integer w and polynomials r f (x) with degree 
smaller than deg (H) such tha t cwx* = r ^ m o d H) for all i appearing in the 
original sum. Hence J^ r ^ x ) ^ = cw(moà H). Since M is a left ideal of i?, 
we can rewrite this as 

Ho^jKûegH^bj = cw(modH) 

where bj £ M. Looking a t degrees, we see tha t £ x ; ^ — cw = 0. In part icular 
cw G M. We now apply a technique of [2]. If c (j? M then 1 = /c + m for some 
/ G i£ and m G M. Repeat the argument with tc replacing c: then (tc)v G M 
for some y > 0. But then 

(te)*-i = (fc)' + (tc)v-lm 

so we eventually conclude t ha t 2c G M. This forces 1 G M, so we conclude t h a t 
c G M, as desired. 

Now set / = n « ? € 0 ^ - Then n(H) Q J while /i(if) ^ 0 by the remark 
preceding Lemma 6. T h u s / is a nonzero cr-stable ideal of R. 

Suppose {Ps\ s G y?) is a countable collection of prime ideals of S/H over 
which lie the primitive ideals of S/H. (Here we let Ps denote the preimage of 
Ps in S.) By Lemma 4 we are done once we show tha t some Pt is zero. 
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We claim t h a t every primitive ideal of R either lies over / or over some 
Ps C\ R. Obviously if &> G Û, it lies over J. When & G & there exists a 
maximal left ideal M oi R and a maximal left ideal N of S such t h a t £P = ann 
R/M and SM + H Q N. If Q is the annihilator of S/N then Q G Priv 5 , it 
contains 77, and Ç H R annihilates R/M. Hence Ç H P C ^ . But Q 3 P 6 , 
for some 5 G «5^. Therefore ^ lies over P 6 H P . 

Since P s H P is testable and Priv R is Baire, we are done by Lemma 3. 

Proof of Theorem 5. Suppose the theorem is false. By the noetherian condi­
tion we can find an ideal H maximal with respect to Priv S/H not being a Baire 
space. According to Lemma 2, i f is a prime ideal of S. Now 

S/{H C\ R)S ~ (R/H H R),[x, x-1] 

and (H C\ R)S is a prime ideal. T h u s we can replace R by R/H r\ R and 
assume tha t S is a prime ring and H is a pr ime ideal of 5 with H C\ R = 0. 

If i ï ^ 0, then Priv 5/77 is Baire by Lemma 7. So we are reduced to proving 
t ha t 5 = Rff[x, x~l] has a primitive ideal space which is Baire under the 
assumptions t ha t S is prime and Priv 5 is Baire for all proper homomorphic 
images 5 of S. 

We first handle the special case in which every nonzero prime ideal of 5 meets 
R nontrivally. Suppose SP G Priv R is the annihi lator of R/M. I t is easy to see 
t ha t SM is a proper left ideal of 5. Now one of the a rguments in the previous 
lemma produces a Q G Priv 5 such t h a t Q P\ R ÇZ £P. Consequently, if 
{Ps\ s G SP} is a countable collection of prime ideals of S over which lie Priv S, 
{Psr\R\ s G $f\ is a countable collection of o--stable ideals of R over which lie 
Priv R. By Lemma 3, Pt C\ R = 0 for some / G Sf * T h e hypothesis of this 
paragraph implies Pt = 0. By Lemma 4, Priv 5 is Baire. 

We now assume tha t 5 possesses a nonzero prime ideal P such t h a t 
P f~\ R = 0. Let £/ be 0 together with the polynomials in P H Ra[x] whose 
ordinary degree is deg ( P ) . If 0 ^ a G k (with P an algebra over k) and 

0 ^ g = anx
n + an^xn~l + . . . + a0 G f/; » = deg (P) 

define 

P a ( g ) = aanx
n + ûv-ix*-1 + . . . + a0. 

Set Ua = Ea(U). We leave it to the reader to verify t h a t Ua is a cr-stable 
P-bimodule . Therefore UaS = J^ Uax

l is a two-sided ideal of 5. Because each 
nonzero element of Ua has the same degree, each member in UaS can be wri t ten 
in a unique way as ^ ç(j)xj where q(J) G Ua. One consequence is t ha t 
UaS C\ R = 0. Since R is opprime, there mus t be a minimal prime Qa over £/aS 
such t ha t Qa C\ R = 0. 

We claim tha t Ça = Qp implies a = @. For when the ideals are equal, we 
have E«(q) - E^(q) G Qa for any 0 ^ g G U. T h a t is, (a - (3)anx

n G Ça. Bu t 
«n & Qa since Q« ^ R = 0. 
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In summary, since k is uncountable, we have an uncountable collection Qa 

of distinct nonzero prime ideals of 5 with Qa C\ R = 0. According to a result 
quoted immediately before the statement of Theorem 5 in the second section 
of this paper, if P is a prime ideal of S with P ^ Qa then P = 0. 

Let {Ps\ s G S} be a countable collection of nonzero prime ideals in S over 
which lie Priv S. Since Ps Q Qa implies Ps = Qa, cardinality considerations 
force the existence of nonzero a G k such that Ps (£ Qa for all s Ç ¥. Notice 
that every primitive ideal of S/Qa lies over some Ps + Qa/Qa- On the other 
hand, Priv S/Qa is a Baire space. Therefore P& + Qa = Qa for some s, a con­
tradiction. We conclude that some primitive ideal of S does not lie over any 
Pt. By Lemma 4, Priv S is Baire. 

The reader may justifiably ask why the main theorem was proved for twisted 
Laurent extensions rather than twisted polynomial extensions. All of the 
arguments generalize without great difficulty except for the special case 
handled at the beginning of the proof of Theorem 5. We do not know the struc­
ture of Ra[x] when every nonzero prime ideal of Ra[x] not containing x meets R 
nontrivally and yet there is a primitive ideal in R which does not lie over any 
P H R with 0 ^ P e Priv (R„[x]) and x £ P. It would be pleasant if Ra[x] 
was itself a primitive ring in this instance. 

4. Group algebras. 

COROLLARY 8. Suppose k is an uncountable field. 
(i) If G is a poly cyclic group then k[G] is a Kaplansky ring. 

(ii) If Gis a polycyclic-by-finite group and k[G] is a prime ring then Priv (k[G]) 
is a Baire space. 

Proof, (i) Observe that if B is a subgroup of G and x normalizes B, then 
(B, x ) is the homomorphic image of some semidirect product of B by Z. It is 
easy to see now how (i) follows by Theorem 5 and induction. 

(ii) G contains a normal polycyclic subgroup H with G/H finite. Let SP Ç 
Priv (k[H]). Since maximal left ideals of k[H] are always contained in maximal 
left ideals of k[G], there exists a P £ Priv (k[G\) such that P C\ k[H] C &. 
The argument in the special case at the beginning of Theorem 5 establishes the 
corollary, since every nonzero ideal of k[G] meets k[H] nontrivally ([4], p. 359). 

COROLLARY 9. ([4], p. 379) Suppose k is an uncountable field and G is a 
polycyclic-by-finite group. If A(G) = 1 then k[G] is a primitive ring. 

Proof. Let K Ç k be the prime field in k. A theorem in ([4], p. 355) states 
that the nonzero elements of K[G] constitute a separating set for k[G]. Now 
apply Corollary 8 and Theorem 1. 
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