
The contribution of dominance to the understanding
of quantitative genetic variation

ROBIN WELLMANN* AND JÖRN BENNEWITZ
Department of Animal Husbandry and Animal Breeding, University of Hohenheim, D-70599 Stuttgart, Germany

(Received 6 May 2010 and in revised form 10 November 2010; first published online 12 April 2011 )

Summary

Knowledge of the genetic architecture of a quantitative trait is useful to adjust methods for the
prediction of genomic breeding values and to discover the extent to which common assumptions in
quantitative trait locus (QTL) mapping experiments and breeding value estimation are violated.
It also affects our ability to predict the long-term response of selection. In this paper, we focus on
additive and dominance effects of QTL. We derive formulae that can be used to estimate the number
of QTLs that affect a quantitative trait and parameters of the distribution of their additive and
dominance effects from variance components, inbreeding depression and results from QTL mapping
experiments. It is shown that a lower bound for the number of QTLs depends on the ratio of
squared inbreeding depression to dominance variance. That is, high inbreeding depression must be
due to a sufficient number of QTLs because otherwise the dominance variance would exceed the true
value. Moreover, the second moment of the dominance coefficient depends only on the ratio of
dominance variance to additive variance and on the dependency between additive effects and
dominance coefficients. This has implications on the relative frequency of overdominant alleles. It is
also demonstrated how the expected number of large QTLs determines the shape of the distribution
of additive effects. The formulae are applied to milk yield and productive life in Holstein cattle.
Possible sources for a potential bias of the results are discussed.

1. Introduction

Quantitative traits can be controlled by many genes
and environmental factors. One main concept to deal
with these traits is the infinitesimal model (Fisher,
1918; Goddard, 2001) which assumes an infinite
number of genes each with infinitesimal effects. But in
fact, the number of genes is finite. Even though the
assumptions of this model are violated, the use of this
concept has yielded substantial genetic gain for many
quantitative traits in livestock and plant breeding over
the past few decades (Dekkers & Hospital, 2002).
Research on the genetic architecture of quantitative
traits and its deviation from the infinitesimal model
has a long history, see e.g. Lynch & Walsh (1998),
Mackay (2001) or Hill (2010) and references therein.
Many results are trait specific and controversial.
Having knowledge about the number of quantitative

trait loci (QTLs) as well as the distribution of their
effects for a particular trait would contribute to a
deeper understanding of its genetic architecture.
Furthermore, in animal breeding, genetic evaluation
methods that use massive genetic marker data have
become common in practice (Hayes et al., 2009). For
the development of these models as well as for the
assessment of long-term genetic progress using this
technology it would be helpful to have knowledge
about the number of QTLs and the distribution of
QTL effects (Goddard, 2009; Daetwyler et al., 2010).

Estimators of the number of QTLs have been pro-
posed by Hayes & Goddard (2001) and Chamberlain
et al. (2007). Hayes & Goddard (2001) estimated
50–100 segregating QTLs per trait in dairy cattle.
Chamberlain et al. (2007) concluded that at least 30
QTLs are segregating. However, both authors could
not rule out the possibility that there are many more
QTLs with small effects, because they used results
from QTL mapping studies. It was frequently shown
that mapped QTLs were separated into a series of

* Corresponding author: Department of Animal Husbandry and
Animal Breeding, University of Hohenheim, D-70599 Stuttgart,
Germany. e-mail : r.wellmann@uni-hohenheim.de

Genet. Res., Camb. (2011), 93, pp. 139–154. f Cambridge University Press 2011 139
doi:10.1017/S0016672310000649

https://doi.org/10.1017/S0016672310000649 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672310000649


additional QTLs by fine mapping experiments (e.g.
Mackay & Anholt, 2006), pointing towards larger
numbers of QTLs. Support for a higher number of
QTLs comes also from human height data (Visscher,
2008) and from genomic selection experiments. Luan
et al. (2009) using 20 k single nucleotide polymorph-
isms (SNPs) for genomic breeding value estimation
in dairy cattle found that the method called G-BLUP
for the estimation of genomic breeding values pro-
duced similar or better than Bayesian methods. This is
usually only the case if many QTLs are segregating
and the ratio of marker to QTL is low (Meuwissen &
Goddard, 2010). Several estimators are known that
are not applicable to outbred populations, e.g. the
Castle–Wright estimator or the estimator proposed
by Otto & Jones (2000). Hill et al. (2008) noted that
for a given rate of inbreeding depression, as the
number of loci increases and the gene frequencies
move towards 0 or 1, the dominance variance de-
creases towards zero. Consequently, the relationship
between dominance variance and inbreeding de-
pression, which is the mean decrease of the trait value
when the inbreeding coefficient increases from 0 to 1,
could be used to estimate the number of QTLs. Such
an estimator would not rely on QTL mapping results
but would need knowledge about inbreeding de-
pression and dominance variance, which have been
estimated for some populations and traits (Misztal,
1997).

A second main issue in the genetic architecture of
quantitative traits is the distribution of QTL effects.
In a meta-analysis of information from QTL mapping
experiments, Hayes & Goddard (2001) found the
distribution to be moderately leptocurtic, consistent
with many genes of small effect and few of large
effect. Some studies have reported double exponential
distributions (Eyre-Walker & Keightley, 2007;
Bennewitz & Meuwissen, 2010). Traits are known
with segregating QTLs of large effect (e.g. the plei-
otropic DGAT1 in Holstein cattle, see Grisart et al.,
2004) even though the trait has been under selection
for a long time. On the other hand, recent large-scale
association studies conducted for human height re-
vealed 54 variants which collectively explained only a
few percent of the genetic variance of this highly
heritable trait (Visscher, 2008), indicating that there
are many QTLs with small effects and none with an
exceptional large effect for this trait. This suggests
that the distribution of QTL effects is trait specific. In
QTL mapping studies, it is often estimated how many
QTLs with a ‘ large ’ effect are segregating. Naturally,
these ‘ large’ QTLs determine the distribution of the
effects and could therefore be used to derive para-
meters of the distribution. However, the true number
of segregating large QTLs may be even smaller than
reported by QTL mapping studies due to publication
bias, as negative results tend not to be published.

The distribution of the dominance coefficient was
derived by Bennewitz & Meuwissen (2010) for meat
production traits in pigs. The dominance coefficient
dn=dn/|an| depends on the dominance effect dn and on
the absolute additive effect |an|, which is half the dif-
ference between the homozygous genotypic values.
They postulated a normal distribution with a mean of
mD=0.193 and a standard deviation of sD=0.312 for
segregating alleles. Thus, overdominance is a rare
but not negligible event for these traits. However,
if dominance is more important, e.g. for fitness-
related traits, these figures might not hold and over-
dominance might play a more important role. For ex-
ample, Ishikawa (2009) mapped an overdominant
allele affecting body weight in mice at 6 weeks of age
with a dominance coefficient of up to 6.6. Luo et al.
(2001) found that overdominance is an important
property of most loci associated with heterosis in
rice. Rocha et al. (2004) found more directional
dominance in fitness-related traits compared to
growth or body composition traits in mice. Garcı́a-
Dorado et al. (1999) suggested in their review an av-
erage dominance coefficient of 0.94<d̄<0.98
(0.01<h̄=(1xd̄)/2<0.03) for new lethal mutants and
argued that the typical value d̄=0.2 (h̄=0.4) can be
questioned for new non-severe deleterious mutations,
but suggested d̄=0.8 (h̄=0.1). However, even if
dominance is common, it does not necessarily cause
much dominance variance due to the U-shaped distri-
bution of allele frequencies (Hill et al., 2008).

Also important is the joint distribution of the ad-
ditive effects an of the mutant alleles, the dominance
coefficients dn and allele frequencies pn. Several
studies assume that they are independent, e.g.
Bennewitz & Meuwissen (2010). But this is likely not
true. Kacser & Burns (1981) argued that the re-
lationship between enzyme activity and end-product
is hyperbolic. Thus, if a high enzyme activity is needed
to produce a large trait value, then it is expected
that the allele that increases the trait value shows in-
complete dominance (i.e. dn>0). Moreover, since a
differentiable function is locally approximately linear,
one would expect that alleles with small effect
show little dominance (i.e. dnB0), although this is
not always confirmed empirically, e.g. Caballero &
Keightley (1994), Bennewitz & Meuwissen (2010).
Thus, |an| and dn should be positively correlated.
Not only arguments based on metabolic pathways
(Keightley, 1996) but also arguments based on selec-
tion point into this direction. New mutations that af-
fect a trait that was under selection are most often
deleterious and recessive. Recessivity of mutants
arises as a side effect of the margin of safety built
into most metabolic pathways. But the extent to
which this safety margin results from natural selection
remains controversial (Bourguet, 1999). Since selec-
tion on modifier alleles that act on heterozygote
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mutant alleles would be much stronger than that act-
ing on homozygotes (Fisher, 1928) and since advan-
tageous dominant alleles less likely become lost by
random drift than recessive alleles with the same
function, alleles that have been fixed are likely to be
dominant over new mutant alleles. However, selection
coefficients on modifier alleles would be extremely
small (Wright, 1934), so modifier alleles may be of
little importance. More important for the joint dis-
tribution of allelic effects and allele frequencies is the
change of an allele frequency by one generation of
selection, as it depends on the current allele frequency
(Falconer & Mackay, 1996, p. 28). Since selection
against a recessive deleterious allele becomes inef-
ficient when the allele frequency pn is small, and since
most mutant alleles are recessive and deleterious, one
would expect that segregating deleterious alleles
(an<0) with small frequency (pnB0) tend to be re-
cessive (dnB1). For the same reason, segregating ad-
vantageous alleles (an>0) with high frequency (pnB1)
tend to be dominant (dnB1). Due to the U-shaped
distribution of allele frequencies, most allele fre-
quencies are close to 0 or 1, so these arguments are
valid for the majority of the alleles. Therefore, we
have likely pn>0.5 if sign(an)=sign(dn) and pn<0.5 if
sign(an)lsign(dn). All these arguments also confirm
that |an| and dn are likely positively correlated.

Allelic effects and allele frequencies affect the addi-
tive variance, the dominance variance and the in-
breeding depression of a trait. However, dominance
variance is not only determined by these quantities,
but may be increased quite substantially by linkage
disequilibrium as shown by Avery & Hill (1979).
Given that alleles are coded as 0 and 1, the coefficient
of linkage disequilibrium Dn,m between loci n and m
equals the covariance of the alleles, if they are chosen
at random from the infinite gametic pool.

The objective of this paper was to find parameter
settings for the simulation of a particular trait that
account for dominance realistically and are consistent
with literature reports. A further concern is the
identification of genetic architectures for a particular
trait that are consistent with available estimates of
variance components and inbreeding depression.
First, formulae were developed that quantify the
contributions of different sources that affect the
phenotypic variance. The minimum number of QTLs
is calculated that is needed such that inbreeding de-
pression on average does not cause more dominance
variance than the true dominance variance of the
trait. This novel estimator predicts a lower bound for
the number of QTLs. Using the developed formulae,
it is shown how the number of ‘ large’ QTLs can be
used to derive parameters of the distribution of QTL
effects. Finally, the role of overdominance for cases
where the ratio of dominance variance to additive
genetic variance is high is investigated. The developed

formulae are based on the availability of additive
genetic variance as well as dominance variance com-
ponents. They were applied using published variance
components estimates for milk yield and productive
life (PL) in Holstein dairy cattle.

2. Theory

This section is divided into several parts. In (i), for-
mulae for the variance components are derived that
account for linkage disequilibrium. Their expecta-
tions under a wide range of assumptions are derived
in (ii). Part (iii) discusses the distribution of allele
frequencies and linkage disequilibrium of alleles. In
(iv), parameters that describe the joint distribution of
additive effect and dominance coefficients are derived
for different scenarios. Parameters that are estimated
in (iii) and (iv) are needed to evaluate the formulae
that are derived in later parts. In (v), formulae are
derived to estimate the contributions of different
sources to the additive and dominance variance.
Lower bounds for the number of QTLs are presented
in (vi). Implications on the importance of over-
dominance can be found in (vii). Upper bounds for
the number of large QTLs are given in (viii). Part (ix)
shows how the formulae can be used to estimate the
number of QTLs, the variance of the additive effects,
and the mean and variance of the dominance coeffi-
cients. For a better readability, the proofs of the for-
mulae are given in the electronic appendix (available
at http://journals.cambridge.org/GRH). A list of
symbols used in the paper is given in Table 1.

(i) Variance components and inbreeding depression

According to Falconer & Mackay (1996), the breed-
ing value of an individual is the sum of all substitution
effects that are carried by this individual, i.e. up to an
additive constant the breeding value is

BV= g
n2Q

an (vn+mn) with an=an+dn (qnxpn),

where vns{0, 1} is the paternal and mns{0, 1} is
the maternal allele of the individual at QTL n and
Q consists of all polymorphic QTLs. Here, it is as-
sumed that all QTLs are biallelic with alleles 0 and 1.
Moreover, we assume throughout the paper the
absence of genetic interactions. The mutant allele at
QTL n has frequency pn, additive effect an and domi-
nance effect dn. The other allele has frequency qn=
1xpn. The dominance deviation of the individual is

DV= g
n2Q

x2dn (vnxpn)(mnxpn),

see Falconer & Mackay (1996, Table 7.3). The addi-
tive variance is the variance of the breeding value and
the dominance variance is the variance of the domi-
nance deviation of an individual whose parents are
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randomly chosen from the population. Thereby, the
additive effects, the dominance effects and the allele
frequencies are assumed to be fixed parameters and
randomness arises from random sampling of the
genotypes. That is, only the paternal and maternal
alleles are random. Since maternal and paternal al-
leles are independent and identically distributed with
Var(vn)=Var(mn)=pnqn and E (vn)=E (mn)=pn, we
obtain (see the proofs in the electronic appendix)

VA=Var(BV)= g
n2Q

hna
2
n+2 g

n<m2Q
2anamDn,m, (1)

where hn=2pnqn is the heterozygosity at locus n in the
case of Hardy-Weinberg Equilibrium (HWE) and
Dn,m=Cov (vn, vm)=Cov (mn, mm) is the coefficient of
linkage disequilibrium between locus n andm. For the
dominance variance, we obtain

VD=Var(DV)= g
n2Q

h2
nd

2
n+2 g

n<m2Q
4dndmD

2
n,m: (2)

Note that VA+VD equals the genotypic variance
within a line given by Avery & Hill (1979). If
linkage disequilibrium is neglected, i.e. if Dn,m=0
is assumed, then only the left summands in
eqns (1) and (2) remain, which is equal to the well-
known formulae given in Falconer & Mackay
(1996). We assume that loci from different chromo-
somes are not in linkage disequilibrium, but loci
from the same chromosome may be linked. Take C
to be the set of chromosomes and for csC let Qc

denote the polymorphic QTL at chromosome c.
Then we have

VA= g
n2Q

hna
2
n+2 g

c2C
g

n<m2Qc

2anamDn,m (3)

and

VD= g
n2Q

h2
nd

2
n+2 g

c2C
g

n<m2Qc

4dndmD
2
n,m: (4)

Table 1. Table of symbols

an Additive effect of the mutant allele at QTL n
akn Additive effect of an arbitrarily coded allele at QTL n
dn Dominance effect of QTL n
dn=dn/|an| Dominance coefficient of QTL n
pn Frequency of allele 1 (the mutant allele) at locus n
qn=1xpn Frequency of allele 0 at locus n
an=an+dn (qnxpn) Allele substitution effect of QTL n
hn=2pnqn Heterozygosity at locus n in the case of HWE
N, Ne Population size and effective population size

VA,VD, I Additive and dominance variance and inbreeding depression
~VVA, ~VVD, ~II Expected additive and dominance variance and inbreeding depression
Va

A,V
ad
A ,Vd

A,V
LD
A Contributions of different sources to the additive variance

ṼA
a , ṼA

ad, ṼA
d , ṼA

LD Expected contributions of different sources to the additive variance

VD
d ,VD

LD Contributions of different sources to the dominance variance

ṼD
d , ṼD

LD Expected contributions of different sources to the dominance variance

mA=E (an), sA
2 =Var(an) Mean and variance of the additive effect of mutant alleles of QTL

mD=E (dn), sD
2 =Var(dn) Mean and variance of the dominance effect of QTL

mD=E (dn), sD
2 =Var(dn) Mean and variance of the dominance coefficient of QTL

mAk=0, sAk
2 =E (an

2) Mean and variance of the additive effect of arbitrarily coded alleles

F Distribution function of akn/sAk
l=E (|akn|)/sAk
K=E (|dn|)/E (dn)
cv=sD/mD Coefficient of variation of the dominance coefficient
c=E (hn(qnxpn)

2)/E (hn)

DLD
1,0,0 Average expected coefficient of LD of a chromosome

DLD
i,j,k Generalization of the average expected coefficient of LD

r1=Cov(|an|,dn)/E (|an|)E (dn) Describes the dependency between an and dn
r2=Cov(an

2,dn
2)/E (an

2)E (dn
2) Describes the dependency between an and dn

r2,1=Cov(an
2 ,|dn|)/E (an

2)E (|dn|) Describes the dependency between an and dn

pk Probability that a segregating QTL has MAF larger than k
s>0 QTL with |an|>s are considered as ‘ large’
Q, Q Set of all polymorphic QTLs, number of polymorphic QTLs
Qc, N c Set of all polymorphic QTLs and set of nucleotides at chromosome c
C, C Set of chromosomes, number of chromosomes
Q̃=pkQ Expected number of QTLs with MAF>k
ñ Expected number of large QTLs with MAF>k
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The first summand in eqn (3) equals

g
n2Q

hna
2
n= g

n2Q
hna

2
n+2 g

n2Q
hn (qnxpn)andn

+ g
n2Q

hn (qnxpn)
2d2

n:

Therefore, we can write

VA=Va
A+Vad

A+Vd
A+VLD

A ,

where VA
a=gnsQ hnan

2 and VA
d=gnsQ hn (qnxpn)

2dn
2

are the contributions of single additive effects and
dominance effects to VA, respectively. VA

ad=gnsQ2r
hn (qnxpn)andn is a correction term that can be nega-
tive. Finally, VLD

A =2g
c2C gn<m2Qc

2anamDn,m is the
contribution that comes from covariances between
linked loci. Similarly, we can write

VD=Vd
D+VLD

D ,

where VD
d =gnsQ hn

2dn
2 is the contribution of

single dominance effects to VD and VLD
D =

2g
c2C gn<m2Qc

4dndmD
2
n,m is the contribution that

comes from covariances between linked loci.
The expected genotypic value of an individual that

is randomly chosen from the population in HWE is

GHWE=m+ g
n2Q

0q2
n+(an+dn)2pnqn+2anp

2
n:

Assume that an inbred line is established from two
individuals that are randomly chosen from the popu-
lation. Individuals from this line carry the genotype
00 at locus n with probability qn and the genotype 11
with probability pn. Thus, the expected genotypic va-
lue of a completely inbred individual is

Ginbred=m+ g
n2Q

pn2an+qn0:

The inbreeding depression, i.e. the expected decrease
of the genotypic value when the inbreeding coefficient
increases from 0 to 1 is therefore

I=GHWExGinbred= g
n2Q

hndn:

(ii) Expectations of variance components
and inbreeding depression

In this paper, we treat a population as if it would be a
random outcome of a simulation study, i.e. a popu-
lation is viewed as a realization from all hypothetical
populations. Therefore, not only the genotypes are
random but also the additive effects, the dominance
effects, the allele frequencies and the coefficients of
linkage disequilibrium for each pair of loci.
Alternatively, randomness of the additive and domi-
nance effects could be due to uncertainty about
the true effects (Gianola et al., 2009). In both cases,
VA and VD are random variables. In our setting,

VA and VD are treated as random since they would
attain different values in each hypothetical replicated
population. Their expectations are of interest in order
to relate parameters of the distributions of additive
effects and dominance coefficients to the expected
variance components.

For nsQ, the additive effect an of the mutant allele
has mean mA and variance sA

2 , the dominance effect dn
has mean mD and variance sD

2 . The dominance coef-
ficient dn=dn/|an| has mean mD and variance sD

2 . Take
Nc to be the set of nucleotides at chromosome c. The
probability that a nucleotide is a segregating QTL is
equal for all nucleotides and nucleotides become QTL
independent from each other. For simplicity, we as-
sume that all chromosomes have equal length. The
expected number of segregating QTLs at one chro-
mosome is therefore Q/C, where Q=E (#Q) is the
expected total number of segregating QTLs and
C=#C is the number of chromosomes.

We derive expectations of the variance components
under a wide range of assumptions. That is, we first
derive equations using only a small number of as-
sumptions and successive include more of them. The
assumptions are

(A1) (pn, an, dn) and (pm, am, dm) are identically dis-
tributed,

(A2) allelic effects are independent from the allelic
effects and the allele frequencies at other loci
and linkage disequilibrium does not depend on
the allelic effects (see below),

(A3) DLD
1,0,0=DLD

1,0,1=DLD
1,1,0=0 (see below),

(A4) dominance effect dn and heterozygosity hn are
independent,

(A5) (|an|, dn) and heterozygosity hn are independent,
(A6) (a) an|dn, pn has a symmetrical distribution with

mean mA=0, or
(b) pn>0.5 if sign (an)=sign (dn) and pn<0.5

if sign (an)lsign (dn), i.e. sign (an)=
xsign ((qnxpn)dn) (see the introduction),

given nlmsQ. Note that additive effects and domi-
nance coefficients may be dependent. By using only
(A1) we obtain

~VVA=E (VA)= ~VVa
A+ ~VVd

A+ ~VVad
A + ~VVLD

A , (5)

~VVD=E (VD)= ~VVd
D+ ~VVLD

D ,

~II=E (I )=QE (hndnjn 2 Q),

where

~VVa
A=QE (hna

2
njn 2 Q), (6)

~VVd
A=QE (hn(qnxpn)

2d2
njn 2 Q),

~VVad
A =2QE (hn(qnxpn)andnjn 2 Q),
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~VVd
D=QE h2

nd
2
njn 2 Q

� �
,

~VVLD
A =

2Q2

C

1

#N 2
c

g
nlm2N c

E (anamDn,mjn,m 2 Q)

and

~VVLD
D =

4Q2

C

1

#N 2
c

g
nlm2N c

E (dndmD
2
n,mjn,m 2 Q):

In most of the following formulae, we suppress the
condition that the SNPs are polymorphic QTLs in
order to improve the readability.

Note that an denotes the effect of the mutant allele.
However, in real populations it is unknown which
allele the mutant allele is. One would rather use an
arbitrary coding of the alleles. Take akn to be the ad-
ditive effect of the arbitrarily coded allele. We have
akn=an or akn=xan, each with probability 0.5.
Although |akn|=|an|, the distributions of both random
variables are different. Whereas the effect of the mu-
tant allele may have a non-zero mean mA, the effect of
the arbitrary coded allele akn has a symmetrical dis-
tribution with mean mAk=0 and variance sAk

2 =E (an
2).

Since akn has mean 0, we can write E (|an|)=
E (|akn|)=lsAk, where the parameter l depends on the
standardized distribution of akn.

Let Dn,m
i,j,k=Dn,m

i (qnxpn)
j (qmxpm)

k, which is nee-
ded to simplify ṼA

LD. Now we assume additionally
that linkage disequilibrium does not depend on the
allelic effects and that allelic effects at different
loci are independent, i.e. an is independent from (am,
dm, pm, Dn,m) and dn is independent from (am, dm, pm,
Dn,m, Dn,m

1,1,1), given nlmsQ. With (A1) and (A2) we
obtain

~VVLD
A =2

Q2

C
(m2

AD
1, 0, 0
LD +2mAmDD

1, 0, 1
LD +m2

DD
1, 1, 1
LD ), (7)

~VVLD
D =4

Q2

C
m2
DD

2, 0, 0
LD ,

where

Di, j, k
LD =

1

#N 2
c

g
nlm2N c

E Di, j, k
n,m jn,m 2 Q

� �
:

Roughly speaking, E (Dn,m
2,0,0|n, msQ) would be the

mean D2-value for loci n and m, averaged over many
hypothetical populations for which n and m are
polymorphic QTLs. If these expected D2-values are
averaged over all pairs of loci at one chromosome,
then DLD

2,0,0 is obtained. Simulations of neutral alleles
showed that likely DLD

1,0,0=DLD
1,0,1=DLD

1,1,0=0 but
DLD

1,1,1l0 (A3), so this will be assumed in the rest of
this paper. Thus, linkage disequilibrium not only
contributes to the dominance variance but also to the
additive variance. If there are many QTLs per chro-
mosome that affect the trait, the contributions from

single loci can in principle be much smaller than the
contributions that arise from covariances of linked
loci, since the latter increases quadratically with the
number of QTLs. If additionally dominance effect
and heterozygosity are independent (A4), then

~VVd
A=QE (hn)(m

2
D+s2

D)c, (8)

~VVd
D=QE (hn)(m

2
D+s2

D)
1xc

2
,

~II=QE (hn)mD,

where c=E (hn(qnxpn)
2)/E (hn)=1x2E (hn

2)/E (hn).
The last equation in (8) shows that inbreeding de-
pression occurs only if dominance effects do not have
mean zero. It may be more convenient to express
the formulae for ṼA

d , ṼD
d and ~II using moments of

the dominance coefficients rather than moments of
the dominance effects. These can be obtained from
eqn (8) with

mD=mDlsAk(1+r1), (9)

m2
D+s2

D=(m2
D+s2

D)s
2
Ak (1+r2),

where

rj=
Cov(dj

n, janj
j
)

E (dj
n)E (janjj)

for j=1, 2:

The scale invariant parameters r1 and r2 characterize
the dependency between additive effects and domi-
nance coefficients. Scale invariance means in particu-
lar that r1 and r2 do not depend on the variance of the
additive effects. For biological reasons, we expect that
r1, r2o0. If additive effects and dominance coefficients
are independent, then r1=r2=0.

Now we assume additionally that the absolute ad-
ditive effect and the heterozygosity are independent
(A5). We have

~VVa
A=Qs2

AkE (hn): (10)

In simulation studies, the additive effect an often has a
symmetrical distribution with mean 0 given dn and pn
(A6a). In this case, we have

~VVad
A =0: (11)

However, we believe that (A6a) is an unrealistic as-
sumption for real populations for several reasons.
Most important, selection acts mainly on the additive
component of genotypic values. Therefore, one would
expect that in a long-term selected population alleles
with small contribution to the additive variance are
overrepresented. The contribution of QTL n to the
additive variance depends on |an|=|an+(qnxpn)dn|
which is small if an and (qnxpn)dn have opposite signs.
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Although this is violated in real populations as well
for some alleles, it likely holds for the majority of
the alleles as pointed out in the introduction and
it provides not only more realistic results as (A6a),
but it can also easily be accounted for in simula-
tion studies by simply choosing the sign of an as
sign(an)=xsign((qnxpn)dn). Under (A6b) we have

~VVad
A =x2 ~VVa

AE(jdnj)(1+r2, 1)
E (hn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
)

E (hn)
, (12)

where

r2, 1=
Cov(a2

n, jdnj)
s2
AkE (jdnj)

:

We can write E (|dn|)=mDK, where K depends on
the coefficient of variation cv=sD/mD.

Several parameters appeared in these equations
that need to be estimated for the application of for-
mulae. The next part provides estimates of parameters
that are related to heterozygosity and linkage dis-
equilibrium. In Part (iv), parameters that characterize
the joint distribution of additive effect and dominance
coefficient are calculated for different scenarios.

(iii) Heterozygosity and linkage disequilibrium

In accordance with the diffusion approximation
(Crow & Kimura, 1970) and Hill et al. (2008), the
density of a segregating neutral mutant allele is
f(p)=1/(kp) on the interval [1/(2N ), 1x(1/2N)] if
mutations are rare and the population is in mutation
drift equilibrium. Since f(p) is a density, we have
k=ln(2Nx1), where N is the population size. Take
pk=P (k<pn<1xk) to be the probability that a seg-
regating allele has minor allele frequency (MAF) lar-
ger than k, where 1/(2N )fkf0.5. We have

c=
1

3

(Nx1)2

N2
, E (hn)=

1

k

Nx1

N
, and

pk=
ln((1=k)x1)

k
:

(13)

Note that the population size is usually so large that
the factors (Nx1)2/N2 and (Nx1)/N can be ignored.
The effective population size is assumed to be con-
stant. But for most livestock populations, the effective
population size decreased in the past. In a small bot-
tlenecked population, more alleles with extreme fre-
quencies become lost than new mutations arise and
the remaining alleles more likely have intermediate
frequencies. Thus, the mean heterozygosity of segre-
gating alleles would be larger. But on the other hand,
the population size is usually much larger than the
effective population size, so many new mutations
arise each generation and these new mutations de-
crease the mean heterozygosity of segregating alleles.

In order to get estimates of c, E (hn) and pk for a
bottlenecked population, we simulated a population
for which the effective population size decreased from
Ne=1000 to Ne=100 within 400 generations in ac-
cordance with the results of Villa-Angulo et al. (2009).
The total population size remained constant with
N=1000, which was achieved by an unequal number
of males and females. We obtained the estimatesbEE (hn)=0�19, bEE (hn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
)=0�087, bcc=0�28, andbppk=0�71 of the segregating alleles had an MAF larger

than k=0.01. We also obtained estimates for the LD
from the simulated population resulting in bDD1, 1, 1

LD =
2�4r10x5 and bDD2, 0, 0

LD =1�3r10x4. These values are
used in the examples. They are needed to apply the
formulae that were derived in the previous section.
For a population in mutation–selection equilibrium
a more extreme L- or U-shaped distribution may
be expected. The shape of this distribution would
affect these parameters, but not the validity of the
formulae.

(iv) Dependency between additive effect and
dominance coefficient

The formulae that are derived could be applied by
assuming r1=r2=r2,1=0 which holds if additive effect
and dominance coefficient are independent. However,
the literature suggests that they are not independent.
Therefore, we consider different possibilities to model
dependent effects and for these scenarios we give
estimates for the scale invariant parameters cv, r1, r2,
r2,1, l and K. In all scenarios, |an| and dn are positively
correlated.

Because of the scale invariance of all relevant
parameters, the distributions of akn and dn need to be
specified only up to constant factors that will be esti-
mated in the next sections. That is, we only need to
specify the joint distribution of random variables
ãn, d̃n. These are multiplied by constant factors to
obtain akn and dn. The parameters cv, r1, r2, r2,1, l and
K for (an, dn) are exactly the same as for (ãn, d̃n). In
scenarios (1), (3) and (4), mean and standard devi-
ation of d̃n were chosen as 0.2 and 0.3, as suggested by
Bennewitz & Meuwissen (2010).

Scenario (1) assumes that dn and akn are indepen-
dent with

~ddn � N (0�2, 0�32) and ~aan � L(0, 1),

where L(0, 1) denotes the Laplace distribution with
mean 0 and variance 1.

In all other scenarios there is a lack of segregating
additive alleles with large effect. This could arise in
real populations because these alleles have been fixed
due to selection or because of a hyperbolic relation-
ship between enzyme activity and flux (Kacser &
Burns, 1981).
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Scenario (2) reflects the conclusions drawn from the
analysis of enzyme networks. Genes of large effect
show directional dominance, but for genes of small
effect the dominance coefficient is close to 0. That is,

~aan � L(0, 1) and ~ddnj~aan � N ~aa2
n

1+~aa2
n

, 0�01j~aanj
� �

:

Scenario (3) reflects the results reported by
Caballero & Keightley (1994), i.e. alleles with large
effect tend to be partially recessive or even over-
dominant and the heterozygous effect is above the
average effect of the two homozygotes. But alleles of
small effect show highly variable dominance coeffi-
cients. More precisely,

~ddn � N (0�2, 0�32) and ~aanj~ddn � N (0, exp(3~ddn)):

Scenario (4) is similar to scenario (3), but for alleles
with large effect, the heterozygous effect could also be

below the average effect of the two homozygotes. This
may be more suitable for traits where mutant alleles
with large effect could also be recessive and advan-
tageous. We have

~ddn � N (0�2, 0�32) and ~aanj~ddn � N (0, (0�5+j~ddnj)4):

Scatter plots of the distributions are shown
in Fig. 1. This figure was fitted for the trait PL in
Holstein cattle (see Examples section). Table 2 shows
the parameter values for all scenarios.

(v) Contributions of different sources to variance
components

We have under assumptions (A1) and (A2)

~VVLD
D =4

(ĨxQCov(hn, dn))
2

CE (hn)
2 D2,0,0

LD : (14)
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Fig. 1. Scatter plots of the considered joint distributions of |an| and dn from Part (iv), fitted to the trait productive life (PL)
under assumption (6b), so the signs of the additive effects are such that the alleles contribute little to the additive variance.
(1) Absolute additive effect and dominance coefficient are independent. (2) Alleles with large effect show directional
dominance, but alleles of small effect are additive. (3) Alleles with small effects show highly variable dominance
coefficients, but for alleles with large effects, heterozygous effect is above the average effect of the two homozygotes.
(4) Alleles with small effects show highly variable dominance coefficients, but alleles with large effect are incomplete
recessive or dominant.
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Unfortunately, the covariance is unknown, so this
equation cannot be used directly to estimate the con-
tribution of linkage disequilibrium to the dominance
variance. But it shows that if falsely Cov(hn, dn)=0 is
assumed, although alleles with intermediate fre-
quencies tend to have larger dominance effects (i.e.
Cov(hn, dn)>0 due to overdominance) then ṼD

LD

would become overestimated. Similarly, we obtain
under (A1)–(A3) that

~VVLD
A =2

(~IIxQCov(hn, dn))
2

CE (hn)
2 D1, 1, 1

LD : (15)

Again we have to assume that Cov(hn, dn)=0 for be-
ing able to evaluate this formula. Then the contribu-
tions of dominance effects of linked loci to the
additive and dominance variance depend only on the
squared inbreeding depression, which can be esti-
mated, but not directly on the unknown number of
QTLs.

Since ṼD can be estimated from the population and
ṼD
LD can be estimated with eqn (14), the contribution

of single loci to the dominance variance can be ob-
tained from

~VVd
D= ~VVDx ~VVLD

D :

This contribution would become underestimated if
falsely Cov(hn, dn)=0 is assumed in (14) although
Cov(hn, dn)>0. If additionally hn and dn are indepen-
dent (A4), then the contribution of dominance effects
of single loci to the additive variance can be obtained
from

~VVd
A=

2c

1xc
~VVd
D: (16)

Under (A6a) we have

~VVad
A =0,

whereas under (A6b) we have

~VVad
A =x( ~VVAx ~VVd

Ax ~VVLD
A )

r
2E (jdnj)(1+r2,1)E (hn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
)

E (hn)x2E (jdnj)(1+r2,1)E (hn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
)

: (17)

The latter formula depends, however, on E(|dn|) and
r2,1. The contribution of additive effects of single loci
to the additive variance can then be obtained from

~VVa
A= ~VVAx ~VVd

Ax ~VVLD
A x ~VVad

A

In summary, these formulae enable to estimate the
contributions of different sources to the additive and
dominance variance under (A1)–(A6a).

(vi) Lower bounds for the number of QTLs

In this section, we derive lower bounds for the
expected number of QTLs. We obtain from eqns (5)
and (6)

~II 2

~VVDx ~VVLD
D

=
Q2E hndnð Þ2

QE h2
nd

2
n

� � =Q
E hndnð Þ2

E h2
nd

2
n

� � :
Thus,

Q=
~II 2

~VVDx ~VVLD
D

E h2
nd

2
n

� �
E hndnð Þ2

o
~II 2

~VVDx ~VVLD
D

o
~II 2

~VVD

: (18)

Note that the proof only used (A1) and ṼD
LDo0, so

the bounds hold regardless of how intense the selec-
tion is and how deleterious new mutations tend to be.
Under (A1)–(A4) the contribution of linkage dis-
equilibrium ṼD

LD can be estimated as described in the
previous part if dominance variance and inbreeding
depression have been estimated for the population.
Note that these bounds depend neither on the distri-
bution of the additive effects nor on the correlation
between |an| and dn. However, they can be further
improved under (A1)–(A4). Since

E h2
nd

2
n

� �
E hndnð Þ2

=
1xc

2E (hn)

(1+r2)

l2(1+r1)
2

m2
D+s2

D

m2
D

(19)

and

m2
D+s2

D

m2
D

o1+r21
l2

1xl2 , (20)

we have

Qo
~II 2

~VVDx ~VVLD
D

1xc

2E (hn)

1+r21l
2=(1xl2)

l2(1+r1)
2 (1+r2):

(21)

The factor (1+r2) on the right-hand side is typically
larger than 1 (see Table 2). Moreover, we have

1xc

2E (hn)
=

E h2
n

� �
E hnð Þ2

o1

and

1+r21l
2=(1xl2)

l2(1+r1)
2 o1: (22)

Table 2. Characteristics of the considered joint
distributions of |an| and dn that are described in
Part (iv)

Parameter

Scenario

1 2 3 4

cv 1.50 1.00 1.50 1.50
r1 0.00 0.90 0.68 0.60
r2 0.00 2.55 1.40 1.75
r2,1 0.00 1.47 0.67 0.86
l 0.71 0.71 0.72 0.69
K 1.45 1.02 1.45 1.45
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Thus, if any of these factors is unknown, then it can
be skipped in eqn (21) and the inequality still holds. In
particular, we have

Qo
~II 2

~VVDx ~VV
LD

D

1xc

2E (hn)
: (23)

(vii) The role of overdominance

Using (A1)–(A5) we obtain

~VVd
D (8) QE (hn)(m

2
D+s2

D)
1xc

2

(9) QE (hn)s
2
A0 (m

2
D+s2

D)(1+r2)
1xc

2

(10) ~VVa
A (m

2
D+s2

D)(1+r2)
1xc

2
:

Thus,

E(d2
n)=m2

D+s2
D=

1

1+r2

~VVd
D

~VVa
A

2

1xc
: (24)

That is, the second moment of the dominance
coefficients depends only on the ratio Ṽd

D/Ṽ
a
A that can

be estimated under (A1)–(A6a), but not on the un-
known number of QTLs.

A lower bound for the probability of an allele to be
under- or overdominant can be derived if the domi-
nance coefficient is normally distributed and the ratio
of dominance variance to additive variance is suf-
ficient large. If Ṽd

D/Ṽ
a
A>dmax=(1+r2)(1xc)/2, then

eqn (24) shows that mD
2 +sD

2 o1. But then P(|dn|>1) is
minimized if mD=0 and sD=1. It follows that

P(jdnj>1)o1x
1ffiffiffiffiffiffi
2p

p
Z 1

x1
ext2=2 dt=0�317,

if
~VVd
D

~VVa
A

>dmax:

(25)

Such a large probability appears to be unrealistic
in real populations for almost any trait, see for ex-
ample Charlesworth et al. (2009). Possible reasons
for Ṽd

D/Ṽ
a
A>dmax to occur are the violation of one of

the assumptions (A1)–(A6) or a wrong value for r2. If
E (dn

2)>1 is obtained under (A6a), then (A6b) should
be used instead. That is, Ṽad

A and Ṽa
A should be cal-

culated again using eqn (17) with some realistic values
for E (|dn|) and r2,1.

(viii) Upper bounds for the number of large QTLs

The contribution Ṽa
A of additive effects of single loci

to the additive variance is what remains if the con-
tributions of all other factors are subtracted from the
additive variance. On the other hand, we have
Ṽa
A=s2

AkQE (hn). Unfortunately, this equation cannot

be used directly to estimate the number of QTLs as
s2
Ak is unknown. But for many traits the number of

large QTLs which are the QTLs whose absolute ad-
ditive effect |an| exceeds a given threshold value s and
whose MAF is larger than (say) k=0.01 is known
from QTL mapping studies and could be used to es-
timate the expected number of large QTLs

~nn=E (#{n:janj>s, pn 2 I}),

where I=(0.01, 0.99). Since Ṽa
A=s2

AkQE (hn) we obtain

~nn=2pkQF xv
ffiffiffiffi
Q

p� �
, (26)

where F is the distribution function of akn/sAk, and

v=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(hn)= ~VV

a
A

q
. If a particular distribution function F

(e.g. the normal distribution or the Laplace distri-
bution) is assumed for the standardized additive ef-
fects and an estimate of ñ is given, then eqn (26) can be
solved for the number Q of QTLs. Unfortunately,
estimates for ñ obtained from real data are often ra-
ther poor and F is also not known with certainty. But
eqn (26) can also be used to derive upper bounds for
ñ. For a given distribution function F of the standar-
dized additive effects an upper bound for the expected
number of large QTLs is (see eqn (26))

~nnf max
QoQmin

2pkQF (xv
ffiffiffiffi
Q

p
),

where Qmin is a lower bound for the number of QTLs.
From eqn (26) it follows with the Tschebyscheff
inequality that ñfpk/v

2. The proof is similar to the
proof of eqn (27). This bound for the expected num-
ber of large QTLs depends neither on the total num-
ber of QTLs and the distribution of the QTL effects
nor on the correlation between |an| and dn. The
Vysochanskij–Petunin inequality refines the
Tschebyscheff inequality for unimodal distributions.
That is, if Q>8/(3v2) and an unimodal distribution is
assumed for the additive effects, then the
Vysochanskij–Petunin inequality gives the better
bound

~nnf
4pk
9

~VVa
A

s2E(hn)
: (27)

The bound depends on the contribution Ṽa
A of sin-

gle additive effects to the additive variance. As shown
in section (v), this can be estimated under (A6a). The
bound holds in principle also under (A6b). However,
then Ṽa

A depends on the unknown joint distribution of
the additive effects and dominance coefficients and
could be even larger than the additive variance ṼA

since Ṽad
A is negative. In the scenarios considered so

far, the bound may increase by a factor of 3 under
(A6b), but then the QTLs with large effect are close to
dominance or recessivity, so that they contribute little
to the additive variance.
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(ix) Parameter estimation

In this section, we show how the presented equations
can be used, e.g. to design a simulation experiment for
the assessment of genome-wide evaluations of quan-
titative traits in outbred populations. Estimates for
ṼA, ṼD and ~II must be available. The goal is to esti-
mate mD, sD

2 , sAk
2 , Q and the contributions of the dif-

ferent sources to the additive and dominance variance
by the formulae such that the simulated populations
have on average the desired additive variance, domi-
nance variance and inbreeding depression. The pro-
cedure is as follows:

’ Estimate the parameters pk, E(hn), c and E(hn rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
) that depend on the distribution of allele

frequencies and the parameters DLD
2,0,0 and DLD

1,1,1 that
describe the effect of linkage disequilibrium. This is
demonstrated in section (iii). Ensure that the simu-
lation reproduces these values on average.

’ Then ṼD
LD, ṼA

LD, ṼD
d and ṼA

d can be calculated as
described in section (v).

’ A joint distribution for the scaled additive effects
and the scaled dominance coefficients must be pos-
tulated. For this distribution, the parameters cv, r1,
r2, r2,1, l and K are to be calculated. Alternatively,
the values from Table 2 can be used (see section
(iv)) for the proposed joint distributions.

’ The expected number of QTLs can then be calcu-
lated as

Q=
~II 2

~VVDx ~VVLD
D

1xc

2E(hn)

(1+r2)

l2(1+r1)
2 (1+c2v): (28)

’ We have

mD=t
ffiffiffi
a

p
under (A6a),

mD=t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a+ abð Þ2

q
xab under (A6b),

(29)

and sD=mD cv, where

a=
1

1+c2v

1

1+r2

~VVd
D

~VVAx ~VVd
Ax ~VVLD

A

2

1xc
,

b=
K (1+r2, 1)E (hn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1x2hn

p
)

E (hn)
:

’ Under (A6a) we have ṼA
ad=0 and under (A6b), ṼA

ad

can be obtained from eqn (17) since E (|dn|)=mDK.
’ ṼA

a=ṼAxṼA
dxṼA

adxṼA
LD and sAk

2 =ṼA
a /QE (hn).

3. Examples

In this section we use published data for the appli-
cation of the derived equations. Van Tassell et al.
(2000) estimated fractions of variance accounted for
by additive variance (h2) and dominance variance (d2)
as well as inbreeding depression (I ) for milk yield, PL

and other traits from Holstein data. The estimates are
given in Table 3. They are based on milk records and
PL records of more than 730 000 cows. Data were
selected to maximize the number of full sibs in the
analysis. Variance components were estimated by
Method R. Properties of this method were examined
by Duangjinda et al. (2001). Unfortunately, the
phenotypic variances were not reported. Therefore,
literature estimates were used which areVp=12162 for
preadjusted 305-day milk yield during the first lac-
tation (Miglior et al., 1995) and Vp=13.12 for total
month in milk by 84 months of age (Van Raden et al.,
1993).

Clearly, the conclusions drawn in this section may
hold only if these parameters have been estimated
with sufficient precision and if the model assumptions
hold. The precision of the estimates may be not very
high for two reasons. At first, we cannot rule out the
possibility of a bias due to confounding factors, and
secondly, the variance components were estimated
and not their expectations in the sense of this paper.
But the variance components are close to their ex-
pectations if the number of QTLs is sufficiently large
and therefore, the estimates should give realistic va-
lues to deal with.

We obtained the bounds shown in Table 4, where
Q̃=pkQ with pk=0.71 is the expected number of
QTLs with MAF>0.01. We expect at least 187 QTLs
for milk and 84 QTLs for PL (obtained from eqn
(23)).

We chose the threshold values for a QTL to be large
as s=200 kg for milk yield and s=2 months for PL.
More than 18�9 large QTLs for milk can be excluded
if a unimodal distribution of the additive effects is
assumed. Furthermore, if ñ is assumed to be larger
than 9�6, then neither a normal distribution nor a
Laplace distribution of the QTL effects is possible. If
a normal distribution is assumed for the additive ef-
fects for PL then the expected number of large QTLs
is 0.7 at most. These bounds have been derived under
(A6a).

Figure 1 shows scatter plots of the joint distribu-
tions of additive effects and dominance coefficients
that were fitted to PL under assumption (6b).

Table 3. Estimates for milk yield and PL in
Holstein cattle from literature

Milk yield PL

h2 0.342 0.118
d2 0.053 0.057
d2/h2 0.15 0.48
I 3170 kg 24.2 months

Vp 12162 13.12

VA 7112 4.52

VD 2802 3.12
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The shape of the distributions were given in advance
for each scenario. Only the scales were adjusted. It
can be seen in the most realistic Scenarios (2)–(4)
that QTLs with large additive effect are close to re-
cessivity or dominance, so that they contribute little to
the additive variance. Druet et al. (2001) support the
hypothesis that large additive QTLs for PL are absent
since the fertility, which determines length of PL, has
a heritability of only 1%. The QTL on the right-hand
side of the vertical lines in Fig. 1 are those whose
absolute additive effect exceeds s=2 months.

Table 5 shows the parameter estimates for all sce-
narios for milk yield and PL. For scenarios (2)–(4),
the estimated number of QTLs was between 736 and
1359 and the expected number of large QTLs was
about 5.3–8.8. For PL, the estimated number of QTLs
was between 332 and 612 and the expected number of
large QTLs was about 3.1–5.3. The table also shows
for the different sources their estimated contribution
to the expected genotypic variance ṼG=ṼA+ṼD. It
can be seen that the genotypic variance is affected
only little by linkage disequilibrium. Moreover, we
have in all scenarios ṼA

d+ṼA
ad+ṼA

LD<0, so domi-
nance effects diminish rather than increase the addi-
tive variance.

Equation (28) suggests that the number of QTLs
depends heavily on the coefficient of variation of the
dominance coefficient cv. In scenarios (1), (3) and (4),
this coefficient was equal to 1.5 as it was suggested by
Bennewitz & Meuwissen (2010). However, the true
value may be different for some traits. In order to see
how the parameter values depend on cv we calculated
them also for other values. Results are shown in Figs 2
and 3 for PL (left) and milk yield (right). The dotted
line shows the results obtained under assumption (6a)
for independent Laplace distributed additive effects
and normally distributed dominance coefficients. The
dashed line shows the results obtained under

assumption (6a) for dependent additive effects and
dominance coefficients. Here, d̃nyN (0.2, (0.2cv)

2) was
used and ãn was defined as in scenario (3). This choice
results for large cv in a more heavy tailed distribution
of akn. The solid line shows the results obtained under
assumption (6b) for the same joint distribution of
additive effects and dominance coefficients.

It can be seen that under (A6b) with dependent
effects (solid lines) the smallest mean and standard
deviation of the dominance coefficients and therefore
the smallest fraction of overdominant alleles was ob-
tained. It also provided the highest number of large
QTLs. The number of QTLs depends heavily on
the coefficient of variation, i.e. if cv is small then mD
and sAk are small as well, so inbreeding depression
must be caused by many genes. The number of large
QTLs changes only little although the total number
of QTLs strongly increases for increasing cv which is
due to the more heavy tailed distribution of akn for
large cv.

4. Discussion

Novel methods to estimate the number of QTLs and
to quantify the importance of linkage disequilibrium

Table 4 Estimated parameters for Milk yield and PL

Milk yield scenario PL scenario

1 2 3 4 1 2 3 4

Q̃ 1216 736 998 1359 548 332 450 612
mD 0.293 0.190 0.186 0.172 0.480 0.301 0.299 0.274
sD 0.439 0.191 0.278 0.257 0.720 0.302 0.449 0.411
E(dn

2) 0.279 0.073 0.112 0.096 0.749 0.182 0.291 0.244
sAk 47.7 63.9 53.7 46.5 0.494 0.684 0.565 0.494
ñ 3.3 8.8 5.5 5.3 1.8 5.3 3.1 3.1

ṼA
a /ṼG 1.252 1.354 1.300 1.327 1.171 1.361 1.26 1.309

ṼA
ad/ṼG x0.485 x0.587 x0.533 x0.560 x0.743 x0.933 x0.832 x0.881

ṼA
d /ṼG 0.098 0.098 0.098 0.098 0.245 0.245 0.245 0.245

ṼA
LD/ṼG 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ṼD
LD/ṼG 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010

ṼD
d /ṼG 0.126 0.126 0.126 0.126 0.316 0.316 0.316 0.316

Table 5 Bounds for the parameters under
different assumptions

Milk yield PL Assumption

ñf 18.9 5.4 (6a) Unimodal distribution
of additive effects

ñf 9.6 2.0 (6a) Laplace distribution
of additive effect

ñf 6.7 0.7 (6a) Normal distribution
of additive effects

Q̃o 187 84
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on the additive and dominance variance have been
derived. It is demonstrated how parameters of the
distribution of the QTLs effects can be estimated if
estimates for the variance components and inbreeding
depression are available. In the following, several as-
pects of the approach are critically discussed.

(i) Bounds for the number of QTLs

Lower bounds for the expected number of QTLs have
been derived. The bound given by eqn (18) equals the
ratio of squared inbreeding depression to dominance
variance. It could be derived under weak assump-
tions, but may be poor if the trait shows little direc-
tional dominance. The bound could be improved if
dominance effects and heterozygosity are independent

(see eqn (21)). This equation gives the largest bound,
but the calculation requires knowledge on the distri-
bution of the additive effects and on the dependency
between additive effects and dominance coefficients.
This is not needed to calculate the bound given in eqn
(23). Since this bound holds even if cv=0 although, we
are likely to have cv>0, the bound is rather con-
servative. Larger bounds could be derived under more
stringent assumptions. There could be less QTLs in
a population, but the average number of QTLs
(averaged over many populations with the same
characteristics) would not fall below the bound.

This novel method to estimate the number of
QTLs affecting a trait gives a higher number than es-
timates obtained from the QTL mapping experiments
mentioned in the Introduction section. The reason
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Fig. 2. Different parameters for PL and milk yield as a function of the coefficient of variation of the dominance
coefficient : (a) expectation of the dominance coefficient, (b) standard deviation of the dominance coefficient and
(c) standard deviation of the additive effects.
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is that inbreeding depression must be due to a suf-
ficient number of QTLs, because otherwise it would
cause more than the true dominance variance of
the trait. Therefore, our estimates are larger than the
estimates of other authors who neglected dominance
and could not well account for QTLs with small ef-
fects. This supports the hypothesis of a large number
of genes affecting a quantitative trait. An upper bound
for the expected number of large QTLs is also derived.

(ii) Shape of the distribution

A critical issue is the shape of the distribution of
the additive effects. It is demonstrated that the
distribution of QTL effects must be heavy tailed if
many QTLs with large effect are expected to segregate
in a population, provided that the trait is affected
by directional dominance. This means that a distri-
bution function for standardized additive effects is
admissible, only if eqn (26) can be solved for Q under
side condition (21).

(iii) Quality of the estimates

Parameter estimates and bounds for the number of
QTLs that are obtained as described above may be
imprecise for several reasons. The estimation of

dominance variance requires large amounts of data
with a high proportion of full sibs. For equivalent
accuracy, the estimation of dominance variance re-
quires at least 20 times as much data than the esti-
mation of additive variance (Misztal, 1997). In
particular, estimates of the ratio of squared inbreed-
ing depression to dominance variance, which de-
termines the bound for the number of QTLs, may be
poor for traits where both of them are small.
Dominance variance is difficult to estimate as it
could be confounded e.g. by maternal effects, en-
vironmental covariance of fullsibs and variation in
relationship. We cannot rule out the possibility that
the dominance variance has been overestimated, but
see Duangjinda et al. (2001). Moreover, our approach
treats the population as a random realization.
Realized additive variance, dominance variance and
inbreeding depression deviate by chance from their
expectations.

(iv) Assumptions that may be violated in the presence
of selection

Our model could account for effects of selection on
the distribution of allele frequencies and on the de-
pendency between an and dn, but it could not account
for some other effects such as a dependency between
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Fig. 3. Different parameters for PL and milk yield as a function of the coefficient of variation of the dominance
coefficient : (a) Number of QTLs, (b) number of large QTLs.
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the dominance effects and the heterozygosity. Since
overdominant alleles likely have intermediate fre-
quencies because of selection, they contribute more
to dominance variance, so a smaller proportion of
overdominant alleles would be sufficient to explain a
large dominance variance in a long-term selected
population. Independence of an and Dn,m, which was
assumed to calculate ṼA

LD, may not hold in the pres-
ence of selection because then allelic effects and allele
frequencies are dependent and allele frequencies affect
Dn,m. This was neglected in the present study. In the
examples we used estimates for LD and for para-
meters of the distribution of allele frequencies that
were obtained for neutral alleles although the traits
under examination are not neutral. Further research
is needed in order to generalize the model or to find
out how robust our results are when the assumptions
that have been made are violated.

(v) The role of overdominance

We showed that the second moment of the dominance
coefficient is determined by the ratio of dominance
variance due to single dominance effects ṼD

d to the
additive variance due to single additive effects ṼA

a , but
does not depend on the number of QTLs. If the se-
cond moment is larger than one, then the probability
of an allele to be overdominant becomes large (see eqn
(25)). This may occur in computer simulations when
populations are simulated without selection (accord-
ing to assumption (A6a)) and the trait shows much
dominance variance. But it is unlikely to occur in real
populations. A large second moment does not occur
if additive effects and dominance coefficients are de-
pendent (r2>>0) and an and (qnxpn) dn have opposite
signs (A6b). Frankham (2009) argued that in long-
term artificially selected populations the proportion
of variation due to overdominant alleles is likely
much higher than in wild populations at equilibrium.
Overdominance of an allele that affects PL could arise
as follows: an individual has a long PL if it is good
enough for a large number of traits. Consider a plei-
otropic gene with alleles a and A. The allele a im-
proves one trait (e.g. mastitis resistance) but reduces
another trait (e.g. milking speed). Suppose that one a-
allele is sufficient to prevent the individual from being
culled because of the first trait. But two a-alleles de-
crease the second trait so much that the individual
would likely be culled because of the second trait. In
this hypothetical example, genotype AA would be
culled early because of little mastitis resistance and
genotype aa would be culled early because of slow
milking speed. Only genotype Aa is likely to survive
several lactations. Thus, the gene would be over-
dominant for PL. This is called antagonistic pleio-
tropy. The concept of antagonistic pleiotropy was
popularized by Rose (1982) and critically analysed by

Curtsinger (1994) and Hedrick (1999). Curtsinger ar-
gued that when many loci are involved, the conditions
for intermediate equilibrium frequencies are difficult
to satisfy. But he did not take into account that the
number of affected fitness components likely also in-
creases when the number of loci increases that affect
total fitness. He also ignored the recurrent introduc-
tion of new alleles by mutations. Our approach also
could not clarify how important overdominance for
PL is, since some scenarios yielded a non-negligible
portion of overdominant alleles, whereas others did
not. However, the most reliable scenarios yielded little
overdominance.

(vi) Conclusion

In conclusion, formulae are developed that can be
used to obtain estimates for the number and distri-
bution of QTL effects. The examples demonstrated
the need to estimate them for each trait separately.
Our method needs estimates of dominance variance
and inbreeding depression. But if reliable estimates
are available, then estimates for the number and dis-
tribution of QTL effects can be obtained that are very
helpful in the choice of the appropriate method for
the prediction of genomic breeding values, even
though the dependency between marker effects and
QTL effects needs clarification. Additionally they can
be used as input parameters for stochastic simulations
that mimic the real situation closely.
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