Volume 22, Number 2 Nicroscopy and Microanalysis

CAMBRIDGE UNIVERSITY PRESS ISSN 1431-9276

EMS has it!

FlipScribe[™]

Scribing and Cleaving Solution

Benefits

- Enables accurate cleaving through frontside targets with a scribe made on the backside of the substrate
- Scribe does not damage the frontside of the sample
- Accuracy of scribe ±200 µm (achievable)
- Flexible with respect to sample size and shape
- Capable of scribing bonded crystalline and amorphous wafers and chips for subsequent cleaving
- No maintenance required

Features

- Accurate positioning of the scribe relative to features on the front side (the front side being observed either by eye or with a stereoscope).
- The length of the scribe can be varied from 1 mm to 100 mm
- Prealigned diamond scribe in user replaceable cartridge; height and angle adjustable
- Ruler embedded in platform enables precise and repeatable sample alignment and sizing
- The tool is purely mechanical; no power required

 $\label{eq:semiconductor} Semiconductor \ sample \ after \ scribing \ and \ cleaving$

Electron Microscopy Sciences

scribing reinvented...

FlipScribe™

FlipScribe[™] is a compact, stable, accurate, fast and low cost scribing and cleaving solution suitable for any lab; no utilities required. It provides a more accurate method for scribing than can be achieved with hand held tools, by integrating a robust diamond scribe into a sample platform with a fence guide design. Time required to align and scribe is about a minute.

FlipScribe takes scribing to a new performance level, making clean, straight scribe lines on the back side to accurately cleave front side targets, bonded wafers and other substrates. This method eliminates contamination of sensitive front side devices during the scribing processes and is valuable for both crystalline and amorphous samples.

FlipScribe[™] Scribing and Cleaving Solution (continued)

FlipScribe has a small footprint, allowing it to be placed on any work surface.

straight-line scribe on curved part of wafer

cleaved wafer

CONTACT US FOR MORE INFORMATION...

Electron Microscopy Sciences

P.O. Box 550 • 1560 Industry Rd. Hatfield, Pa 19440 Tel: (215) 412-8400 Fax: (215) 412-8450 email: sgkcck@aol.com or stacie@ems-secure.com

www.emsdiasum.com

Specifications

Cleaving Accuracy	± 200 μm
Cleaving Cycle Time	1-2 minutes
Minimum Sample Size	3/8" /9.5 mm (L) × ¼"/6.3 mm (W) × .01"/300 μm (H)
Maximum Sample Size	Wafer: 4" (100 mm); ¼ of 12" (300 mm)
	Non-Wafer: 3/8"/ 9.5 mm (L) \times 1/4"/6.3 mm (W) \times .01"/300 μm (H)

Length: 7.4" (19 cm)

Configuration

Rail and Guide System	Maintains sample orthogonality and method to push the sample when scribing.	
Sample Platform	7" (178 mm) \times 6" (152 mm); ruled to facilitate sample sizing	
Scribe Stop	Sets the length of the scribe; continuously variable >1 mm - 4" (102 mm)	
Diamond Scribe	Pre-installed diamond scriber with an eight (8) point diamond tip tool and 4 facets at 45° angle.	

Installation Requirements

Flat work surface
No power required
Stereo microscope with parfocal zoom recommended
No assembly required
· ·

Options

 LatticeAx™ (LGAX-420LG)

 LatticeAx cleaving machine for analysis-ready samples with accuracy to ±10 microns

 Small Sample Cleaver (MC-SSC-100)

 Cleaver for small samples, includes sample holders and cleaving apparatus

 Wafer Cleaving Kit (WCSK-102LG)

 Wafer cleaving kit including pliers and scribers

Ordering I	nformation	
Cat. No.	Description	Qty
7670	FlipScribe™ 100	each

https://doi.org/10.1017/S1431927616000660 Published online by Cambridge University Press

Speeding up FIB-tomography. ZEISS Crossbeam

// INSPIRATION MADE BY ZEISS

Your FIB-SEM for high throughput nanotomography

Enjoy high productivity with an open 3D nanoworkstation. With ZEISS Crossbeam you experience an outstanding combination of imaging performance and analytical power. Process any sample on a nanoscopic scale with the next-generation FIB. **www.zeiss.com/crossbeam**

Microscopy and Microanalysis

An International Journal for the Biological and Physical Sciences

THE OFFICIAL JOURNAL OF	MICROSCOPY SOCIETY OF AMER MICROANALYSIS SOCIETY MICROSCOPICAL SOCIETY OF CA SOCIÉTÉ DE MICROSCOPIE DU MEXICAN MICROSCOPY SOCIETY BRAZILIAN SOCIETY FOR MICRO VENEZUELAN SOCIETY OF ELECT EUROPEAN MICROBEAM ANALYS AUSTRALIAN MICROSCOPY AND PORTUGUESE SOCIETY FOR MICI	ICA ANADA / CANADA Y SCOPY AND MICROANALYSIS FRON MICROSCOPY SIS SOCIETY MICROANALYSIS SOCIETY ROSCOPY
PUBLISHED IN AFFILIATION WITH	ROYAL MICROSCOPICAL SOCIET GERMAN SOCIETY FOR ELECTRO BELGIAN SOCIETY FOR MICROSC MICROSCOPY SOCIETY OF SOUT	Y N MICROSCOPY COPY HERN AFRICA
Editor in Chief Editor, Biological Applications Robert L. Price Cell and Developmental Biology and Anatomy University of South Carolina Columbia SC 29209	Editor, Biological Applications William A. Russin Biological Imaging Facility Department of Neurobiology Northwestern University Evanston, IL 60208 e-mail: w-russin@northwestern.edu	Special Issues and Reviews Editor Jay Jerome Vanderbilt University Medical Center Nashville, TN 37232 e-mail: jay.jerome@vanderbilt.edu
e-mail: Bob.Price@uscmed.sc.edu Editor, Materials Applications Grace Burke School of Materials	Editor, Biological Applications Heide Schatten Veterinary Pathobiology University of Missouri-Columbia	Cynthia S. Goldsmith Centers for Disease Control Atlanta, GA 30333 e-mail: csg1@cdc.gov
The University of Manchester Manchester, UK e-mail: m.g.burke@manchester.ac.uk	Columbia, Missouri 65211-5030 e-mail: schattenh@missouri.edu	<i>M&M Program Guide</i> Editor Richard E. Edelmann Miami University
Editor, Scanning Probe Microscopies	Editor, Microanalysis John Mansfield Electron Microbeam Analysis Lab	Oxford, OH 45056 e-mail: edelmare@muohio.edu
Andrew Magyar Center for Nanoscale Systems Harvard University Cambridge, MA 02138 e-mail: amagyar@cns.fas.harvard.edu	North Campus, 417 SRB University of Michigan Ann Arbor, MI 48109-2143 e-mail: jfmjfm@umich.edu Editor, Correlative and Emerging	Proceedings Editor Gail Celio University of Minnesota St. Paul, MN 55108 e-mail: celio001@umn.edu
Editor, Atom Probe Tomography Brian P. Gorman Metallurgical and Materials Engineering Colorado Center for Advanced Ceramics Colorado School of Mines Golden, CO 80401 Email: bgorman@mines.edu	Microscopy Applications Vinayak P. Dravid Materials Science and Engineering Northwestern University Evanston, Illinois 60208-3105 e-mail: v-dravid@northwestern.edu	Administrative Editor John Shields University of Georgia Athens, GA 30602 e-mail: jpshield@uga.edu
	Editor, Plant Biology Applications Rosemary White CSIRO Plant Industry Conherra ACT 2601 Australia	

e-mail: rosemary.white@csiro.au

© MICROSCOPY SOCIETY OF AMERICA 2015

Editorial Board

Ralph Albrecht University of Wisconsin, Madison, Wisconsin Ilke Arslan Pacific Northwest Laboratory, Richland, Washington Barry Carter University of Connecticut, Storrs, Connecticut Wah Chiu Baylor College of Medicine, Houston, Texas Niels de Jonge INM Institute for New Materials, Saarbrücken, Germany Alberto Diaspro University of Genoa, Italy Elizabeth Dickey North Carolina State University, Raleigh University of California at San Diego, San Diego, California Mark Ellisman Pratibha Gai University of York, United Kingdom University of Wisconsin-Milwaukee, Milwaukee, Wisconsin Marija Gajdardziska-Josifovska Dale Johnson University of South Florida, Tampa, Florida Paul Kotula Sandia National Labs, Albuquerque, New Mexico William Landis University of Akron, Akron, Ohio Eric Lifshin SUNY at Albany, Albany, New York Charles Lyman Lehigh University, Bethlehem, Pennsylvania National Institute of Standards and Technology, Gaithersburg, Maryland Dale Newbury Jean-Paul Revel California Institute of Technology, Pasadena, California David Smith Arizona State University, Tempe, Arizona Nan Yao Princeton University, Princeton, New Jersey Nestor Zaluzec Argonne National Laboratory, Argonne, Illinois

Editorial Board Representatives from Affiliated Societies

Masashi Watanabe	Lehigh University (MAS)
Gautam Kumar Dey	Bhabha Atomic Research Centre (EMSI)
Gema Gonzalez	Venezuelan Institute for Scientific Investigation (Venezuela)
Michael Robertson	Acadia University, Wolfville, Nova Scotia (Canada)
Brendan Griffin	University of Western Australia (AMMS)
Guillermo Solorzano	Pontificia Universidade Catolica, Rio de Janeiro (Brazil)
Mike Matthews	Atomic Weapons Establishment, Reading, Great Britain (EMAS)
Miguel Yacaman	Mexico Institute for Nuclear Research (Mexico)
Henrique Almeida	Universidade do Porto (Portugal)

Founding Editor

Jean-Paul Revel California Institute of Technology, Pasadena, California

Previous Editors-in-Chief

Dale Johnson	University of South Florida, Tampa, Florida
Charles Lyman	Lehigh University, Bethlehem, Pennsylvania

This journal is part of the **Cambridge Journals Online** service. Access to online tables of contents and article abstracts is available to all researchers at no cost. Access to full-text articles online is provided to those with online subscription. Online subscriptions must be activated. Once your subscription is activated, free access to past, present, and forthcoming articles is available at:

Microscopy and Microanalysis website: journals.cambridge.org/MAM.

Instructions for authors submitting manuscripts may be found at journals.cambridge.org/MAM. Select "Further Information" then select "Instructions for Contributors." An abbreviated version of these instructions will be published in the first issue (February) of each volume.

1 TO 50 MEGAPIXELS live and slow scan MAGNIFICATION FACTOR OF 1 on bottom mounted cameras DIFFRACTION BEAM STOP on side mounted cameras

THE NEW DESK V THE GOLD STANDARD IN SAMPLE PREPARATION

Now upgraded with storage for up to ten recipes and a color touch screen display, the Desk V HP delivers breakthrough electron microscopy sample preparation.

BARRIERS BECOME BREAKTHROUGHS

Visit us at: www.dentonvacuum.com/mt

Microscopy AND **Microanalysis**

Microscopy and Microanalysis publishes original research papers dealing with a broad range of topics in microscopy and microanalysis. These include articles describing new techniques or instrumentation and their applications, as well as papers in which established methods of microscopy or microanalysis are applied to important problems in the fields of biology or materials science. Microscopy and microanalysis are defined here in a broad sense, and include all current and developing approaches to the imaging and analysis of microstructure. The criteria for acceptance of manuscripts are the originality and significance of the research, the quality of the microscopy or microanalysis involved, and the interest for our readership.

Four types of communications are published in the Journal. **Regular Articles** are of substantial length and describe the findings of an original research project that satisfies the aims and scope of the Journal, described above. **Review Articles** summarize the current status of an important area within the aims and scope of the Journal. **Letters to the Editor** usually contain comments on recent articles that have appeared in the Journal. **Book Reviews** are also published, but these are solicited only through the Book Review Editor.

Instructions for Contributors

Instructions for authors contributing manuscripts may be found at http://mc.manuscriptcentral.com/mam under "Resources: Instructions and Forms." Authors may also visit http://www.journals.cambridge. org/jid_MAM, select "Further Information," and then select "Instructions for Contributors." An abbreviated version of these instructions will be published in the first issue (February) of each volume.

Copyright Information

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the Microscopy Society of America; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; and that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names lack protection by the relevant laws and regulation.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cambridge University Press, provided that the appropriate fee is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA (Tel: (508) 750-8400), stating the ISSN (1431-9276), the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

Disclaimer

The Microscopy Society of America, the other societies stated, and Cambridge University Press cannot be held responsible for errors or for any consequences arising from the use of the information contained in this journal. The appearance of scientific reports and/or workshops, or any other material in *Microscopy and Microanalysis* does not constitute an endorsement or approval by The Microscopy Society of America of the findings, data, conclusions, recommendations, procedures, results, or any other aspect of the content of such articles. The appearance of advertising in *Microscopy and Microanalysis* does not constitute an endorsement or approval by The Microscopy Society of America of the quality or value of the products advertised or any of the claims, data, conclusions, recommendations, procedures, results, or any other information included in the advertisements.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made.

Subscription Information

Microscopy and Microanalysis is published bimonthly in February, April, June, August, October, and December by Cambridge University Press. Three supplements (*Meeting Guide, Program Guide, and Proceedings*) are published in June and August.

Society Rates: Members of the Microscopy Society of America should contact the MSA Business Office for all subscription inquiries: Microscopy Society of America, Hachero Hill, Inc., 11260 Roger Bacon Drive, Suite 402, Reston, VA 20190, Tel.: (703) 964-1240, Ext. 14, E-mail: nicoleguy@mindspring.com, URL: www.msa.microscopy.org. Members of other affiliated societies should contact their respective society business offices for all subscription inquiries.

Subscription Rates: Institutions print and electronic: US \$1876.00 in the USA, Canada, and Mexico; UK £1128.00 + VAT elsewhere. Institutions online only: US \$1327.00 in the USA, Canada, and Mexico; UK £803.00 + VAT elsewhere. Individuals print plus online: US \$548.00 in the USA, Canada, and Mexico; UK £333.00 + VAT elsewhere. Prices include postage and insurance.

USA, Canada, and Mexico: Subscribers in the USA, Canada, and Mexico should send their orders, with payment in US dollars or the equivalent value in Canadian dollars, to: Cambridge University Press, Customer Services Department (Journals), 32 Avenue of the Americas, New York, NY 10013, USA. Tel: (845) 353-7500. Fax: (845) 353-4141. Orders may be phoned direct (toll free): (800) 872-7423. E-mail: journals_subscriptions@cup.org.

Outside North America: Subscribers elsewhere should send their orders, with payment in sterling, to: Customer Services Department (Journals), Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 8RU, UK. Tel: +44 (0)1223 326070. Fax: 44 (0)1223 325150. E-mail: journals@cambridge.org

Change of address: Allow six weeks for all changes to become effective. All communications should include both old and new addresses (with postal codes) and should be accompanied by a mailing label from a recent issue. Society members should contact their respective society business offices to inform them of address changes.

Editorial Office

Robert L. Price, Editor in Chief, Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garner's Ferry Road, Bldg. 1 B-60, Columbia, SC 29209, USA; Tel: (803) 216-3824; Fax: (803) 733-3212; E-mail: Bob.Price@uscmed.sc.edu.

Office of Publication

Cambridge University Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA; Tel: (212) 337-5000; Fax: (212) 337-5959.

Advertising Sales & Production

Kelly Miller, M.J. Mrvica Associates, Inc., 2 West Taunton Avenue, Berlin, NJ 08009, USA; Tel: (856) 768-9360; Fax: (856) 753-0064.

© 2016 by Microscopy Society of America. Printed in the United States on acid-free paper. Periodicals postage paid at New York, NY, and additional mailing offices. Return postage guaranteed. Postmaster: Send address changes in the U.S.A. and Canada to *Microscopy and Microanalysis*, Subscription Department, Cambridge University Press, 100 Brook Hill Drive, West Nyack, NY 10994-2133.

4 Techniques – 1 Workflow.

ESPRIT 2, the only software which combines 4 microanalysis methods.

- Comprehensive management of analysis and results from EDS, WDS, EBSD and Micro-XRF with one software
- Complementary techniques provide you the most accurate and reliable results
- Zeta factor quantification for characterization of thin layers

Someone has to be first.

www.bruker.com/esprit2

Innovation with Integrity

https://doi.org/10.1017/S1431927616000660 Published online by Cambridge University Press

A: EDS tomogram of Ag-Pt core-shell nanoparticles. Ag cores are shown in the false color of red, covered by green-colored Pt shells, only a few nanometers in thickness. Sample courtesy Prof. Yi Ding and Prof. Jun Luo, Center for Electron Microscopy, Tianjin University of Technology. B: Vehicle-aged automotive catalyst. EDS tomogram showing the distribution of Palladium particles (red) relative to other elements. C: Battery anode material. EDS tomograms of Carbon-Cobalt and Carbon-Aluminum. D: EDS tomogram of P-Zn-In nanotubes. Sample Courtesy of Dr. Reza Shahbazian Yassar, Michigan Tech University.

Automated 3D EDS with Talos

The ability to perform compositional analysis and visualize the resulting chemical maps in 3D is essential to characterize the true elemental distribution and structure of modern nanomaterials—delivering new insights into structure-function relationships.

Contact your FEI representative today to see how advanced materials characterization methods such as quantitative energy dispersive X-ray (EDS) analysis can bring new heights of discovery to your research.

Discover more at FEI.com/Talos

Microscopy and Microanalysis

An International Journal for the Biological and Physical Sciences

Volume 22 Number 2	INTRODUCTION TO SPECIAL ISSUE ON IMAGING PLANT BIOLOGY	
April 2016	Introduction to Special Issue on Imaging of Plants and Fungi Andreas Holzenburg, and Stanislav Vitha	257
	Special Issue on Imaging Plant Biology	
	Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms <i>Gábor Steinbach, and Radek Kaňa</i>	258
	Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans Zachary Schultzhaus, Laura Quintanilla, Angelyn Hilton, and Brian D. Shaw	264
	Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System Allan D. TerBush, Chris A. Porzondek, and Katherine W. Osteryoung	275
	Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy Martina Laňková, Jana Humpolíčková, Stanislav Vosolsobě, Zdeněk Cit, Jozef Lacek, Martin Čovan, Milada Čovanová, Martin Hof, and Jan Petrášek	290
	Quantitative Imaging of FRET-Based Biosensors for Cell- and Organelle-Specific Analyses in Plants	300
	Swayoma Banerjee, Luis Rene Garcia, and Wayne K. Versaw	
	B IOLOGICAL APPLICATIONS	
	Atomic Force Microscopy Study of Atherosclerosis Progression in Arterial Walls Peter S. Timashev, Svetlana L. Kotova, Galina V. Belkova, Ekaterina V. Gubar'kova, Lidia B. Timofeeva, Natalia D. Gladkova, and Anna B. Solovieva	311
	Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections	326
	Michal Franek, Jana Suchánková, Petra Sehnalová, Jana Krejčí, Soňa Legartová, Stanislav Kozubek, Josef Večeřa, Dmitry V. Sorokin, and Eva Bártová	
	Analysis of Ferrous on Ten-Eleven Translocation Activity and Epigenetic Modifica- tions of Early Mouse Embryos by Fluorescence Microscopy Ming-Hui Zhao, Shuang Liang, Jing Guo, Jeong-Woo Choi, Nam-Hyung Kim, Wen-Fa Lu, and Xiang-Shun Cui	342
20003	2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm Darren G. Haskett, David Maestas, Stephen J. Howerton, Tyler Smith, D. Catalina Ardilia, Tom Doetschman, Urs Utzinger, Dominic McGrath, J. Oliver McIntyre, and Jonathan P. Vande Geest	349
	Fluorescence-Detected Linear Dichroism of Wood Cell Walls in Juvenile Serbian Spruce: Estimation of Compression Wood Severity Aleksandar Savić, Aleksandra Mitrović, Lloyd Donaldson, Jasna Simonović Radosavljević, Jelena Bogdanović Pristov, Gabor Steinbach, Győző Garab, and Ksenija Radotić	361

On the Cover: SEM of flat erythroblastic island. For further information please see Yeo et al., pages pp. 368–378.

Microscopy and Microanalysis website: http://www.journals.cambridge.org/MAM Indexed in Chemical Abstracts, Current Contents, BIOSIS, and MEDLINE (PubMed)

Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow	368
Jia Hao Yeo, Bronwyn M. McAllan, and Stuart T. Fraser	
Foveolar Müller Cells of the Pied Flycatcher: Morphology and Distribution of Intermediate Filaments Regarding Cell Transparency Lidia Zueva, Tatiana Golubeva, Elena Korneeva, Vladimir Makarov, Igor Khmelinskii, and	379
Mikhail Inyushin	
Incipient UV-Induced Structural Changes in Neutrophil Granulocytes: Morphometric and Texture Analysis of Two-Dimensional Digital Images Ivan Grbatinić, and Nebojša T. Milošević	387
Effects of Noninhibitory Serpin Maspin on the Actin Cytoskeleton: A Quantitative Image Modeling Approach Mohammed Al-Mamun, Lorna Ravenhill, Worawut Srisukkham, Alamgir Hossain, Charles Fall, Vincent Ellis, and Rosemary Bass	394
Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses Nikola Unković, Milica Ljaljević Grbić, Miloš Stupar, Željko Savković, Aleksa Jelikić, Dragan Stanojević, and Jelena Vukojević	410
MATERIALS APPLICATIONS	
Use of the Distance Transform for Integration of Local Measurements: Principle and Application in Chemical Engineering	422
Loïc Sorbier, Frédéric Bazer-Bachi, Yannick Blouët, Maxime Moreaud, and Virginie Moizan-Basle	
Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite Ye Yang, and Jun Lin	432
X-Ray Absorption Correction for Quantitative Scanning Transmission Electron Microscopic Energy-Dispersive X-Ray Spectroscopy of Spherical Nanoparticles Thomas Slater, Yiqiang Chen, Gregory Auton, Nestor Zaluzec, and Sarah Haigh	440
Pigment Degradation in Oil Paint Induced by Indoor Climate: Comparison of Visual and Computational Backscattered Electron Images Katrien Keune, Rick P. Kramer, Zara Huijbregts, Henk L. Schellen, Marc H.L. Stappers, and	448
Margriet H. van Eikema Hommes	
Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method <i>Nimet Isik</i>	458
Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging Jean-Yves Maetz, Sophie Cazottes, Catherine Verdu, Frédéric Danoix, and Xavier Kléber	463

The All-New HF5000 200 kV Aberration-Corrected TEM/STEM/SEM

A new, innovative 200 kV TEM/STEM/SEM is soon to debut from Hitachi

Three imaging modes (TEM/STEM/SEM) integrated into one system with automated aberration correction

The soon-to-debut Hitachi HF5000 60-200 kV Aberration-Corrected TEM/STEM/SEM is designed to accommodate simultaneous acquisition of bulk and surface structures at sub-atomic resolution. The highly automated probe-forming aberration correction makes sub-Å resolution imaging readily available. The innovative design of the cold field-emission gun delivers high brightness, extended stability of the probe current, and high-energy resolution. The dual X-ray detectors provide the largest solid angle in the market for fast and high-sensitivity EDS analysis. EELS and many other options are available.

The new HF5000 is the top choice for materials science research and industrial applications.

To receive updates on the HF5000, contact us at microscopy@hitachi-hta.com.

Inspire Innovation through Collaboration

Hitachi High Technologies America, Inc.

www.hitachi-hightech.com/us

Tel. 800-253-3053

The 120kV TEM of choice.

JEOL has sold more than 2400 120kV TEMs worldwide. Our latest generation features high resolution/ high contrast imaging, outstanding S/TEM analytical capabilities, elemental mapping with the latest large area SDD detectors, cryomicroscopy, 3D tomography, and montaging. Everything you've come to like about JEOL, and then some.

Contact us for more information on this research grade, flexible TEM. Need more? We offer a full line of TEMs from 120kV – 300kV. You'll like our applications and service support, too.

www.jeolusa.com salesinfo@jeol.com • 978-535-5900

> * Courtesy of Appalachian State University ** Courtesy of the Marc Lab, University of Utah

Learn more at jeolusa.com/plus

