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Abstract

In this paper the question is considered of when the wreath product of a nilpotent group with a CLT
group G is a CLT group. It is shown that if the field with pr elements is a splitting field of a Hall
//-subgroup of G, then P wrG is a CLT group for all p-groups P with \P/P'\ > pr. Moreover, the
class of all groups G having the property that N wr G is a CLT group for every nilpotent group A' is
shown to be quite large. For example, every group of odd order can be embedded as a subgroup of a
group belonging to this class.

1980 Mathematics subject classification (Amer. Math. Soc): 20 C 05, 20 D 60, 20 E 22, 20 F 16.

A CLT group is a finite group G of order n, say, having the property that for
every divisor d of n there exists a subgroup of G having index d in G (by [5, p. 8]
it suffices to know that this condition is satisfied for all prime powers d dividing
n). It is well known (cf. [5, p. 663]) that every CLT group is soluble and that every
soluble w-group G can be embedded as a subgroup of a CLT group which is a
7r-group. Indeed, the direct product of G with a cyclic group having the same
order as G has this property [5, p. 663]. The alternating group G of degree four is
not a CLT group, but G X 2 2 is. The latter group is isomorphic to the wreath
product Z2 wrZ3.

In this paper we investigate the question: for which CLT groups G and
nilpotent groups N is the wreath product N wr G a CLT group? For example, it
was shown in [7] that if G is a CLT group and p is a prime not dividing the order
of G, then N wr G is a CLT group when N is an elementary abelian p-group of
rank equal to \G\ — 2.
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1. The results

If N is a cyclic group of prime order p, then the base group of N wrG is
G-isomorphic to the group ring ¥pG, and so representation theory plays a central
role in our investigations. The main problem comes from the fact that prime fields
very rarely are splitting fields for our groups G. We now introduce the relevant
parameter to cope with this situation.

DEFINITION. Let G be a finite soluble group and let p be any prime. Then
r(G,p) denotes the least positive integer r such that the field fpr with pr elements
is a splitting field for a Hall //-subgroup of G.

It seems to be a nontrivial problem to determine r(G, p) without knowing all
absolutely irreducible representations of G (cf. [6, p. 31]). However, there is a
criterion yielding an upper bound for r(G, p) which can easily be computed: if H
is a Hall /?'-subgroup of G, and if exp(H) = 1 mod pr, then r(G, p) divides r
[6, p. 31].

The following result provides some information about when the wreath product
of /»-group with some CLT group again is a CLT group.

THEOREM A. Let G be a CLT group and let P be a p-group for some prime p. If
\P/P'\ > pr(G'p\ then P wrGw a CLT group.

A special case of Theorem A with p \ \G\, r{G,p) = 1, and |P| = p has
appeared in [4].

Theorem A implies that for a given CLT group G and a prime p the wreath
product P wrG is a CLT group for all but finitely many abelian /^-groups.
Moreover, if r(G, p) < 2, then P wrG is a CLT group for all /?-groups P of
order > />r(G•^). However, for each r ^ 3 there exist examples of CLT groups G
and primes p such that r{G, p) = r and P wrG is not a CLT group for infinitely
many /^-groups P. For example, if G = (a, b \ a43 = b1 = 1, ab = a4) and p = 23,
then r(G, p) = 3, and for every /?-group P with P/P' = Zp X Z^, the group
P wr G is not a CLT group. More detailed information concerning this and other
examples may be found in §2.

In [2] T. Gagen proved that any soluble group H can be embedded as a
subgroup of a direct indecomposable CLT group G. However, in these examples
one has ir(G) J w(i/). This result can be improved by using Theorem A.

COROLLARY. Every soluble m-group H can be embedded as a subgroup of a direct
indecomposable CLT group which itself is a m-group.
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[ 31 CLT groups and wreath products 185

PROOF. We may assume that H =£ 1 is a CLT-group. Let p be a prime dividing
the order of H and let P be an elementary abelian /7-group of rank r(H, p). By
Theorem A, the wreath product W = P v/rH is a CLT group.

Assume that W = R X S. By [9, p. 354] we may assume without loss of
generality that R < Z{W) and S > H. Now [9, pp. 348ff] implies that R < W,
since p divides the order of H. Hence /? < W n Z(W) < 3>(*T), and so £ = 1
and 5 = W, as required.

In another direction, we consider the class !% of all groups G such that N wr G
is a CLT group for every nilpotent group N. From Theorem A it follows
immediately that 9t contains all elementary abelian 2-groups (this can be seen
more directly, as any extension of a nilpotent group by an elementary abelian
2-group is supersoluble and so is a CLT group [1]). However, somewhat surpris-
ingly, the class <% is much larger than one might expect at first glance.

THEOREM B. (a) Si contains every 2-group, Z3, and every noncyclic 3-group.
(b) / / G G ^ isap-group, thenp < 3.
(c) Every group of odd order can be embedded as a subgroup of an @-group.

In particular, & contains groups of arbitrary Fitting length, and for every
prime p there exists some ^-group of order divisible by p. The class !% is not
closed with respect to taking subgroups or quotients, and it is an open question as
to whether & is closed under direct products. For more details the reader is
referred to §3.

All groups considered in this paper are finite. If X is a subgroup of Y, and if Z
is a A:Ar-module for some field k, then ZY denotes the induced module. A similar
convention will be used for characters.

2. Particular base groups

In this section we consider any given CLT group G and study the question: For
which ^-groups P is the wreath product P wr G a CLT group? It turns out that
the results depend heavily upon the distribution of the degrees of the irreducible
modules of (a Hall ^'-subgroup of) G.

The proof of the following preparatory result on group rings is based on some
ideas from [4].
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LEMMA 1. Let G =£ 1 be a soluble group and let K be a splitting field for G whose
characteristic does not divide the order of G. Then for any X with 0 < X < \G\ — 1,
the group ring M = KG contains a submodule S with d imK(5) = X such that the
trivial KG-module is not a composition factor of S.

PROOF. We use induction on the derived length d of G. If G is abelian, then
every irreducible .KG-module has dimension one and everything is clear, so let
d > 1. Let N be the last nontrivial term of the derived series of G, so that N is an
abelian normal subgroup of G. Let U be the sum of all irreducible submodules of
M having N in their kernel, so that U is isomorphic with the regular KG/N-mod-
ule. By induction, U contains submodules St of dimension p with CSi(G) = 1 for
every p such that 0 < p < \G/N\ - 1. If M = U © V, then by a result of N. I to
(see [5, p. 570]) every composition factor Vo of V satisfies dim^(F0) < \G/N\.

Now let X with 0 < X < |G| — 1 be given. By the above, there exists a
submodule S2 of V which satisfies 0 < X - dimAr(S2) < \G/N\. Also, there exists
Sx < U with dimA:(S1) = X - dimA:(S2) and CSi{G) = 1. Since obviously CSi(G)
— 1, the module S = S1 © S2 has the required properties.

The argument that produced the submodule S2 having dimension "close to" X
in the proof of Lemma 1 will be used several times in the sequel and will be
referred to as the "sandwich technique ".

Before we state the next result, we introduce some notation that we propose to
use throughout the remainder of this paper without further notice. For a group G
and a group X we shall denote by B(X) the base group of X wrG, endowed with
the obvious action of G. It will always be clear from the context which group G is
meant. Moreover, if Y is a normal subgroup of X, then B(X/Y) will be
considered to be a quotient of B(X), both viewed as G-groups in a natural way.
We say that B( X) contains G-invariant subgroups of every possible order if for
each divisor d of 1-8(̂ )1 there exists some G-invariant subgroup of B{X) which
has order d.

LEMMA 2. Let G be any soluble group and let p be a prime not dividing the order
of G. Let A be an elementary abelian p-group of rank r(G, p). Then B(A) contains
G-invariant subgroups of every possible order.

PROOF. Let r = r(G, p) and let K be the field with pr elements. We need to
show that B{A) contains G-invariant subgroups of order pm for any m such that
0 < m < r • \G\. Let m = X • r + p for some nonnegative integers X and p
satisfying 0 < p < r. Without loss of generality we may assume that m < r • \G\,
and so X < \G\.
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Now A is isomorphic to the additive group of K, and so B(A) is isomorphic to
the additive group of the group ring KG, viewed as additive groups acted upon by
G. By Lemma 1 there exists a ^TG-submodule S1 of KG with dim A : (S 1 ) = X such
that the trivial ATG-module T is not a summand of Sv In particular, Sl is a
G-invariant subgroup of B(A) of rank X • r. Moreover, T contains G-invariant
subgroups of every possible order, so let S2 be one of rank p. Hence the subgroup
S = (Slt S2) = Sx © S2 has order p x ' + p = p m as desired.

W e are now going to drop the assumption that the group A in Lemma 2 is
elementary. The notation that we now introduce will be used in the next two
results. For a group X we denote by ®(X) the set of all orders of G-invariant
subgroups of B(X). Clearly B{X) contains subgroups of every possible order if
®(X) consists of all divisors of the order of B(X). It is easy to see that
O(XX Y) contains the set Q(X) • Q(Y) of all products of an element in 0{X)
with one of ®(Y).

LEMMA 3. Let G be a finite group, let p be a prime not dividing the order of G and
let E be an elementary abelian group of order pr. Then @(Zpr) 2 ®{E).

PROOF. Let x e $(£) and let U be a G-invariant subgroup of B(E) of order
x. As p does not divide the order of G, we have B(Zp) = ©,'=1C, with irreducible
F/7-modules C,. Now B(E) = ^(Z^) X • • • xB(Zp) as an F/7-module and so
we infer that U = ©/.jC © '•'_&) for some tt with 0 < /, < r.

We now produce a G-invariant subgroup V of M = B(Zp,) of order x. Let
M/O(M) = ©^jM/OCM) where M,/$(A/) = C, as an FpG-module. It is well
known that M = ffi'^M,-, that each M, is homocyclic of exponent pr and that
Mt has exactly r composition factors that are all F^G-isomorphic with C,. In fact,
for 1 <y < r one has Qj(Mi)/Qj_1(Mi) s C,. From this it follows easily that
V = ©^jK, (Af,) is G-invariant and \V\ = x.

From the above observation the following is immediate.

LEMMA 4. Let G be a finite group and let p be a prime not dividing the order of G.
Let A be an abelian group of order pr and let E be elementary abelian of order pr.
Then 0(A) 2 Q(E).

We need another preparatory remark.

LEMMA 5. Let G be a finite group and let p be a prime not dividing the order of G.
Let A and A* be p-groups with \A\ > \A*\. If B(A) contains subgroups of every
possible order then B(A X A*) contains subgroups of every possible order.
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PROOF. Let d be a divisor of \B(A X A*)\. If d < \B(A)\ then we can select a
G-invariant subgroup of order d in 5 (^ ) . So let d > \B(A)) > \B(A*)\. As A and
.4* are /7-groups, we can select a G-invariant subgroup S of B(A) having order
d\B(A*)\~l. So S X £(yl*) is G-invariant of order d.

We are now going to prove that for any given CLT group G and a p-group P
the wreath product P wr G very often is a CLT group.

First, we introduce some additional notation. For a prime p and a CLT group
G, let H denote some Hall p'-subgroup of G. Further, let ^C(G, p) denote the
class of all p-groups P # 1 having the property that B(P) contains //-invariant
subgroups of every possible order. Clearly, the class SC(G, p) does not depend on
the choice of H.

THEOREM 1. Let G be a CLT group and let P be a p-group for some prime p.
(a) / / \P/P'\ > pr(-G'p\ then P wrGisa CLT group.
(b) / / P = P1 > P2 > • • • > Pl+1 = l is a normal series of P with Pj/Pi + 1 e

, p) for 1 < i < t, then P e 3f(G, p). In particular, P wr G is a CLT group.

PROOF, (a) It is sufficient to prove that W - P wrG contains subgroups of
index d for every prime power d dividing the order of W. As G is a CLT group,
we only need to consider the case when d is a power of p. In this case, it is
sufficient to prove the stronger assertion that B{P) contains //-invariant sub-
groups of every possible order, where H denotes some Hall //-subgroup of G. As
B(P), considered as an //-group, is isomorphic to a direct sum of [G:H] copies
of the base group of P wr//, it is sufficient to prove the theorem for p'-groups G.

We proceed by induction on the order of G. Let A =t 1 be an abelian normal
subgroup of G. Let |P| = pa and \P'\ = pp. We need to show that for any i with
0 < t < a • \G\ the group B(P) contains a G-invariant subgroup of order p\

If p • |G| < i < a • \G\, then B(P/P') contains a G-invariant subgroup of order
pi-P\G\ kv L e r n r n a 2 and Lemma 4, and its natural preimage in B(P) has order
p', as required.

So let 0 < t < p • \G\ and let i = X • \G\ + 8, where 0 ^ 8 < \G\. Then we have
0 < \ < p. Let R<_P, where R < P ' and |.R| = px. It clearly suffices to show that
B(P/R) contains a G-invariant subgroup of order ps, and so without loss of
generality we may assume that R = 1 and that i = 8.

Let C = CB{P){A). Then there is a direct decomposition C = D X Dgl

X • • • XDgi = DG, where D consists of those elements of B(P) that are constant
on A and trivial on G \ A , and where {gY = 1, g2,..., gt) constitutes a system of
coset representatives of A in G. Moreover, D = P. Also, the action of G on C is
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similar to the action of G/A on the base group of D wr(G/,4). As r(G/A, p) <
r(G, p) and \D/D'\ = \P/P'\ > pr^G-p), we infer by induction that C possesses
G-invariant subgroups of every order ps forO «s S = a • [G:A].

Now let Z<P, where Z < P' and \Z\ = p. Let B(Z) = M © M* as a G-mod-
ule, where M = CB(Z)(yl). So yl acts nontrivially on every G-composition factor
of M*, and hence C O M* = 1. By [5, p. 570] the dimension of every G-composi-
tion factor of M* is < [G:A]- r(G, p). So the sandwich technique yields a
G-invariant subgroup V of M* with | F | = /?", where 0 < S - v <
[G:A\ • r(G, p) < [G:^4] • a, since r(G, p) < a. By the above, there exist a G-in-
variant subgroup UoiC with \U\ = ps~", and so (U, V) = U X V is G-invariant
of order ps as required.

(b) This follows by induction on t. The technique is similar to that used in the
proof of part (a).

COROLLARY. Let G be a CLT group and let p be a prime.

(a) / / Q is the direct product ofr(G,p) copies of P, then Q wrG is a CLT group.
(b) / / r(G, p) < 2, then P wrG « a CLT grow/? /or a// p-groups P with

\P\ > pr^c-P\
(c) / / P « any p-group, then P wr Z3, w a CLT group.

PROOF, (a) This follows immediately from Theorem 1.
(b) If r = 1 or r = 2, then for any />-group P the conditions \P/P'\ > pr and

|P | > pr are equivalent.
(c) If p ¥= 3, then we have B(Zp) = M1 ffi Af2, where dimF (M,) = i, and so

Z^ G i f (G, p) for all primes />.

In particular, if r(G,p)^ 2, then P wrG is a CLT group for almost all
/>-groups P. The case r(G, p)> 3 is more interesting. Before dealing with this, we
need a preparatory result concerning a very special group.

LEMMA 6. Let G = (a, 6 |a4 3 = fc7 = 1, a* = a 4 ) fee f/ie nonabelian group of
order 43 • 7 and let p = 23. 77ie«:

(a) r(G, />) = 3.
(b) B(Zp) = ®Ylyt, where all the Vi are irreducible, and where AimVl = 1,

dimF2 = dimFj = 3, and dimJ^ = 21 for 4 < / < 17.

PROOF, (a) Let L be the field with p3 elements. As p3 = 1 mod 7, all characters
of G having A — (a) in their kernel can be realized over L. Any faithful and
irreducible character of G over a splitting field of characteristic p is of the form
(eA)G, where eA is a linear character of A (see [5, p. 561]). So from p21 = 1
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mod 43 it follows that the field K with p21 elements is a splitting field for G (see
[6, p. 31]). From the structure of G we infer that eG(g) = 0 for g e G\A, and
for g G A we have eG(g) = f + f4 + f16 + • • • + f4', where f e ^ denotes some
primitive 43r</ roots of unity.

We now prove that eG(g) e L for any g e G. Let <p e Gal(# |F J be defined
3

by <p(x) = x7'. Then

*(•£(*)) = f41 + f35 + f11 + f + f4 + f16 + f21

= eG(g) for all g e i ,

and so all values of e^ belong to Fix(<p) = L; moreover, L is the smallest
splitting field for G by [6, p. 31].

(b) The degrees of the irreducible F^G-modules which have A in their kernels
are easily seen to be 1,3 and 3, so let V be a faithful and irreducible F^G-module.
Let V = V ®F L = ®' jf^i, where the V{ are absolutely irreducible LG-modules.
Then we have dimL(J^) = 7, and Gal(L IF^) acts on the Vt. As GL(7, p) does not
contain any element of order 43, we have / = 3 and dimF (V) - 21.

The next result shows that Theorem 1 and part (b) of its corollary cannot be
improved in general. In some special cases, however, there are some slightly
stronger results.

THEOREM 2. (a) Let G be a group of prime order, let p be a prime different from
the order of G and let P =t I be a p-group. Then

In particular, ifr{G, p) = 3, then P e -S?(G, p) if and only if \P\ > p2.
(b) Let G = {a, b \ a43 = b1 = 1, ab = a4) and let p = 23. Then for any p-group

P with P/P' = Zp X Zp, the wreath product P wrG is not a CLT group. In
particular, if \P\ = pr(G'p\ then P wiG need not be a CLT group.

(c) For any r > 3 there exist a CLT group G and a prime p with r(G, p) = r such
that P wr G is not a CLT group for infinitely many p-groups P.

PROOF, (a) Let r = r(G, p) and let W = P wrG. First, assume that \P/P'\ <
pr~l. We claim that W does not contain any subgroup of index pr~l. Indeed,
otherwise there would exist a G-invariant subgroup U of B = B(P) with [B: U]
= pr+l. Let U = UO<UX< • • • <U, = B be a G-composition series between U and
B. As all irreducible F^G-modules have dimension 1 or r, we infer that the
Ui+1/Uj are all centralized by G. Let N= Core^(f/). By the Jordan-Holder
Theorem, all G-composition factors between N and B are trivial, and so, by a
standard argument on coprime automorphisms, we have [B,G] < N. From [9,
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p. 348] we infer that [ 5 , G] = {(av ..., a | C | ) e B \ ax ••• a | C | e P'}, and so 5 ' <
[B,G]. Hence we have B' < JV < f/, and so 5 / 5 ' contains a G-invariant sub-
group of index p r ~ l . But 5 / 5 ' s B(P/P') contains only r — 2 trivial composi-
tion factors, and all others have order p r . This is a contradiction.

The converse follows from the argument used in the proof of Theorem l(a).
The last assertion is trivial.

(b) We claim that B(P) does not contain any G-invariant subgroup U of index
p 1 5 . As above, let N = Corew(U). By Lemma 6, all composition factors of B/N
have dimension 1 or 3, and so A = (a) centralises B/N. By the argument used in
[9, pp. 348ff] we get B(P') < [B(P), A] < N < U, and so B(P/P') would
contain a G-invariant subgroup having index p 1 5 , which contradicts the structure
of B(Zp X Zp) = B(Zp) X 5 ( 2 ^ ) as given in Lemma 6.

(c) Let q be a prime with q = 1 mod r. Let c be such that c mod q has order r
and let p be a prime with /? = c modg . Then r(Zq, p) = r. By part (a), we have
P £ y(Z-r p) for every /?-group P with \P/P'\ < />r~2; moreover, for each r > 4
there are infinitely many such i \ For r = 3, infinitely many examples may be
found in part b).

3 . The universal class

In this section we consider the class £% of all groups G having the property
that, for every nilpotent group N, the wreath product N wrG is a CLT group.
Clearly, every group in & is a CLT group, and if G e 9t, then W = P wr G is a
CLT group for every />-group i*. The converse of this is true, because for every
prime p one has B{N) = B(Op(N)) X B(Op(N)), and because, by assumption,
W/B(Op.(N)) = Op(N) wrG is a CLT group and so has subgroups of all
possible indices of the form p a . Moreover, the class & is nontrivial, as, for
example, the wreath product of any nilpotent group with an elementary abelian
2-group is supersoluble, and by [1] it is a CLT group. Also, Z 3 e @ by the
corollary to Theorem 1.

We first deal with nilpotent ^-groups.

THEOREM 3. (a) / / G e <% is a q-group for some prime q, then q < 3.
(b) Every 2-group belongs to !%.
(c) Every noncyclic 3-group belongs to &.
(d) Z 9 £ @; in particular, 9i is not closed with respect to taking subgroups or

quotients.
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PROOF, (a) Assume that q > 5. Then there exists some positive integer a such
that a modq has order <p(q) > 4. By Dirichlet's Theorem there exists a prime
p = a mod q. Let k = Fp. We now consider the degrees of the irreducible kG-
modules V. If G' < ker(F), then dmvk{V) = 1 for exactly one such V, and all
others are of dimension y(q) > 4. If G' < ker(F), then dimJt(K) > q. Hence
B(Zp) contains exactly one G-submodule of dimension one, and all other
irreducible submodules have dimension at least four. This implies that Zp wrG
does not contain any subgroup of order p2 • \G\ or p3 • \G\, and so G £ @.

(b) We need to show that Z q wr G is a CLT group for any prime q. Without
loss of generality, we may assume that q + 1. Let Z be a normal subgroup of G
with \Z\ = 2. By induction on the order of G, the regular F?(G/Z)-module M
contains submodules of every possible dimension. Now B(Zq) is completely
reducible, and so B(Zq) = M 0 M*, where the F?G-module M* has dimension
\G\/2. The assertion follows because M has submodules of every possible
dimension, and the dimensions of M and M* are equal.

(c) We first claim that the degrees of the irreducible representations of a
noncyclic group G of order 3" over any prime field k = ¥p are bounded by
2 • 3a~2. We may assume that p + 3. The assertion is true for a = 2, since the
field with p2 elements is a splitting field for G in this case, and so the degrees in
question are at most two. So let a > 3. Let U be a noncyclic subgroup of G with
\U\ = 3"~\ and let kU = Q'^ty, where the U{ are irreducible A:f/-modules. By
induction, we have dim/t(Cj) < 2 • 3"~3.

We now consider induced modules (see [5, pp. 552ff]). We have

k G = lG = {lU)O G ( )

Every irreducible A:G-module V is a constituent of Ut
G for some /', and so we get

d im^F) < dimfc(^.c) = 3 • dimfc(^.) < 2 • 3 a " 2 ,
as required.

We now prove that C G f. As in the proof of part b), we may assume that
p # 3, and we get B(Zp) = M © M*, where dim^M) = 3""1, and where M
contains submodules of every possible dimension. By the above, all composition
factors of M* have dimension less than or equal to the dimension of M, and so
the sandwich argument proves the result.

(d) For G = Z9 we have J5(Z2) = Mx ® M2 © M6, where dimF2(M,) = /, and
where the M, are irreducible. Hence Z2 wrG does not contain any subgroup of
order 249 or 259, and soG<£@.

COROLLARY. Let G be a CLT group and assume that m{G) = {2,3}. If the
Sylow 3-subgroup of G belongs to @, and ifr(G, p) = 1 for all p > 5, then G e i
In particular, the symmetric groups S3 and S4 are ^-groups.
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P R O O F . This follows immediately from Theorem 1 and Theorem 3.

If G is a rational group, i.e. if all irreducible complex characters are rational

valued, then every prime field fp is a splitting field for G (see [3]), so that, in

particular, we have r(G, p) = 1 for all p + \G\. Hence, if G is a CLT group, then

P wr G is a C L T group for every p-group P. Even stronger, we would have G e l

if the following were true.

C O N J E C T U R E . Let G be soluble and let k be a splitting field for G. Then kG

possesses submodules of every possible dimension.

Before we deal with some types of nonnilpotent ^-groups , we need some more

prelimininaries.

D E F I N I T I O N . Let ^ 0 be the class of all finite groups G having the property

that, for all primes p, the regular F^G-module has submodules of every possible

dimension.

Obviously, every CLT group in ^ 0 belongs to @.

The following is well known.

LEMMA 7. Let k be a field of characteristic p > 0 and let G be p-nilpotent. Then

kG — © Pj, where, for any i, all the composition factors of Pt are G-isomorphic.

PROOF. This follows immediately from [8, p. 545], since the Cartan matrix of

kG is a diagonal matrix.

The following result is also presumably known, but we have been unable to

find any reference.

LEMMA 8. Let p and q be primes and let r be a divisor of q - 1. Let Q = AB be

the Frobenius group of order qr and let N be an irreducible ¥pQ-module. Then

dimF (N) < q - 1.

PROOF. If A centralises N, the result is clear, and so, henceforth, we assume

that AT is faithful, whence p ± q.

We first claim that CN(B) =£ 1. First, assume that p does not divide the order

of Q. Let K be a splitting field for Q. We need to show that N ® K contains the

trivial .O-module as a summand. Let N be an irreducible A^g-submodule of

N ® K. Then ./V is faithful, and so its character x is induced from some linear
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character eA of A (see [5, p. 561]). Hence x = 0 on Q\A. So we have
(Xl B,1 B ) = X(l)/I*l = <u(l) > 0, and so CN(B) + 1. This implies that CN(B)
# 1.

Now let /> be a divisor of the order of B and let B = 5X X 2?2, where
fij = 0^(5). Let g 2 = v452 and let N = ©JV,, where all the Nt are irreducible
F^Qj-modules. By the above, we have CN(B2) # 1 for all i, and so C2:= CN(B2)
¥= 1. As #2 is normal in B, the group fix acts on C2, and so we have CC2(5X) =£ 1.
Hence 1 # Q ^ ^ ) < CN(BXB2) = CV(5), and the claim is proved.

To prove the lemma, let c e CN(B) satisfy o(c) = />. We consider No =
(ca> 11 < / < q), where a denotes some generator of A. Obviously, No = Ntf. For
b e B we have ca* = c6"' for some > depending on /, and so No = NQ. It follows
that N = No. By construction of No, we have dimF (No) = q. If N were of
dimension q, then c, ca,..., c""'1 would be linearly independent, and so
(c + c" + • • • + c"q ) would be a nontrivial (^-invariant subspace of AT, which is
a contradiction.

Finally, we collect some information about nonnilpotent ^-groups.

THEOREM 4. (a) Let q be a prime and let r ¥= 1 be a divisor of q — 1. / / the
Frobenius group G = AB of order qr belongs to !%, then r = q — 1.

(b) Let q be a prime. If Z?_ t e 3?0, then the Frobenius group G = AB of order
q(q — 1) belongs to 91.

(c) Every group of odd order can be embedded as a subgroup of an @-group.

PROOF, (a) Let z be a generator of the multiplicative group of Z q and let p be
a prime with p = z mod q. Let us choose p so that p does not divide the order of
G. Let k = ¥p. Then B(Zp) = M ffi M* is a A:G-module, where all composition
factors of M have A in their kernel, and where all composition factors of M* are
faithful. It follows that dimk(M) = r.

Let V be a composition factor of M* and let d be its dimension. Then
GL(rf, p) contains an element of order q, and so pd° = 1 mod q for some d0 < d.
Hence we get d > q - 1, and the sandwich argument shows that r = dim^(M)
^ q — 2. As r divides q — 1, we arrive at r = g - 1, as claimed.

(b) Let p be a prime and let fc = F r If p = q, then Zp wrG is supersoluble
and [1] implies that it is CLT. So let p * q. We have B(Zp) = Af © Af*, where
M = kB, and where all composition factors of M* are faithful. Indeed, this is
obvious if p does not divide the order of G, and it follows readily from Lemma 7
if p divides q — 1. By assumption, M contains submodules of every possible
dimension, and by Lemma 8 all composition factors of M have dimension
< q - 1. The result follows.
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(c) Let B be a group of odd order. We wish to embed £ as a subgroup of a
^-group. Without loss of generality, we may assume that B is a CLT group. Let
A be an elementary abelian 2-group with \A\ > \B\. We claim that G = A X B is
a ^-group. Let p be a prime and let k be the field with p elements.

First, assume that p is odd. Let C be a Hall //-subgroup of B. Then
H = A X C is a Hall //-subgroup of G. As ,4 is an elementary abelian 2-group,
we have kA = ffiJ.^'jFj, where all the Vt are one-dimensional. So kH = kA ® kC
= ©jl^F; ® )tC). Now if S is a &C-submodule of kC, then Ĵ  ® S is an
i/-submodule of kH which has the same dimension. As p does not divide the
order of C, the trivial &C-submodule is a direct summand of kC, and so the
assertion follows from the sandwich technique.

Now let p = 2 and let kB = ®h Xj, where the Xj are irreducible kB-mo&-
ules. Let Xx be the trivial A;5-module. We then have kG = ©^(fcd ® Xj);
moreover, all (/-composition factors of kA ® Xj are isomorphic to 1A ® Xy and
so have the same dimension dimk(Xj) < |fi|. As \A\ > |J5|, the module kA ® ^
contains submodules of any dimension d with 0 < d < |J5|, and so the sandwich
technique proves the result.
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