GROUP RINGS WITH UNITS OF BOUNDED EXPONENT OVER THE CENTER

SÔNIA P. COELHO

Let KG be the group ring of a group G over a field K, and U its group of units. Given a group H, we shall denote by $\xi(H)$ the center of H and by T(H) the set of all its torsion elements.

The following question appears in [5, p. 231]: When is $U^n \subset \xi(U)$, for some *n*? It was considered by G. Cliff and S. K. Sehgal in [1], where G is assumed to be a solvable group. A complete answer at characteristic zero is given there. Also they obtain partial results at characteristic $p \neq 0$, with certain restrictions on the exponent *n*.

In this note, we shall answer the question at characteristic p assuming that G is either a solvable or an FC-group. In fact, we shall need specially the following property which is common to both these families of groups: if H is a finitely generated subgroup of G such that $H/\xi(H)$ is torsion, then both T(H) and H', the derived group of H, are finite groups [4, Lemma 1.5, p. 116 and 1, Lemma 2.1, p. 147].

In Section 1, we answer the question for torsion groups assuming only that G is locally finite (Theorem A), and in Section 3 we give the answer for non torsion groups that are either solvable or FC (Theorem C).

First, we introduce some notation. We will denote T(G) simply by T, and the integer $p \neq 0$ will always denote the characteristic of K. For an element t in a group, we shall say that t is a *p*-element if o(t), the order of t, is a power of p, and that t is a p'-element if o(t) is not divisible by p. Similarly, a group H will be called a p'-group if every element of H is a p'-element.

1. The torsion subgroup of G.

LEMMA 1.1. If $U^n \subset \xi(U)$ for some *n* and *G* has a non central p'-element, then *K* is finite and the orders of the p'-elements of *G* are bounded.

Proof. We shall show first that the orders of the p'-elements of G are bounded.

It is enough to show that if u is a central p'-element of G, then $o(u) \leq n$. If not, take such a u, with o(u) > n. Then $K\langle u \rangle = \bigoplus_i K_i$, a direct sum of fields. For every i, denote by $\pi_i: K\langle u \rangle \to K_i$ the natural projection (that is, if e_i is the unity element of K_i , then $\pi_i(u) = ue_i$). Clearly, at

Received October 26, 1981. The author was partially supported by FAPESP (Brazil).

least one of the $\pi_i(u)$, say $\pi_1(u)$, has multiplicative order equal to o(u). As a consequence, K_1 has more than *n* elements.

Now, if t is a non central p'-element of G, we consider $K\langle u, t \rangle = \bigoplus_{i} K_{i}[t]$, where $K_{i}[t]$ denotes the smallest subalgebra of KG that contains K_{i} and t.

We claim that $K_1[t]$ is not contained in the center of KG. In fact, suppose that $K_1[t]$ is central and let $e = e_1$ be the unity element of K_1 . Then *et* is central. Now take $x \in G$ such that $xtx^{-1} \neq t$. Then, $xetx^{-1} = extx^{-1} = et$.

By considering supports in the last equality we get:

$$u^{i}xtx^{-1} = u^{j}t, 0 \leq i, j < o(u), i \neq j.$$

Hence $xtx^{-1} = u^{j-i}t$.

It follows that: $eu^{j-i}t = et$, or $eu^{j-i} = e$. Then, $(eu)^{j-i} = e$. But $eu = \pi_1(u)$, and hence the multiplicative order of $\pi_1(u)$ divides |j - i| < o(u), a contradiction.

Now, since t is a p'element, we have: $K_1[t] = \bigoplus_i Li$, a direct sum of fields which are Galois extensions of K_1 . But $K_1[t]$ is not central, hence one of the L_i , say L_1 , is not contained in the center of KG. Let \overline{L}_1 be the subfield of L_1 consisting of its central elements, and let $\phi \neq 1$ be an \overline{L}_1 -automorphism of L_1 .

Since $L_1 = K(\zeta)$, with $\zeta^{o(t)} = 1$, we have that $\phi(\zeta) = \zeta^i$, for some *i*.

Now, take an arbitrary element $k \in \overline{L}_1$. Since $U^n \subset \xi(U)$, we get that $(\zeta + k)^n \in \overline{L}_1$. Then,

$$(\phi(\zeta+k))^n = \phi((\zeta+k)^n) = (\zeta+k)^n,$$

and $\phi(\zeta + k)$ is a root of $X^n - (\zeta + k)^n$; from this we see that

 $\phi(\zeta + k) = \alpha(\zeta + k), \alpha^n = 1, \alpha \neq 1.$

On the other hand, $\phi(\zeta + k) = \zeta^i + k$, and thus

 $\zeta^i + k = \alpha(\zeta + k).$

Solving this equation for k, we have that

$$k=\frac{\zeta^i-\alpha\zeta}{\alpha-1}.$$

Here, only α depends on k. Since α can take at most n - 1 values, we see that $|L_1|$, the number of elements of L_1 , is at most n - 1. But $\bar{L}_1 \supset K_1$, and $|K_1| > n$, a contradiction.

It still remains to prove that K is finite. If not, replace K_1 by K in the proof above. Again, we have that $K_1[t] = K[t]$ is not central, and we can repeat the argument to obtain a contradiction.

LEMMA 1.2. Assume that $U^n \subset \xi(U)$ for some *n*. Then there exists a positive integer *m*, which is a power of *p*, such that x^m is central in KG, for every nilpotent element *x* in KG.

Proof. Let $x \in KG$ be a nilpotent element and let r be such that $x^{p^r} = 0$. Then, 1 + x is a p-element of U and by hypothesis $(1 + x)^n \in \xi(U)$. Writing $n = p^a n'$, with (n', p) = 1, it is easy to see that x^{p^a} is central in KG.

LEMMA 1.3. Assume that $U^n \subset \xi(U)$ for some n, and let $n = p^a \cdot n'$, with (n', p) = 1. If G has a p-element of order greater than $2p^{3a}$, then $G^{pa} \subset \xi(G)$.

Proof. From the proof of Lemma 1.2, we see that x^{p^a} is central for every nilpotent element $x \in KG$. So, set $m = p^a$, and take a *p*-element $h \in G$ such that $o(h) > 2m^3$. Since h - 1 is nilpotent, we have that $(h - 1)^m = h^m - 1$ is central, hence h^m is central.

Set $h' = h^m$, take $x, y \in G$ and consider the nilpotent element y(h' - 1). Again, by Lemma 1.2, we have that

$$(y(h'-1))^m = y^m(h'^m-1)$$

is central. Hence:

 $\begin{aligned} xy^{m}(h'^{m}-1) &= y^{m}(h'^{m}-1)x, \\ xy^{m}h'^{m}-xy^{m} &= y^{m}h'^{m}x - y^{m}x. \end{aligned}$

Since $o(h') > 2m^2$, we know that $h'^m - 1 \neq 0$ and hence we have two elements of G in the support of the above element. If $p \neq 2$, we see immediately that $xy^m = y^m x$, thus $y^m \in \xi(G)$. If p = 2, we may have:

$$\begin{aligned} xy^m &= y^m h'^m x, \\ xy^m h'^m &= y^m x. \end{aligned}$$

Using the fact that h'^m is central and replacing $y^m x$ in the first equation by its value in the second one, we get that

$$xy^m = xy^m h'^m h'^m$$

or $(h')^{2m} = 1$, which contradicts the fact that $o(h') > 2m^2$.

LEMMA 1.4. Let m be a power of p. If $G^m \subset \xi(G)$ and G contains a normal p-abelian subgroup ϕ such that G/ϕ is a finite p-group, then G is nilpotent.

Proof. This follows as in [5, 6.6, pp. 157–158].

LEMMA 1.5. Let S be a commutative ring with identity, I a nil ideal of S, of bounded exponent, and Q a finite group. Let $S(Q, \rho, \sigma)$ be a crossed product of Q over S, with an arbitrary factor system ρ and σ such that $\sigma_t(I) \subset I$, for every $t \in Q$. Then, IQ is a nil ideal of $S(Q, \rho, \sigma)$, of bounded exponent.

Proof. It is immediate to verify that IQ is an ideal of $S(Q, \rho, \sigma)$.

Let $Q = \{t_1, t_2, \ldots, t_n\}$ and choose *m* such that $s^m = 0$, for every $s \in I$.

Take $r > m(n + 1)^2$ and $x = s_1 \overline{t}_1 + \ldots + s_n \overline{t}_n$ an arbitrary element of IQ, $s_i \in I$, $1 \leq i \leq n$.

We want to prove that $x^r = 0$. It is enough to show that any product of *r* elements from the set $\{s_1 \bar{t}_1, \ldots, s_n \bar{t}_n\}$ is zero. Then let

 $y = s_{i_1} \bar{t}_{i_1} \dots s_{i_r} \bar{t}_{i_r}$

be such a product.

It is easy to see that there exists an index j such that $s_{ij}\bar{t}_{ij}$ occurs k times in y with k > m(n + 1), and we may suppose without loss of generality that $s_{ij}\bar{t}_{ij} = s_1\bar{t}_1$.

As the products $s_i \bar{t}_i s_j \bar{t}_j$ still have the form $s\bar{t}, s \in I, t \in Q$, and $\bar{t}s_1 = \sigma_t(s_1)\bar{t}$, for every $t \in Q$, we can write y in the form

$$y = \left(\prod_{i=1}^k z_i\right)\gamma,$$

with

$$z_i \in \{\sigma_t(s_1) | t \in Q\} \cup \{s_1\}, \gamma \in IQ.$$

Since the above set has at most n + 1 elements and k > m(n + 1), there must exist an index j such that z_j occurs in y more than m times. Now, $z_j \in I$, therefore $z_j^m = 0$, and hence y = 0.

LEMMA 1.6. Let G = T, a locally finite group. If $U^n \subset \xi(U)$ for some n, then KT satisfies a polynomial identity.

Proof. Let *m* be as in Lemma 1.2. We shall show that KT satisfies a polynomial identity in 2m + 1 variables. Consider 2m arbitrary elements of KT, say x_1, x_2, \ldots, x_{2m} . By considering the subgroup generated by the supports of these elements, we may suppose that T is finite.

Denote by J(KT) the Jacobson radical of KT. Then

 $KT/J(KT) = \bigoplus_i M_{n_i}(D_i),$

a direct sum of full matrix rings over division rings D_i .

Set x' for the image of an element $x \in KT$ under the natural epimorphism $KT \to KT/J(KT)$. For a given index i, take x_i an arbitrary nilpotent element in $M_{n_i}(D_i)$, and choose any element $y_i \in KT$ such that $(y_i)' = x_i$. Then y_i is nilpotent, since J(KT) is nilpotent because T is finite. By Lemma 1.2, y_i^m is central in KT. Hence $x_i^m = (y_i^m)'$ is a central nilpotent element of KT/J(K), so it must be zero.

Now it is easy to see that the size of the matrices is bounded by m, that is, $n_i \leq m$, for every i.

On the other hand, given *i* and $d_i \neq 0$ in D_i , we can choose $u \in U$ such that $u' = d_i$ (see [5, Lemma 3.3, p. 179]). As $u^n \in \xi(U)$, d_i^n is central in D_i , and hence D_i is a field, by [3, Theorem 3.22, p. 79].

Therefore, KT/J(KT) satisfies $S_{2m}(X_1, X_2, \ldots, X_{2m})$, the standard polynomial of degree 2m in the non commuting variables X_1, X_2, \ldots, X_{2m} . Again, since J(KT) is nilpotent, we can use Lemma 1.2 to obtain, for every $z \in KT$:

$$(S_{2m}(x_1,\ldots,x_{2m}))^m z = z(S_{2m}(x_1,\ldots,x_{2m}))^m.$$

We may now obtain a characterization for U to be of bounded exponent over the center when G is a locally finite group.

THEOREM A. Let G = T, a locally finite group. Then, $U^n \subset \xi(U)$ for some n if and only if the following conditions hold:

- (i) $T^{l} \subset \xi(T)$ for some l.
- (ii) T contains a normal p-abelian subgroup of finite index.
- (iii) Either every p'-element of T is central or T is of bounded exponent and K is finite.

Proof. Suppose $U^n \subset \xi(U)$ for some *n*. Then (i) is trivial and (ii) follows from Lemma 1.6 and a Theorem of Passman [4, Corollary 3.10, p. 197].

To prove (iii), assume that not every p'-element of T is central. By Lemma 1.1, K is finite, and for every p'-element $t \in T$, $t^r = 1$, for a suitable r. Now, if $n = p^a \cdot n'$, with (n', p) = 1, and T has a p-element of order greater than $2p^{3a}$, then $T^{pa} \subset \xi(T)$ by Lemma 1.3, and hence every p'-element is central, a contradiction. So, for every p-element $t \in T$, $t^s = 1$, for a suitable s.

Now take $x \in T$ and let T_0 be a normal *p*-abelian subgroup of index *u*, as in (ii). Then, $x^u \in T_0$, and we may write: $x^u = yz$, where $y, z \in T_0, y$ is a *p*-element and *z* is a *p*'-element. Since T_0/T_0' is abelian, taking $(rs)^{\text{th}}$ -powers, we get:

 $x^{urs} \equiv y^{rs} z^{rs} \pmod{T_0} \equiv 1 \pmod{T_0}.$

But T_0' is finite, so we have that

 $x^{urs|T_0'|} = 1,$

and (iii) is proved.

Assume now that conditions (i), (ii) and (iii) hold, and let T_0 be a normal *p*-abelian subgroup of finite index in *T*, as in (ii), and *A* the set: $\{t \in T | t \text{ is a } p'\text{-element}\}.$

Suppose first that A is a central subgroup of T. Then, as T is locally finite, it is easy to see that $T = P \times A$, where $P = \{t \in T | t \text{ is a } p \text{-element}\}$ is a subgroup of T.

Considering the subgroup $\phi = T_0 \cdot A$, it is easy to see that T satisfies the conditions of Lemma 1.4 and hence it is nilpotent. Furthermore, T contains a normal *p*-abelian subgroup ϕ such that T/ϕ is a finite *p*-group and we conclude from [5, Theorem 6.1, p. 155] that KT is Lie *m*-Engel for a suitable *m*. Hence, $U^n \subset \xi(U)$ for some *n* by [5, Lemma 4.3, p. 151].

Suppose now that A is a non central subset. By (iii), $T^s = 1$, for some s, and K is finite. Because T_0' is a finite p-group, it is easy to see that

 $P_0 = \{t \in T_0 | t \text{ is a } p \text{-element}\}$

is a normal subgroup of T.

We claim that $\Delta(T, P_0)$, the kernel of the natural epimorphism $KT \rightarrow KT/P_0$, is nil of bounded exponent. Indeed, $\Delta(T_0/T_0', P_0/T_0')$ is nil of bounded exponent because T_0/T_0' is abelian and P_0/T_0' is of bounded exponent. Setting

$$S = KT_0/T_0', Q = (T/T_0')/(T_0/T_0') \simeq T/T_0,$$

we see that KT/T_0' is the crossed product $S(Q, \rho, \sigma)$, with ρ and σ as usual. If $I = \Delta(T_0/T_0', P_0/T_0')$, by Lemma 1.5 we conclude that $IQ = \Delta(T/T_0', P_0/T_0')$ is nil of bounded exponent. Since T_0' is a finite *p*-group, we see that $\Delta(T_0, T_0')$ is nilpotent and hence it is easy to see that $\Delta(T, P_0)$ is nil of bounded exponent by considering the natural epimorphism $KT \to KT/T_0'$.

Now, T_0/P_0 is a normal subgroup of T/P_0 , of finite index, say, r. By [4, Lemma 1.10, p. 176], we get that

 $KT/P_0 \subset M_r(KT_0/P_0).$

Pick now $u \in U$. Considering the subgroup generated by the support of u, we may suppose that T is finite. Hence T_0/P_0 is a finite abelian p'-group, such that $(T_0/P_0)^s = 1$.

Therefore, $KT_0/P_0 = \bigoplus_i K_i$, a direct sum of fields, all of them contained in $K(\zeta)$, with $\zeta^s = 1$. Hence,

$$M_{\tau}(KT_0/P_0) = M_{\tau}(\bigoplus_i K_i) = \bigoplus_i M_{\tau}(K_i),$$

and we have that $KT/P_0 \subset \bigoplus_i M_r(F_i)$, with $F_i = K(\zeta)$, for every *i*. Set *S* for $\bigoplus_i M_r(F_i)$ and *u'* for the image of *u* by the composition map of the natural epimorphism $KT \to KT/P_0$ followed by the inclusion $KT/P_0 \to S$. As *K* is finite, the group of nonsingular matrices of $M^r(K(\zeta))$ is finite, say of order *q*, depending on *r* and *s* only. So, $u'^q = 1$ and we get:

$$u^{q} = 1 + \delta, \delta \in \Delta(T, P_{0}).$$

As $\Delta(T, P_0)$ is nil of bounded exponent, we can take *m* a power of *p* such that $x^m = 0$ for all $x \in \Delta(T, P_0)$. Now we can conclude that

$$u^{qm} = 1 + \delta^m = 1 \in \xi(U).$$

COROLLARY. Let G = T, a locally finite group, and assume that the set of all p-elements of T is not of bounded exponent. Then the following conditions are equivalent: (i) $U^n \subset \xi(U)$ for some n.

(ii) KT is Lie m-Engel for some m.

Proof. First suppose that $U^n \subset \xi(U)$ for some *n*. By the preceeding theorem, we get that (i), (ii) and (iii) hold.

Furthermore, every p'-element of T is central by Lemma 1.3. Follow now the "only if" part of the proof of the theorem to conclude that KTis Lie *m*-Engel for some *m*.

By [5, Lemma 4.3, p. 151], the converse is obvious.

2. A certain nil ideal of KG. In this section, G will be either a solvable or an FC-group. As we mentioned in the introduction, if $G/\xi(G)$ is torsion, then we can conclude that T is a locally finite subgroup of G and G' is contained in T.

We shall denote by A the set of all p'-elements of G and by P the set of all p-elements of G.

LEMMA 2.1. Suppose that $U^n \subset \xi(U)$ for some *n* and *G* has an element of infinite order. Then, every idempotent of KG is central.

Proof. See [1, Lemma 2.4, p. 148].

LEMMA 2.2. Suppose that $U^n \subset \xi(U)$ for some *n* and *G* has an element of infinite order. Then:

- (i) A is an abelian subgroup of G.
- (ii) If A is non central, then K is finite and for every $x \in G$ and every $t \in A$ there exists an integer r such that $xtx^{-1} = t^{pr}$, and $(K:\mathbf{F}_p)|r$.
- (iii) P is a subgroup of G.
- (iv) $T = P \times A$.

Proof. For the proof of (i) see [1, Corollary 2.5, p. 148].

To prove (ii) we notice that if A is non central, then K is finite by Lemma 1.1.

Now, take $x \in G$ and $t \in A$ such that $xtx^{-1} \neq t$. We have that $K\langle t \rangle = \bigoplus_i k_i$, a direct sum of fields such that at least one of them, say K_1 , is of the form $K_i = K(\zeta)$, where ζ is a root of unity whose order is equal to the order of t, and the natural projection $K\langle t \rangle \to K_1$ maps t on ζ .

Since, by Lemma 2.1, every idempotent is central, we must have $xtx^{-1} = t^i$ for some *i* (this can be seen by considering the idempotent $e = (o(t))^{-1} (1 + t + \ldots + t^{o(t)-1}))$. Hence, conjugation by *x* defines an automorphism ϕ of K_1 . By the above, $\phi(\zeta) = \zeta^i$.

On the other hand, since K_1 is finite, ϕ is a power of the Frobenius automorphism of K_1 , F, given by:

$$F(k) = k^p$$
, for all $k \in K_1$.

If $\phi = F^r$, we have that

 $\phi(\zeta) = \zeta^{p^r} = \zeta^i,$

from which we conclude that $o(t) = o(\zeta)$ divides $p^r - i$. Then,

 $p^r \equiv i \pmod{o(t)}$ and $xtx^{-1} = t^i = t^{p^r}$.

Furthermore, as every element of K is fixed by ϕ , we have that $k^{p^r} = k$ for every $k \in K$, and hence K is contained in a field with p^r elements, that is: $(K:\mathbf{F}_p)|r$.

For (iii) and (iv), we observe first that every *p*-element commutes with every *p'*-element. If not, then by (ii) K is finite. Now take $\pi \in P$ and $t \in A$ such that $\pi t \pi^{-1} \neq t$ and proceed as in [1, 3.2, p. 152] to conclude that this implies the existence of a non central idempotent, which contradicts Lemma 2.1.

As T is locally finite, the proof of (iii) and (iv) is now trivial.

LEMMA 2.3. Let A_1 be an abelian p'-subgroup of G, and K a finite field. If, for every $t \in A_1$ and every $x \in G$, there exists an integer r such that $xtx^{-1} = t^{p^r}$, and $(K:\mathbf{F}_p)|r$, then every idempotent of KA_1 is central in KG.

Proof. Let $e \in KA_1$ be an idempotent, and let $x \in G$. By considering the subgroup generated by the support of e, we may suppose that A_1 is finite.

Let $A_1 = \langle t_1 \rangle \times \ldots \times \langle t_s \rangle$, a direct product of cyclic groups. It is easy to see that we may choose an integer r such that $xt_ix^{-1} = t_i^{pr}$, for every i.

We have that $e = f(t_1, \ldots, t_s)$, where $f(X_1, \ldots, X_s)$ is a polynomial in the commuting variables X_1, \ldots, X_s , with coefficients in K. Conjugating by x, we have:

 $xex^{-1} = f(t_1^{p^r}, \ldots, t_s^{p^r}).$

But by hypothesis every element $k \in K$ satisfies $k^{p^r} = k$, therefore this is true for the coefficients of f. Hence

$$f(t_1^{p^r},\ldots,t_s^{p^r}) = (f(t_1,\ldots,t_1))^{p^r}$$

and

$$xex^{-1} = e^{p^r} = e,$$

as we wished to prove.

We can now give a partial characterization for U to be of bounded exponent over the center, when G is non torsion.

THEOREM B. Suppose that G has an element of infinite order. Then $U^n \subset \xi(U)$ for some n if and only if the following conditions hold:

(i) $G^{l} \subset \xi(G)$ for some l.

(ii) A is an abelian subgroup of G and, if A is non central, then K is finite, A is of bounded exponent and for every $t \in A$ and every $x \in G$ there exists an integer r such that $xtx^{-1} = t^{p^r}$, where $(K:\mathbf{F}_p)|r$.

(iii) P is a subgroup of G contained in the centralizer of A.

(iv) There exists an integer m, which is a power of p, such that x^m is central in KG, for every $x \in \Delta(G, P)$.

Proof. Suppose first that $U^n \subset \xi(U)$ for some *n*. (i) is trivial, (ii) follows from Lemma 1.1 and Lemma 2.2, and (iii) follows from Lemma 2.2.

To prove (iv), let $x \in \Delta(G, P)$. We may suppose that G is finitely generated and hence P is a finite normal subgroup of G. Therefore, x is nilpotent and we can apply Lemma 1.2 to obtain the result.

Suppose now conditions (i) to (iv) hold, and pick $u \in U$. Again we may suppose that G is finitely generated and hence T is finite.

We observe that if $KA = \bigoplus_i K_i$, a direct sum of fields, then $K(A \times P) = \bigoplus_i K_i P$.

Consider now the natural epimorphism $KG \rightarrow KG/P$, with kernel $\Delta(G, P)$.

Setting S' for the image of a subset S of KG under this epimorphism, we have:

$$(K(A \times P))' = \oplus K_i'$$

where each K_i' is a field. Furthermore,

$$T(G/P) = (A \times P)/P,$$

and hence

$$KT(G/P) = \bigoplus_i K_i'.$$

Since, by condition (ii) and Lemma 2.3, every idempotent of KA is central in KG, and $G' \subset T$, we may apply [5, Lemma 3.22, p. 194], and u can be written in the form:

(*)
$$u = \sum_{i} f_{i}g_{i} + \delta, f_{i} \in K_{i}, g_{i} \in G, \delta \in \Delta(G, P).$$

Suppose first that A is central. Taking the $(l)^{\text{th}}$ -power in (*), we have:

$$u^{l} = \sum_{i} f_{i}^{l} g_{i}^{l} + \delta', \, \delta' \in \Delta(G, P).$$

Now, $\sum_{i} f_{i}^{l} g_{i}^{l}$ is central, and it is sufficient to apply condition (iv).

Suppose now that K is finite and A is of bounded exponent s. Then, $K_i \subset K(\zeta)$, with $\zeta^s = 1$, for all i.

Computing $(l)^{\text{th}}$ -powers in (*), we obtain:

$$u^{l} = \sum_{i} f_{i}' g_{i}^{l} + \delta', f_{i}' \in K_{i}, g_{i}^{l} \in \xi(G), \delta' \in \Delta(G, P).$$

Since $K_i \subset K(\zeta)$, for all *i*, we have that $f'_i = 1$ for every $f'_i \neq 0$ and a suitable *r* which depends on *K* and *s* only.

Taking $(r)^{\text{th}}$ -powers above, we have:

$$u^{lr} = \sum_{i} g_{i}^{lr} + \delta^{\prime\prime}, \, \delta^{\prime\prime} \in \Delta(G, P).$$

Now, $\sum_{i} g_{i}^{lr}$ is central and it suffices to use condition (iv).

COROLLARY. Suppose that the set of all p-elements of G is not of bounded exponent. Then the following conditions are equivalent:

(i) $U^n \subset \xi(U)$ for some n.

(ii) KG is Lie l-Engel for some l.

Proof. Suppose first $U^n \subset \xi(U)$ for some *n*. By the corollary to Theorem A, KT is Lie *m*-Engel for some *m* and hence *T* is nilpotent.

As $G' \subset T$, we can conclude that G is solvable (even if it were an *FC*-group).

By Lemma 1.3, $G^{pa} \subset \xi(G)$ for some *a* and by [1, Lemma 2.2, p. 148] *G'* is a *p*-group. Hence, as we noted before, $\Delta(G, G')$ is a nil ideal.

Given $x, y \in KG$, $xy - yx \in \Delta(G, G')$. By (iv) of Theorem B, for every $z \in KG$ we have that

 $(xy - yx)^m z = z(xy - yx)^m.$

Hence, KG satisfies a polynomial identity. By Passman's theorem [2, Theorem 1.1, p. 142], setting ϕ for the *FC*-subgroup of G, we have: $|G/\phi| < \infty$, $|\phi'| < \infty$.

Furthermore, it is easy to see that both are p-groups. By Lemma 1.4, G is nilpotent. We conclude from [5, Theorem 6.1, p. 155] that KG is Lie l-Engel for some l.

As we noted before, the converse is immediate by [5, Lemma 4.3, p. 151].

3. Nil augmentation ideals of bounded exponent. We shall now discuss condition (iv) of Theorem B.

In all this section, except in Theorem C, G will be either a solvable or an FC-group, such that T is a locally finite subgroup of G, and $G' \subset T$.

Furthermore, we shall assume that *T* has the form: $T = P \times A$, where

 $A = \{t \in G | t \text{ is a } p' \text{-element} \}$

is an abelian subgroup of G and

 $P = \{t \in G | t \text{ is a } p \text{-element}\}$

is a subgroup of G, of bounded exponent.

We introduce some notation. Given a group H, $\phi(H)$ will denote the *FC*-subgroup of H. The group $\phi(G)$ will be denoted simply by ϕ .

LEMMA 3.1. Suppose that there exists an integer m, which is a power of p, such that x^m is central in KG for all $x \in \Delta(G, P)$. Then G contains normal subgroup H, of finite index, containing ϕ , such that $H' \cap P$ is finite.

Proof. By [2, Theorem 1.1, p. 142], if KG satisfies a polynomial identity, then $|G/\phi| < \infty$, $|\phi'| < \infty$. Since $G' \subset P \times A$, and $(\phi \cdot A)/A \subset \phi(G/A)$, it is enough to prove that K(G/A) satisfies a polynomial identity.

In the group ring K(G/A), the ideal $\Delta(G/A, (P \times A)/A)$ is the image of $\Delta(G, P)$ by the natural epimorphism $KG \to K(G/A)$ and hence it also satisfies the hypothesis.

As $(G/A)' \subset (P \times A)/A$, we have that

 $\Delta(G/A, (G/A)') \subset \Delta(G/A, (P \times A)/A)$

and it follows easily, as in the proof of the corollary to Theorem B, that K(G/A) satisfies the polynomial $(XY - YX)^m Z - Z(XY - YX)^m$.

In the following lemmas, H will be a normal subgroup of G, of finite index, containing ϕ , as in the previous lemma, P_0 will be $H' \cap P$ (hence a finite group) and P_1 will be $H \cap P$.

LEMMA 3.2. Suppose that there exists a positive integer m, which is a power of p, such that x^m is central in KG, for all x in $\Delta(G, P)$. Then, $\Delta(G, P)$ is nil of bounded exponent.

Proof. We observe first that it is enough to prove that $\Delta(H, P_1)$ is nil of bounded exponent. In fact, suppose that this were proved. Given $x \in \Delta(G, P)$, then x^m is a central element. But every central element of $\Delta(G, P)$ is contained in $\Delta(G, P) \cap K\phi$, which is contained in $\Delta(H, P_1)$. Then $\Delta(G, P)$ is nil of bounded exponent.

Let us prove now that $\Delta(H, P_1)$ is nil of bounded exponent. As P_0 is finite, $\Delta(H, P_0)$ is nilpotent and hence it suffices to prove that $\Delta(H/P_0, P_1/P_0)$ is nil of bounded exponent.

We have that $(H/P_1)'$ is a p'-group, P_1/P_0 is a central subgroup of H/P_0 , and for all $x \in \Delta(H/P_0, P_1/P_0)$, x^m is central in KH/P_0 . Furthermore, all hypothesis on G carry on to H/P_0 . Therefore, in order to prove that $\Delta(H/P_0, P_1/P_0)$ is nil of bounded exponent, we may replace H/P_0 by H and P_1/P_0 by P_1 and assume in addition that H' is a p'-group and P_1 is central.

Now, we shall see which is the form of a central element of KH that belongs to $\Delta(H, P_1)$.

Let S' be a transversal of T(H) in H. Observing that $T(H) = P_1 \times A_1$, where

 $A_1 = \{t \in H | t \text{ is a } p'\text{-element}\},\$

it is easy to see that

 $S = \{ab | a \in A_1, b \in S'\}$

is a transversal of P_1 in H.

Now, let $x \in \phi(H)$, $y \in H$, x = hab, $h \in P_1$, $ab \in S$. Since

$$y(ab)y^{-1}(ab)^{-1} \in H' \subset A_1$$

and P_1 is central, yxy^{-1} has the form:

 $yxy^{-1} = ha'b, a' \in A_1.$

So denoting by $\gamma(x)$ the sum of the elements of the conjugacy class of x, we have that

 $\gamma(hab) = h(a_1 + \ldots + a_r)b, a_j \in A_1, 1 \leq j \leq r.$

Therefore, we may write every central element $z \in KH$ in the form:

(1)
$$z = \sum_{i} \alpha_{i} b_{i}$$
,

where $\alpha_i \in KT(H)$, $\alpha_i b_i$ is central in *KH* for all *i*, and the b_i are distinct elements of *S'*.

We claim that $\alpha_i b_i = b_i \alpha_i$, for all *i*. In fact, as $\alpha_i b_i$ is central, we have that

 $\alpha_i b_i = b_i (\alpha_i b_i) b_i^{-1} = b_i \alpha_i.$

If in addition $z \in \Delta(H, P_1)$, then

 $\alpha_i \in \Delta(T(H), P_1)$, for all *i*.

In fact, denote by x' the image of an element $x \in KH$ by the natural epimorphism $KH \rightarrow KH/P_1$. Since $z \in \Delta(H, P_1)$,

$$z' = \sum_{i} \alpha_i' b_i' = 0.$$

But the b_i' are distinct elements of a basis of the $K(T(H)/P_1)$ -module KH/P_1 . Hence $\alpha_i' = 0$, for all *i*, which means that

$$\alpha_i \in \Delta(H, P_1) \cap KT(H) = \Delta(T(H), P_1).$$

Therefore every central element z of $\Delta(H, P_1)$ has the form (1), and furthermore $\alpha_i \in \Delta(T(H), P_1)$, for all *i*.

Call s the exponent of P_1 . Since T(H) is abelian, computing the $(s)^{\text{th}}$ -power of z in (1) we have that:

$$z^{s} = \sum_{k} (\alpha_{i}b_{i})^{s} = \sum_{i} \alpha_{i}^{s}b_{i}^{s} = 0.$$

We have proved that $z^s = 0$, for a fixed s and every central element z of $\Delta(H, P_1)$. As every $x \in \Delta(H, P_1)$ is such that x^m is central, we can conclude that $\Delta(H, P_1)$ is nil of bounded exponent.

LEMMA 3.3. If $\Delta(H, P_1)$ is nil of bounded exponent, then either P_1 is finite or H contains a characteristic p-abelian subgroup of finite index.

Proof. Suppose that P_1 is infinite. By Passman [4, Corollary 3.10, p. 197], it is enough to prove that KH satisfies a polynomial identity. Since $\Delta(H, P_0)$ is nilpotent it suffices to prove that KH/P_0 satisfies a polynomial identity.

We observe that all the hypotheses of the lemma carry on to KH/P_0 . In fact, $\Delta(H/P_0, P_1/P_0)$ is nil of bounded exponent and P_1/P_0 is infinite (because P_0 is finite). Furthermore, $(H/P_0)'$ is a p'-group and P_1/P_0 is central in H/P_0 .

Therefore, in order to prove that KH/P_0 satisfies a polynomial identity we may replace H/P_0 by H and assume in addition that H' is a p'-group and P_1 is a central subgroup of H.

Now, pick n > 0 such that $x^n = 0$ for all $x \in \Delta(H, P_1)$. We want to show that there exist elements x_1, x_2, \ldots, x_n in $\Delta(P_1) = \Delta(P_1, P_1)$ such that $x_i^2 = 0$, for all *i*, but $x_1x_2 \ldots x_n \neq 0$. In fact, as P_1 is abelian of bounded exponent, it is a direct product of cyclic groups [2, Theorem 11.2, p. 44]. P_1 is infinite and hence the number of cyclic groups is infinite. Choose h_1, \ldots, h_n generators in different cyclic subgroups and set $m_i = o(h_i) - 1$. The elements $x_i = (h_i - 1)^{m_i}$ are easily verified to satisfy the required conditions.

Take now $S = \{g_i\}_{i \in I}$ a transversal of P_1 in H, and elements $g_1, \ldots, g_n \in S$. Then, the element

$$\alpha = g_1 x_1 + \ldots + g_n x_n$$

belongs to $\Delta(H, P)$, hence $\alpha^n = 0$.

Since the x_i are central and $x_i^2 = 0$, computing α^n we get:

$$\alpha^n = F(g_1,\ldots,g_n)x_1x_2\ldots x_n,$$

where $F(X_1, \ldots, X_n)$ is a polynomial in the non-commuting variables X_1, X_2, \ldots, X_n , namely:

$$F(X_1,\ldots,X_n) = \sum X_{\sigma(1)}\ldots X_{\sigma(n)},$$

the sum running over all $\sigma \in S_n$, the symmetric group on *n* elements.

We want to show that $F(g_1, \ldots, g_n) = 0$. First we make some observations. If

$$g_{\sigma(1)}g_{\sigma(2)}\ldots g_{\sigma(n)} \equiv g_{\tau(1)}g_{\tau(2)}\ldots g_{\tau(n)} \mod (P_1)$$

for $\sigma, \tau \in S_n$, then

 $g_{\sigma(1)}g_{\sigma(2)}\ldots g_{\sigma(n)} = ag_{\tau(1)}g_{\tau(2)}\ldots g_{\tau(n)},$

for some $a \in P_1$.

On the other hand, since

 $g_i g_j = \alpha(i,j) g_j g_i,$

where $\alpha(i, j) \in H'$, we can write the product $g_{\sigma(1)}g_{\sigma(2)} \dots g_{\sigma(n)}$ in the form

 $bg_{\tau(1)}g_{\tau(2)}\ldots g_{\tau(n)}$ for some $b \in H'$.

Therefore, we obtain: a = b, with $a \in P_1$ and $b \in H'$, which is a p'-group. Thus a = b = 1.

We have shown that

 $g_{\sigma(1)}g_{\sigma(2)}\ldots g_{\sigma(n)} \equiv g_{\tau(1)}g_{\tau(2)}\ldots g_{\tau(n)} \pmod{P_1}$

if and only if

$$g_{\sigma(1)}g_{\sigma(2)}\ldots g_{\sigma(n)} = g_{\tau(1)}g_{\tau(2)}\ldots g_{\tau(n)}.$$

We now define an equivalence relation \sim in S_n setting: for $\sigma, \tau \in S_n$, $\sigma \sim \tau$ if and only if

$$g_{\sigma(1)} \ldots g_{\sigma(n)} = g_{\tau(1)} \ldots g_{\tau(n)}.$$

We denote by S_1, S_2, \ldots, S_t the equivalence classes of this relation. Choosing, for each *i*, an element $\sigma_i \in S_i$, it follows from the above that we may write:

$$F(g_1, \ldots, g_n) = g_{\sigma_1(1)} \ldots g_{\sigma_1(n)} |S_1| + \ldots + g_{\sigma_l(1)} \ldots g_{\sigma_l(n)} |S_l|.$$

Now, since

$$g_{\sigma_i(1)} \ldots g_{\sigma_i(n)} \not\equiv g_{\sigma_i(1)} \ldots g_{\sigma_i(n)} \pmod{P_1}$$

if $i \neq j$, from $F(g_1, \ldots, g_n) x_1 x_2 \ldots x_n = 0$, we get:

 $g_{\sigma_i(1)} \dots g_{\sigma_i(n)} | S_i | x_1 x_2 \dots x_n = 0$, for all *i*.

But $g_{\sigma_i(1)} \ldots g_{\sigma_i(n)}$ is invertible and $x_1 x_2 \ldots x_n \neq 0$; hence this can happen only if $|S_i| = 0$, for all *i* (that is, $p||S_i|$, for all *i*).

Therefore, $F(g_1, \ldots, g_n) = 0$, for arbitrary elements $g_1, \ldots, g_n \in S$. Now, KH is a left module over the central subalgebra KP having S as a basis, and $F(X_1, \ldots, X_n)$ is a multilinear polynomial. By [4, Lemma 1.2, p. 171], F is a polynomial identity for KH.

COROLLARY. If $\Delta(G, P)$ is nil of bounded exponent, then either P is finite or G contains a normal p-abelian subgroup of finite index.

Proof. Suppose that P is infinite, and take H as in Lemma 3.1. Since $|G/H| < \infty$, we have that $|PH/H| < \infty$ and hence $|P/P_1| < \infty$. Therefore, P_1 must be infinite. By Lemma 3.3, H contains a characteristic p-abelian subgroup of finite index, and thus the result follows.

LEMMA 3.4. If G contains a normal p-abelian subgroup of finite index, then $\Delta(G, P)$ is nil of bounded exponent.

Proof. Let L be such a subgroup of G. We have that L/L' is abelian; hence $\Delta(L/L', P \cap L/L')$ is nil of bounded exponent.

Setting

 $S = KL/L', Q = (G/L')/(L/L') \cong G/L,$

we see that K(G/L') is the crossed product $S(Q, \rho, \sigma)$, with ρ and σ as usual.

If $I = \Delta(L/L', P \cap L/L')$, applying Lemma 1.5 we conclude that $IQ = \Delta(G/L', (P \cap L)/L')$ is nil of bounded exponent. Since L' is a finite *p*-group, $\Delta(G, L')$ is nilpotent and hence $\Delta(G, P \cap L)$ is nil of bounded exponent.

Now, let us consider the natural epimorphism

 $\Phi: KG \to K(G/(P \cap L)).$

We have that

$$\Phi(\Delta(G, P)) = \Delta(G/(P \cap L), P/(P \cap L)).$$

But $P/(P \cap L) \cong PL/L$, and PL/L is a finite *p*-group since it is contained in G/L. Therefore, there exists an integer *n* such that

 $\Delta(G, P)^n \subset \Delta(G, P \cap L).$

Since we have shown that this ideal is nil of bounded exponent, the lemma is proved.

We can now give a complete answer to the initial question.

THEOREM C. Suppose that G is non-torsion and either solvable or FC. Then, $U^n \subset \xi(U)$ for some n if and only if either KG is Lie m-Engel for some m or the following conditions hold:

(i) $G^{l} \subset \xi(G)$ for some l.

(ii) A is an abelian subgroup of G and, if A is non central, then K is finite, A is of bounded exponent and for every $x \in G$ and every $t \in A$ there exists an integer r such that $xtx^{-1} = t^{p^r}$, where $(K:\mathbf{F}_p)|r$.

(iii) P is a subgroup of G of bounded exponent, contained in the centralizer of A and, if P is not finite, then G contains a normal p-abelian subgroup of finite index.

Proof. Suppose that $U^n \subset \xi(U)$ for some *n* and that *KG* is not Lie *m*-Engel.

By Theorem B, the conditions (i) and (ii) hold, and by (iii) of Theorem B, P is a subgroup of G contained in the centralizer of A. If P is not of bounded exponent, by the corollary to Theorem B, KG is Lie *m*-Engel, for some *m*, a contradiction. Hence, P is of bounded exponent.

Also, since condition (iv) of Theorem B holds, we have that $\Delta(G, P)$ is nil of bounded exponent by Lemma 3.2. By the corollary to Lemma 3.3, the remainder of condition (iii) holds.

Suppose now KG is Lie *m*-Engel for some *m*. Then, as we have noted before, $U^n \subset \xi(U)$ for a suitable *n* [see 5, Lemma 4.3. p. 151].

Finally, suppose that conditions (i), (ii) and (iii) hold. If P is finite, then $\Delta(G, P)$ is nilpotent and condition (iv) of Theorem B holds. If G contains a normal p-abelian subgroup of finite index, then using Lemma 3.4, again condition (iv) of Theorem B holds. Since conditions (i), (ii) and (iii) of this theorem are verified, then there exists an n such that $U^n \subset \xi(U)$.

Acknowledgement. The author is grateful to S. K. Sehgal for suggesting this problem.

References

- G. H. Cliff and S. K. Sehgal, Group rings with torsion units over the center, Manuscripta Math. 33 (1980), 145–158.
- 2. L. Fuchs, Abelian groups (Hungary, 1960).
- 3. I. N. Herstein, Non commutative rings, MAA (1973).
- 4. D. S. Passman, *The algebraic structure of group rings* (Wiley-Interscience, New York, 1977).
- 5. S. K. Sehgal, *Topics in group rings*, Pure and Applied Mathematics 50 (Dekker, New York, 1978).

Universidade de São Paulo, São Paulo, Brasil