GROUP RINGS WITH UNITS OF BOUNDED EXPONENT OVER THE CENTER

SÔNIA P. COELHO

Let $K G$ be the group ring of a group G over a field K, and U its group of units. Given a group H, we shall denote by $\xi(H)$ the center of H and by $T(H)$ the set of all its torsion elements.

The following question appears in [5, p. 231]: When is $U^{n} \subset \xi(U)$, for some n ? It was considered by G. Cliff and S. K. Sehgal in [1], where G is assumed to be a solvable group. A complete answer at characteristic zero is given there. Also they obtain partial results at characteristic $p \neq 0$, with certain restrictions on the exponent n.

In this note, we shall answer the question at characteristic p assuming that G is either a solvable or an $F C$-group. In fact, we shall need specially the following property which is common to both these families of groups: if H is a finitely generated subgroup of G such that $H / \xi(H)$ is torsion, then both $T(H)$ and H^{\prime}, the derived group of H, are finite groups [4, Lemma 1.5, p. 116 and 1, Lemma 2.1, p. 147].

In Section 1, we answer the question for torsion groups assuming only that G is locally finite (Theorem A), and in Section 3 we give the answer for non torsion groups that are either solvable or $F C$ (Theorem C).

First, we introduce some notation. We will denote $T(G)$ simply by T, and the integer $p \neq 0$ will always denote the characteristic of K. For an element t in a group, we shall say that t is a p-element if $o(t)$, the order of t, is a power of p, and that t is a p^{\prime}-element if $o(t)$ is not divisible by p. Similarly, a group H will be called a p^{\prime}-group if every element of H is a p^{\prime}-element.

1. The torsion subgroup of G.

Lemma 1.1. If $U^{n} \subset \xi(U)$ for some n and G has a non central p^{\prime}-element, then K is finite and the orders of the p^{\prime}-elements of G are bounded.

Proof. We shall show first that the orders of the p^{\prime}-elements of G are bounded.

It is enough to show that if u is a central p^{\prime}-element of G, then $o(u) \leqq n$. If not, take such a u, with $o(u)>n$. Then $K\langle u\rangle=\bigoplus_{i} K_{i}$, a direct sum of fields. For every i, denote by $\pi_{i}: K\langle u\rangle \rightarrow K_{i}$ the natural projection (that is, if e_{i} is the unity element of K_{i}, then $\left.\pi_{i}(u)=u e_{i}\right)$. Clearly, at

[^0]least one of the $\pi_{i}(u)$, say $\pi_{1}(u)$, has multiplicative order equal to $o(u)$. As a consequence, K_{1} has more than n elements.

Now, if t is a non central p^{\prime}-element of G, we consider $K\langle u, t\rangle=$ $\oplus_{i} K_{i}[t]$, where $K_{i}[t]$ denotes the smallest subalgebra of $K G$ that contains K_{i} and t.

We claim that $K_{1}[t]$ is not contained in the center of $K G$. In fact, suppose that $K_{1}[t]$ is central and let $e=e_{1}$ be the unity element of K_{1}. Then $e t$ is central. Now take $x \in G$ such that $x t x^{-1} \neq t$. Then, $x e t x^{-1}=$ extx ${ }^{-1}=e t$.

By considering supports in the last equality we get:

$$
u^{i} x t x^{-1}=u^{j} t, 0 \leqq i, j<o(u), i \neq j
$$

Hence $x t x^{-1}=u^{j-i} t$.
It follows that: $e u^{j-i} t=e t$, or $e u^{j-i}=e$. Then, $(e u)^{j-i}=e$. But $e u=\pi_{1}(u)$, and hence the multiplicative order of $\pi_{1}(u)$ divides $|j-i|<$ $o(u)$, a contradiction.

Now, since t is a p^{\prime} element, we have: $K_{1}[t]=\bigoplus_{i} L i$, a direct sum of fields which are Galois extensions of K_{1}. But $K_{1}[t]$ is not central, hence one of the L_{i}, say L_{1}, is not contained in the center of $K G$. Let \bar{L}_{1} be the subfield of L_{1} consisting of its central elements, and let $\phi \neq 1$ be an \bar{L}_{1}-automorphism of L_{1}.

Since $L_{1}=K(\zeta)$, with $\zeta^{o(t)}=1$, we have that $\phi(\zeta)=\zeta^{i}$, for some i.
Now, take an arbitrary element $k \in \bar{L}_{1}$. Since $U^{n} \subset \xi(U)$, we get that $(\zeta+k)^{n} \in \bar{L}_{1}$. Then,

$$
(\phi(\zeta+k))^{n}=\phi\left((\zeta+k)^{n}\right)=(\zeta+k)^{n},
$$

and $\phi(\zeta+k)$ is a root of $X^{n}-(\zeta+k)^{n}$; from this we see that

$$
\phi(\zeta+k)=\alpha(\zeta+k), \alpha^{n}=1, \alpha \neq 1 .
$$

On the other hand, $\phi(\zeta+k)=\zeta^{i}+k$, and thus

$$
\zeta^{i}+k=\alpha(\zeta+k) .
$$

Solving this equation for k, we have that

$$
k=\frac{\zeta^{i}-\alpha \zeta}{\alpha-1} .
$$

Here, only α depends on k. Since α can take at most $n-1$ values, we see that $\left|L_{1}\right|$, the number of elements of L_{1}, is at most $n-1$. But $\bar{L}_{1} \supset K_{1}$, and $\left|K_{1}\right|>n$, a contradiction.

It still remains to prove that K is finite. If not, replace K_{1} by K in the proof above. Again, we have that $K_{1}[t]=K[t]$ is not central, and we can repeat the argument to obtain a contradiction.

Lemma 1.2. Assume that $U^{n} \subset \xi(U)$ for some n. Then there exists a positive integer m, which is a power of p, such that x^{m} is central in $K G$, for every nilpotent element x in $K G$.

Proof. Let $x \in K G$ be a nilpotent element and let r be such that $x^{p r}=0$. Then, $1+x$ is a p-element of U and by hypothesis $(1+x)^{n} \in$ $\xi(U)$. Writing $n=p^{a} n^{\prime}$, with $\left(n^{\prime}, p\right)=1$, it is easy to see that $x^{p^{a}}$ is central in $K G$.

Lemma 1.3. Assume that $U^{n} \subset \xi(U)$ for some n, and let $n=p^{a} \cdot n^{\prime}$, with $\left(n^{\prime}, p\right)=1$. If G has a p-element of order greater than $2 p^{3 a}$, then $G^{p^{a}} \subset \xi(G)$.

Proof. From the proof of Lemma 1.2, we see that $x^{p a}$ is central for every nilpotent element $x \in K G$. So, set $m=p^{a}$, and take a p-element $h \in G$ such that $o(h)>2 m^{3}$. Since $h-1$ is nilpotent, we have that $(h-1)^{m}=h^{m}-1$ is central, hence h^{m} is central.

Set $h^{\prime}=h^{m}$, take $x, y \in G$ and consider the nilpotent element $y\left(h^{\prime}-1\right)$. Again, by Lemma 1.2, we have that

$$
\left(y\left(h^{\prime}-1\right)\right)^{m}=y^{m}\left(h^{\prime m}-1\right)
$$

is central. Hence:

$$
\begin{aligned}
& x y^{m}\left(h^{\prime m}-1\right)=y^{m}\left(h^{\prime m}-1\right) x, \\
& x y^{m} h^{\prime m}-x y^{m}=y^{m} h^{\prime m} x-y^{m} x .
\end{aligned}
$$

Since $o\left(h^{\prime}\right)>2 m^{2}$, we know that $h^{\prime m}-1 \neq 0$ and hence we have two elements of G in the support of the above element. If $p \neq 2$, we see immediately that $x y^{m}=y^{m} x$, thus $y^{m} \in \xi(G)$. If $p=2$, we may have:

$$
\begin{aligned}
& x y^{m}=y^{m} h^{\prime m} x \\
& x y^{m} h^{\prime m}=y^{m} x
\end{aligned}
$$

Using the fact that $h^{\prime m}$ is central and replacing $y^{m} x$ in the first equation by its value in the second one, we get that

$$
x y^{m}=x y^{m} h^{\prime m} h^{\prime m}
$$

or $\left(h^{\prime}\right)^{2 m}=1$, which contradicts the fact that $o\left(h^{\prime}\right)>2 m^{2}$.
Lemma 1.4. Let m be a power of p. If $G^{m} \subset \xi(G)$ and G contains a normal p-abelian subgroup ϕ such that G / ϕ is a finite p-group, then G is nilpotent.

Proof. This follows as in [5, 6.6, pp. 157-158].
Lemma 1.5. Let S be a commutative ring with identity, I a nil ideal of S, of bounded exponent, and Q a finite group. Let $S(Q, \rho, \sigma)$ be a crossed product of Q over S, with an arbitrary factor system ρ and σ such that $\sigma_{t}(I) \subset I$, for every $t \in Q$. Then, $I Q$ is a nil ideal of $S(Q, \rho, \sigma)$, of bounded exponent.

Proof. It is immediate to verify that $I Q$ is an ideal of $S(Q, \rho, \sigma)$.

Let $Q=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and choose m such that $s^{m}=0$, for every $s \in I$.

Take $r>m(n+1)^{2}$ and $x=s_{1} \bar{t}_{1}+\ldots+s_{n} \bar{t}_{n}$ an arbitrary element of $I Q, s_{i} \in I, 1 \leqq i \leqq n$.

We want to prove that $x^{r}=0$. It is enough to show that any product of r elements from the set $\left\{s_{1} \bar{t}_{1}, \ldots, s_{n} \bar{t}_{n}\right\}$ is zero. Then let

$$
y=s_{i_{1}} \bar{t}_{i_{1}} \ldots s_{i_{r}} \bar{t}_{i_{r}}
$$

be such a product.
It is easy to see that there exists an index j such that $s_{i j} \bar{t}_{i_{j}}$ occurs k times in y with $k>m(n+1)$, and we may suppose without loss of generality that $s_{i_{j}} \bar{t}_{i_{j}}=s_{1} \bar{t}_{1}$.

As the products $s_{i} \bar{t}_{i} s_{j} \bar{t}_{j}$ still have the form $s \bar{t}, s \in I, t \in Q$, and $\bar{t} s_{1}=$ $\sigma_{t}\left(s_{1}\right) \bar{t}$, for every $t \in Q$, we can write y in the form

$$
y=\left(\prod_{i=1}^{k} z_{i}\right) \gamma
$$

with

$$
z_{i} \in\left\{\sigma_{t}\left(s_{1}\right) \mid t \in Q\right\} \cup\left\{s_{1}\right\}, \gamma \in I Q
$$

Since the above set has at most $n+1$ elements and $k>m(n+1)$, there must exist an index j such that z_{j} occurs in y more than m times. Now, $z_{j} \in I$, therefore $z_{j}{ }^{m}=0$, and hence $y=0$.

Lemma 1.6. Let $G=T$, a locally finite group. If $U^{n} \subset \xi(U)$ for some n, then $K T$ satisfies a polynomial identity.

Proof. Let m be as in Lemma 1.2. We shall show that $K T$ satisfies a polynomial identity in $2 m+1$ variables. Consider $2 m$ arbitrary elements of $K T$, say $x_{1}, x_{2}, \ldots, x_{2 m}$. By considering the subgroup generated by the supports of these elements, we may suppose that T is finite.

Denote by $J(K T)$ the Jacobson radical of $K T$. Then

$$
K T / J(K T)=\bigoplus_{i} M_{n i}\left(D_{i}\right)
$$

a direct sum of full matrix rings over division rings D_{i}.
Set x^{\prime} for the image of an element $x \in K T$ under the natural epimorphism $K T \rightarrow K T / J(K T)$. For a given index i, take x_{i} an arbitrary nilpotent element in $M_{n_{i}}\left(D_{i}\right)$, and choose any element $y_{i} \in K T$ such that $\left(y_{i}\right)^{\prime}=x_{i}$. Then y_{i} is nilpotent, since $J(K T)$ is nilpotent because T is finite. By Lemma 1.2, $y_{i}{ }^{m}$ is central in $K T$. Hence $x_{i}{ }^{m}=\left(y_{i}{ }^{m}\right)^{\prime}$ is a central nilpotent element of $K T / J(K)$, so it must be zero.

Now it is easy to see that the size of the matrices is bounded by m, that is, $n_{i} \leqq m$, for every i.

On the other hand, given i and $d_{i} \neq 0$ in D_{i}, we can choose $u \in U$ such that $u^{\prime}=d_{i}$ (see [5, Lemma 3.3, p. 179]). As $u^{n} \in \xi(U), d_{i}{ }^{n}$ is central in D_{i}, and hence D_{i} is a field, by [3, Theorem 3.22, p. 79].

Therefore, $K T / J(K T)$ satisfies $S_{2 m}\left(X_{1}, X_{2}, \ldots, X_{2 m}\right)$, the standard polynomial of degree $2 m$ in the non commuting variables X_{1}, X_{2}, \ldots, $X_{2_{m}}$. Again, since $J(K T)$ is nilpotent, we can use Lemma 1.2 to obtain, for every $z \in K T$:

$$
\left(S_{2 m}\left(x_{1}, \ldots, x_{2 m}\right)\right)^{m} z=z\left(S_{2 m}\left(x_{1}, \ldots, x_{2 m}\right)\right)^{m}
$$

We may now obtain a characterization for U to be of bounded exponent over the center when G is a locally finite group.

Theorem A. Let $G=T$, a locally finite group. Then, $U^{n} \subset \xi(U)$ for some n if and only if the following conditions hold:
(i) $T^{l} \subset \xi(T)$ for some l.
(ii) T contains a normal p-abelian subgroup of finite index.
(iii) Either every p^{\prime}-element of T is central or T is of bounded exponent and K is finite.

Proof. Suppose $U^{n} \subset \xi(U)$ for some n. Then (i) is trivial and (ii) follows from Lemma 1.6 and a Theorem of Passman [4, Corollary 3.10, p. 197].

To prove (iii), assume that not every p^{\prime}-element of T is central. By Lemma 1.1, K is finite, and for every p^{\prime}-element $t \in T, t^{r}=1$, for a suitable r. Now, if $n=p^{a} \cdot n^{\prime}$, with $\left(n^{\prime}, p\right)=1$, and T has a p-element of order greater than $2 p^{3 a}$, then $T^{p a} \subset \xi(T)$ by Lemma 1.3, and hence every p^{\prime}-element is central, a contradiction. So, for every p-element $t \in T, t^{s}=1$, for a suitable s.

Now take $x \in T$ and let T_{0} be a normal p-abelian subgroup of index u, as in (ii). Then, $x^{u} \in T_{0}$, and we may write: $x^{u}=y z$, where $y, z \in T_{0}, y$ is a p-element and z is a p^{\prime}-element. Since T_{0} / T_{0}^{\prime} is abelian, taking $(r s)^{\text {th }}$-powers, we get:

$$
x^{u r s} \equiv y^{r z_{z} z^{r s}}\left(\bmod T_{0}{ }^{\prime}\right) \equiv 1\left(\bmod T_{0}{ }^{\prime}\right) .
$$

But $T_{0}{ }^{\prime}$ is finite, so we have that

$$
x^{u \tau s\left|T_{0^{\prime}}\right|}=1,
$$

and (iii) is proved.
Assume now that conditions (i), (ii) and (iii) hold, and let T_{0} be a normal p-abelian subgroup of finite index in T, as in (ii), and A the set: $\left\{t \in T \mid t\right.$ is a p^{\prime}-element $\}$.
Suppose first that A is a central subgroup of T. Then, as T is locally finite, it is easy to see that $T=P \times A$, where $P=\{t \in T \mid t$ is a p-element $\}$ is a subgroup of T.

Considering the subgroup $\phi=T_{0} \cdot A$, it is easy to see that T satisfies the conditions of Lemma 1.4 and hence it is nilpotent. Furthermore, T contains a normal p-abelian subgroup ϕ such that T / ϕ is a finite p-group and we conclude from [5, Theorem 6.1, p. 155] that $K T$ is Lie m-Engel
for a suitable m. Hence, $U^{n} \subset \xi(U)$ for some n by [5, Lemma 4.3, p. 151].
Suppose now that A is a non central subset. By (iii), $T^{s}=1$, for some s, and K is finite. Because $T_{0}{ }^{\prime}$ is a finite p-group, it is easy to see that

$$
P_{0}=\left\{t \in T_{0} \mid t \text { is a } p \text {-element }\right\}
$$

is a normal subgroup of T.
We claim that $\Delta\left(T, P_{0}\right)$, the kernel of the natural epimorphism $K T \rightarrow K T / P_{0}$, is nil of bounded exponent. Indeed, $\Delta\left(T_{0} / T_{0}{ }^{\prime}, P_{0} / T_{0}{ }^{\prime}\right)$ is nil of bounded exponent because $T_{0} / T_{0}{ }^{\prime}$ is abelian and $P_{0} / T_{0}{ }^{\prime}$ is of bounded exponent. Setting

$$
S=K T_{0} / T_{0}^{\prime}, Q=\left(T / T_{0}^{\prime}\right) /\left(T_{0} / T_{0}^{\prime}\right) \simeq T / T_{0}
$$

we see that $K T / T_{0}{ }^{\prime}$ is the crossed product $S(Q, \rho, \sigma)$, with ρ and σ as usual. If $I=\Delta\left(T_{0} / T_{0}{ }^{\prime}, P_{0} / T_{0}{ }^{\prime}\right)$, by Lemma 1.5 we conclude that $I Q=\Delta\left(T / T_{0}{ }^{\prime}, P_{0} / T_{0}{ }^{\prime}\right)$ is nil of bounded exponent. Since $T_{0}{ }^{\prime}$ is a finite p-group, we see that $\Delta\left(T_{0}, T_{0}{ }^{\prime}\right)$ is nilpotent and hence it is easy to see that $\Delta\left(T, P_{0}\right)$ is nil of bounded exponent by considering the natural epimorphism $K T \rightarrow K T / T_{0}{ }^{\prime}$.

Now, T_{0} / P_{0} is a normal subgroup of T / P_{0}, of finite index, say, r. By [4, Lemma 1.10, p. 176], we get that

$$
K T / P_{0} \subset M_{r}\left(K T_{0} / P_{0}\right)
$$

Pick now $u \in U$. Considering the subgroup generated by the support of u, we may suppose that T is finite. Hence T_{0} / P_{0} is a finite abelian p^{\prime}-group, such that $\left(T_{0} / P_{0}\right)^{s}=1$.

Therefore, $K T_{0} / P_{0}=\bigoplus_{i} K_{i}$, a direct sum of fields, all of them contained in $K(\zeta)$, with $\zeta^{s}=1$. Hence,

$$
M_{r}\left(K T_{0} / P_{0}\right)=M_{r}\left(\bigoplus_{i} K_{i}\right)=\bigoplus_{i} M_{r}\left(K_{i}\right)
$$

and we have that $K T / P_{0} \subset \bigoplus_{i} M_{r}\left(F_{i}\right)$, with $F_{i}=K(\zeta)$, for every i. Set S for $\bigoplus_{i} M_{r}\left(F_{i}\right)$ and u^{\prime} for the image of u by the composition map of the natural epimorphism $K T \rightarrow K T / P_{0}$ followed by the inclusion $K T / P_{0} \rightarrow S$. As K is finite, the group of nonsingular matrices of $M^{r}(K(\zeta))$ is finite, say of order q, depending on r and s only. So, $u^{\prime q}=1$ and we get:

$$
u^{\ell}=1+\delta, \delta \in \Delta\left(T, P_{0}\right)
$$

As $\Delta\left(T, P_{0}\right)$ is nil of bounded exponent, we can take m a power of p such that $x^{m}=0$ for all $x \in \Delta\left(T, P_{0}\right)$. Now we can conclude that

$$
u^{q m}=1+\delta^{m}=1 \in \xi(U)
$$

Corollary. Let $G=T$, a locally finite group, and assume that the set of all p-elements of T is not of bounded exponent. Then the following conditions are equivalent:
(i) $U^{n} \subset \xi(U)$ for some n.
(ii) $K T$ is Lie m-Engel for some m.

Proof. First suppose that $U^{n} \subset \xi(U)$ for some n. By the preceeding theorem, we get that (i), (ii) and (iii) hold.

Furthermore, every p^{\prime}-element of T is central by Lemma 1.3. Follow now the "only if" part of the proof of the theorem to conclude that $K T$ is Lie m-Engel for some m.

By [5, Lemma 4.3, p. 151], the converse is obvious.
2. A certain nil ideal of $K G$. In this section, G will be either a solvable or an $F C$-group. As we mentioned in the introduction, if $G / \xi(G)$ is torsion, then we can conclude that T is a locally finite subgroup of G and G^{\prime} is contained in T.

We shall denote by A the set of all p^{\prime}-elements of G and by P the set of all p-elements of G.

Lemma 2.1. Suppose that $U^{n} \subset \xi(U)$ for some n and G has an element of infinite order. Then, every idempotent of $K G$ is central.

Proof. See [1, Lemma 2.4, p. 148].
Lemma 2.2. Suppose that $U^{n} \subset \xi(U)$ for some n and G has an element of infinite order. Then:
(i) A is an abelian subgroup of G.
(ii) If A is non central, then K is finite and for every $x \in G$ and every $t \in A$ there exists an integer r such that $x t x^{-1}=t^{p r}$, and $\left(K: F_{p}\right) \mid r$.
(iii) P is a subgroup of G.
(iv) $T=P \times A$.

Proof. For the proof of (i) see [1, Corollary 2.5, p. 148].
To prove (ii) we notice that if A is non central, then K is finite by Lemma 1.1.

Now, take $x \in G$ and $t \in A$ such that $x t x^{-1} \neq t$. We have that $K\langle t\rangle=\oplus_{\imath} k_{i}$, a direct sum of fields such that at least one of them, say K_{1}, is of the form $K_{i}=K(\zeta)$, where ζ is a root of unity whose order is equal to the order of t, and the natural projection $K\langle t\rangle \rightarrow K_{1}$ maps t on ζ.

Since, by Lemma 2.1, every idempotent is central, we must have $x t x^{-1}=t^{i}$ for some i (this can be seen by considering the idempotent $\left.e=(o(t))^{-1}\left(1+t+\ldots+t^{o(t)-1}\right)\right)$. Hence, conjugation by x defines an automorphism ϕ of K_{1}. By the above, $\phi(\zeta)=\zeta^{i}$.

On the other hand, since K_{1} is finite, ϕ is a power of the Frobenius automorphism of K_{1}, F, given by:

$$
F(k)=k^{p}, \text { for all } k \in K_{1} .
$$

If $\phi=F^{r}$, we have that

$$
\phi(\zeta)=\zeta^{p r}=\zeta^{i},
$$

from which we conclude that $o(t)=o(\zeta)$ divides $p^{r}-i$. Then,

$$
p^{r} \equiv i(\bmod o(t)) \text { and } x t x^{-1}=t^{i}=t^{p r} .
$$

Furthermore, as every element of K is fixed by ϕ, we have that $k^{p^{r}}=k$ for every $k \in K$, and hence K is contained in a field with p^{r} elements, that is: $\left(K: \mathbf{F}_{p}\right) \mid r$.

For (iii) and (iv), we observe first that every p-element commutes with every p^{\prime}-element. If not, then by (ii) K is finite. Now take $\pi \in P$ and $t \in A$ such that $\pi t \pi^{-1} \neq t$ and proceed as in [1,3.2, p. 152] to conclude that this implies the existence of a non central idempotent, which contradicts Lemma 2.1.

As T is locally finite, the proof of (iii) and (iv) is now trivial.
Lemma 2.3. Let A_{1} be an abelian p^{\prime}-subgroup of G, and K a finite field. If, for every $t \in A_{1}$ and every $x \in G$, there exists an integer r such that $x t x^{-1}=t^{p r}$, and $\left(K: \mathbf{F}_{p}\right) \mid r$, then every idempotent of $K A_{1}$ is central in $K G$.

Proof. Let $e \in K A_{1}$ be an idempotent, and let $x \in G$. By considering the subgroup generated by the support of e, we may suppose that A_{1} is finite.

Let $A_{1}=\left\langle t_{1}\right\rangle \times \ldots \times\left\langle t_{s}\right\rangle$, a direct product of cyclic groups. It is easy to see that we may choose an integer r such that $x t_{i} x^{-1}=t_{i}{ }^{p r}$, for every i.

We have that $e=f\left(t_{1}, \ldots, t_{s}\right)$, where $f\left(X_{1}, \ldots, X_{s}\right)$ is a polynomial in the commuting variables X_{1}, \ldots, X_{s}, with coefficients in K. Conjugating by x, we have:

$$
x e x^{-1}=f\left(t_{1}{ }^{p r}, \ldots, t_{s}^{p^{r}}\right)
$$

But by hypothesis every element $k \in K$ satisfies $k^{p r}=k$, therefore this is true for the coefficients of f. Hence

$$
f\left(t_{1} p^{r r}, \ldots, t_{s}^{p r}\right)=\left(f\left(t_{1}, \ldots, t_{1}\right)\right)^{p r}
$$

and

$$
x e x^{-1}=e^{p r}=e,
$$

as we wished to prove.
We can now give a partial characterization for U to be of bounded exponent over the center, when G is non torsion.

Theorem B. Suppose that G has an element of infinite order. Then $U^{n} \subset \xi(U)$ for some n if and only if the following conditions hold:
(i) $G^{l} \subset \xi(G)$ for some l.
(ii) A is an abelian subgroup of G and, if A is non central, then K is finite, A is of bounded exponent and for every $t \in A$ and every $x \in G$ there exists an integer r such that $x t x^{-1}=t^{p r}$, where $\left(K: \mathbf{F}_{p}\right) \mid r$.
(iii) P is a subgroup of G contained in the centralizer of A.
(iv) There exists an integer m, which is a power of p, such that x^{m} is central in $K G$, for every $x \in \Delta(G, P)$.

Proof. Suppose first that $U^{n} \subset \xi(U)$ for some n. (i) is trivial, (ii) follows from Lemma 1.1 and Lemma 2.2, and (iii) follows from Lemma 2.2.

To prove (iv), let $x \in \Delta(G, P)$. We may suppose that G is finitely generated and hence P is a finite normal subgroup of G. Therefore, x is nilpotent and we can apply Lemma 1.2 to obtain the result.

Suppose now conditions (i) to (iv) hold, and pick $u \in U$. Again we may suppose that G is finitely generated and hence T is finite.

We observe that if $K A=\bigoplus_{i} K_{i}$, a direct sum of fields, then $K(A \times P)=\bigoplus_{i} K_{i} P$.

Consider now the natural epimorphism $K G \rightarrow K G / P$, with kernel $\Delta(G, P)$.

Setting S^{\prime} for the image of a subset S of $K G$ under this epimorphism, we have:

$$
(K(A \times P))^{\prime}=\oplus K_{i}^{\prime}
$$

where each $K_{i}{ }^{\prime}$ is a field. Furthermore,

$$
T(G / P)=(A \times P) / P
$$

and hence

$$
K T(G / P)=\bigoplus_{i} K_{i}^{\prime}
$$

Since, by condition (ii) and Lemma 2.3, every idempotent of $K A$ is central in $K G$, and $G^{\prime} \subset T$, we may apply [5 , Lemma 3.22, p. 194], and u can be written in the form:
$\left(^{*}\right) \quad u=\sum_{i} f_{i} g_{i}+\delta, f_{i} \in K_{i}, g_{i} \in G, \delta \in \Delta(G, P)$.
Suppose first that A is central. Taking the $(l)^{\text {th }}$-power in $\left({ }^{*}\right)$, we have:

$$
u^{l}=\sum_{i} f_{i} g_{i}^{l}+\delta^{\prime}, \delta^{\prime} \in \Delta(G, P)
$$

Now, $\sum_{i} f_{i}{ }^{l} g_{i}{ }^{l}$ is central, and it is sufficient to apply condition (iv).
Suppose now that K is finite and A is of bounded exponent s. Then, $K_{i} \subset K(\zeta)$, with $\zeta^{s}=1$, for all i.

Computing ($l)^{\text {th }}$-powers in $\left(^{*}\right.$), we obtain:

$$
u^{l}=\sum_{i} f_{i}^{\prime} g_{i}^{l}+\delta^{\prime}, f_{i}^{\prime} \in K_{i}, g_{i}^{l} \in \xi(G), \delta^{\prime} \in \Delta(G, P) .
$$

Since $K_{i} \subset K(\zeta)$, for all i, we have that $f_{i}{ }^{\prime r}=1$ for every $f_{i}^{\prime} \neq 0$ and a suitable r which depends on K and s only.

Taking $(r)^{\text {th }}$-powers above, we have:

$$
u^{l r}=\sum_{i} g_{i}^{l r}+\delta^{\prime \prime}, \delta^{\prime \prime} \in \Delta(G, P) .
$$

Now, $\sum_{i} g_{i}{ }^{l r}$ is central and it suffices to use condition (iv).
Corollary. Suppose that the set of all p-elements of G is not of bounded exponent. Then the following conditions are equivalent:
(i) $U^{n} \subset \xi(U)$ for some n.
(ii) $K G$ is Lie l-Engel for some l.

Proof. Suppose first $U^{n} \subset \xi(U)$ for some n. By the corollary to Theorem A, $K T$ is Lie m-Engel for some m and hence T is nilpotent.

As $G^{\prime} \subset T$, we can conclude that G is solvable (even if it were an $F C$-group).

By Lemma 1.3, $G^{p a} \subset \xi(G)$ for some a and by [1, Lemma 2.2, p. 148] G^{\prime} is a p-group. Hence, as we noted before, $\Delta\left(G, G^{\prime}\right)$ is a nil ideal.

Given $x, y \in K G, x y-y x \in \Delta\left(G, G^{\prime}\right)$. By (iv) of Theorem B, for every $z \in K G$ we have that

$$
(x y-y x)^{m} z=z(x y-y x)^{m} .
$$

Hence, $K G$ satisfies a polynomial identity. By Passman's theorem [2, Theorem 1.1, p. 142], setting ϕ for the $F C$-subgroup of G, we have: $|G / \phi|<\infty,\left|\phi^{\prime}\right|<\infty$.

Furthermore, it is easy to see that both are p-groups. By Lemma 1.4, G is nilpotent. We conclude from [$\mathbf{5}$, Theorem 6.1, p. 155] that $K G$ is Lie l-Engel for some l.

As we noted before, the converse is immediate by [5, Lemma 4.3, p. 151].
3. Nil augmentation ideals of bounded exponent. We shall now discuss condition (iv) of Theorem B.

In all this section, except in Theorem C, G will be either a solvable or an $F C$-group, such that T is a locally finite subgroup of G, and $G^{\prime} \subset T$.

Furthermore, we shall assume that T has the form: $T=P \times A$, where

$$
A=\left\{t \in G \mid t \text { is a } p^{\prime} \text {-element }\right\}
$$

is an abelian subgroup of G and

$$
P=\{t \in G \mid t \text { is a } p \text {-element }\}
$$

is a subgroup of G, of bounded exponent.

We introduce some notation. Given a group $H, \phi(H)$ will denote the $F C$-subgroup of H. The group $\phi(G)$ will be denoted simply by ϕ.

Lemma 3.1. Suppose that there exists an integer m, which is a power of p, such that x^{m} is central in $K G$ for all $x \in \Delta(G, P)$. Then G contains normal subgroup H, of finite index, containing ϕ, such that $H^{\prime} \cap P$ is finite.

Proof. By [2, Theorem 1.1, p. 142], if $K G$ satisfies a polynomial identity, then $|G / \phi|<\infty,\left|\phi^{\prime}\right|<\infty$. Since $G^{\prime} \subset P \times A$, and $(\phi \cdot A) / A$ $\subset \phi(G / A)$, it is enough to prove that $K(G / A)$ satisfies a polynomial identity.

In the group ring $K(G / A)$, the ideal $\Delta(G / A,(P \times A) / A)$ is the image of $\Delta(G, P)$ by the natural epimorphism $K G \rightarrow K(G / A)$ and hence it also satisfies the hypothesis.

As $(G / A)^{\prime} \subset(P \times A) / A$, we have that

$$
\Delta\left(G / A,(G / A)^{\prime}\right) \subset \Delta(G / A,(D \times A) / A)
$$

and it follows easily, as in the proof of the corollary to Theorem B, that $K(G / A)$ satisfies the polynomial $(X Y-Y X)^{m} Z-Z(X Y-Y X)^{m}$.

In the following lemmas, H will be a normal subgroup of G, of finite index, containing ϕ, as in the previous lemma, P_{0} will be $H^{\prime} \cap P$ (hence a finite group) and P_{1} will be $H \cap P$.

Lemma 3.2. Suppose that there exists a positive integer m, which is a power of p, such that x^{m} is central in $K G$, for all x in $\Delta(G, P)$. Then, $\Delta(G, P)$ is nil of bounded exponent.

Proof. We observe first that it is enough to prove that $\Delta\left(H, P_{1}\right)$ is nil of bounded exponent. In fact, suppose that this were proved. Given $x \in \Delta(G, P)$, then x^{m} is a central element. But every central element of $\Delta(G, P)$ is contained in $\Delta(G, P) \cap K \phi$, which is contained in $\Delta\left(H, P_{1}\right)$. Then $\Delta(G, P)$ is nil of bounded exponent.

Let us prove now that $\Delta\left(H, P_{1}\right)$ is nil of bounded exponent. As P_{0} is finite, $\Delta\left(H, P_{0}\right)$ is nilpotent and hence it suffices to prove that $\Delta\left(H / P_{0}\right.$, $\left.P_{1} / P_{0}\right)$ is nil of bounded exponent.

We have that $\left(H / P_{1}\right)^{\prime}$ is a p^{\prime}-group, P_{1} / P_{0} is a central subgroup of H / P_{0}, and for all $x \in \Delta\left(H / P_{0}, P_{1} / P_{0}\right), x^{m}$ is central in $K H / P_{0}$. Furthermore, all hypothesis on G carry on to H / P_{6}. Therefore, in order to prove that $\Delta\left(H / P_{0}, P_{1} / P_{0}\right)$ is nil of bounded exponent, we may replace H / P_{0} by H and P_{1} / P_{0} by P_{1} and assume in addition that H^{\prime} is a p^{\prime}-group and P_{1} is central.

Now, we shall see which is the form of a central element of $K H$ that belongs to $\Delta\left(H, P_{1}\right)$.

Let S^{\prime} be a transversal of $T(H)$ in H. Observing that $T(H)=P_{1} \times A_{1}$, where

$$
A_{1}=\left\{t \in H \mid t \text { is a } p^{\prime} \text {-element }\right\},
$$

it is easy to see that

$$
S=\left\{a b \mid a \in A_{1}, b \in S^{\prime}\right\}
$$

is a transversal of P_{1} in H.
Now, let $x \in \phi(H), y \in H, x=h a b, h \in P_{1}, a b \in S$. Since

$$
y(a b) y^{-1}(a b)^{-1} \in H^{\prime} \subset A_{1}
$$

and P_{1} is central, $y x y^{-1}$ has the form:

$$
y x y^{-1}=h a^{\prime} b, a^{\prime} \in A_{1} .
$$

So denoting by $\gamma(x)$ the sum of the elements of the conjugacy class of x, we have that

$$
\gamma(h a b)=h\left(a_{1}+\ldots+a_{r}\right) b, a_{j} \in A_{1}, 1 \leqq j \leqq r .
$$

Therefore, we may write every central element $z \in K H$ in the form:

$$
\text { (1) } z=\sum_{i} \alpha_{i} b_{i} \text {, }
$$

where $\alpha_{i} \in K T(H), \alpha_{i} b_{i}$ is central in $K H$ for all i, and the b_{i} are distinct elements of S^{\prime}.
We claim that $\alpha, b_{i}=b_{i} \alpha_{i}$, for all i. In fact, as $\alpha_{i} b_{i}$ is central, we have that

$$
\alpha_{i} b_{i}=b_{i}\left(\alpha_{i} b_{i}\right) b_{i}^{-1}=b_{i} \alpha_{i} .
$$

If in addition $z \in \Delta\left(H, P_{1}\right)$, then

$$
\alpha_{i} \in \Delta\left(T(H), P_{1}\right), \text { for all } i .
$$

In fact, denote by x^{\prime} the image of an element $x \in K H$ by the natural epimorphism $K H \rightarrow K H / P_{1}$. Since $z \in \Delta\left(H, P_{1}\right)$,

$$
z^{\prime}=\sum_{i} \alpha_{i}{ }^{\prime} b_{i}^{\prime}=0 .
$$

But the $b_{i}{ }^{\prime}$ are distinct elements of a basis of the $K\left(T(H) / P_{1}\right)$-module $K H / P_{1}$. Hence $\alpha_{i}{ }^{\prime}=0$, for all i, which means that

$$
\alpha_{i} \in \Delta\left(H, P_{1}\right) \cap K T(H)=\Delta\left(T(H), P_{1}\right) .
$$

Therefore every central element z of $\Delta\left(H, P_{1}\right)$ has the form (1), and furthermore $\alpha_{i} \in \Delta\left(T(H), P_{1}\right)$, for all i.

Call s the exponent of P_{1}. Since $T(H)$ is abelian, computing the $(s)^{\text {th }}$-power of z in (1) we have that:

$$
z^{s}=\sum_{k}\left(\alpha_{i} b_{i}\right)^{s}=\sum_{i} \alpha_{i}^{s} b_{i}{ }^{s}=0 .
$$

We have proved that $z^{s}=0$, for a fixed s and every central element z of $\Delta\left(H, P_{1}\right)$. As every $x \in \Delta\left(H, P_{1}\right)$ is such that x^{m} is central, we can conclude that $\Delta\left(H, P_{1}\right)$ is nil of bounded exponent.

Lemma 3.3. If $\Delta\left(H, P_{1}\right)$ is nil of bounded exponent, then either P_{1} is finite or H contains a characteristic p-abelian subgroup of finite index.

Proof. Suppose that P_{1} is infinite. By Passman [4, Corollary 3.10, p. 197], it is enough to prove that $K H$ satisfies a polynomial identity. Since $\Delta\left(H, P_{0}\right)$ is nilpotent it suffices to prove that $K H / P_{0}$ satisfies a polynomial identity.

We observe that all the hypotheses of the lemma carry on to $K H / P_{0}$. In fact, $\Delta\left(H / P_{0}, P_{1} / P_{0}\right)$ is nil of bounded exponent and P_{1} / P_{0} is infinite (because P_{0} is finite). Furthermore, $\left(H / P_{0}\right)^{\prime}$ is a p^{\prime}-group and P_{1} / P_{0} is central in H / P_{0}.

Therefore, in order to prove that $K H / P_{0}$ satisfies a polynomial identity we may replace H / P_{0} by H and assume in addition that H^{\prime} is a p^{\prime}-group and P_{1} is a central subgroup of H.

Now, pick $n>0$ such that $x^{n}=0$ for all $x \in \Delta\left(H, P_{1}\right)$. We want to show that there exist elements $x_{1}, x_{2}, \ldots, x_{n}$ in $\Delta\left(P_{1}\right)=\Delta\left(P_{1}, P_{1}\right)$ such that $x_{i}{ }^{2}=0$, for all i, but $x_{1} x_{2} \ldots x_{n} \neq 0$. In fact, as P_{1} is abelian of bounded exponent, it is a direct product of cyclic groups [2, Theorem 11.2 , p. 44]. P_{1} is infinite and hence the number of cyclic groups is infinite. Choose h_{1}, \ldots, h_{n} generators in different cyclic subgroups and set $m_{i}=o\left(h_{i}\right)-1$. The elements $x_{i}=\left(h_{i}-1\right)^{m_{i}}$ are easily verified to satisfy the required conditions.
Take now $S=\left\{g_{i}\right\}_{i \in I}$ a transversal of P_{1} in H, and elements $g_{1}, \ldots, g_{n} \in S$. Then, the element

$$
\alpha=g_{1} x_{1}+\ldots+g_{n} x_{n}
$$

belongs to $\Delta(H, P)$, hence $\alpha^{n}=0$.
Since the x_{i} are central and $x_{i}{ }^{2}=0$, computing α^{n} we get:

$$
\alpha^{n}=F\left(g_{1}, \ldots, g_{n}\right) x_{1} x_{2} \ldots x_{n},
$$

where $F\left(X_{1}, \ldots X_{n}\right)$ is a polynomial in the non-commuting variables $X_{1}, X_{2}, \ldots, X_{n}$, namely:

$$
F\left(X_{1}, \ldots, X_{n}\right)=\sum X_{\sigma(1)} \ldots X_{\sigma(n)},
$$

the sum running over all $\sigma \in S_{n}$, the symmetric group on n elements.
We want to show that $F\left(g_{1}, \ldots, g_{n}\right)=0$. First we make some observations. If

$$
g_{\sigma(1)} g_{\sigma(2)} \ldots g_{\sigma(n)} \equiv g_{\tau(1)} g_{\tau(2)} \ldots g_{\tau(n)} \bmod \left(P_{1}\right)
$$

for $\sigma, \tau \in S_{n}$, then

$$
g_{\sigma(1)} g_{\sigma(2)} \ldots g_{\sigma(n)}=a g_{\tau(1)} g_{\tau(2)} \ldots g_{\tau(n)}
$$

for some $a \in P_{1}$.
On the other hand, since

$$
g_{i} g_{j}=\alpha(i, j) g_{j} g_{i},
$$

where $\alpha(i, j) \in H^{\prime}$, we can write the product $g_{\sigma(1)} g_{\sigma(2)} \ldots g_{\sigma(n)}$ in the form

$$
b g_{\tau(1)} g_{\tau(2)} \ldots g_{\tau(n)} \text { for some } b \in H^{\prime}
$$

Therefore, we obtain: $a=b$, with $a \in P_{1}$ and $b \in H^{\prime}$, which is a p^{\prime}-group. Thus $a=b=1$.

We have shown that

$$
g_{\sigma(1)} g_{\sigma(2)} \ldots g_{\sigma(n)} \equiv g_{\tau(1)} g_{\tau(2)} \ldots g_{\tau(n)}\left(\bmod P_{1}\right)
$$

if and only if

$$
g_{\sigma(1)} g_{\sigma(2)} \ldots g_{\sigma(n)}=g_{\tau(1)} g_{\tau(2)} \ldots g_{\tau(n)} .
$$

We now define an equivalence relation \sim in S_{n} setting: for $\sigma, \tau \in S_{n}$, $\sigma \sim \tau$ if and only if

$$
g_{\sigma(1)} \ldots g_{\sigma(n)}=g_{\tau(1)} \ldots g_{\tau(n)} .
$$

We denote by $S_{1}, S_{2}, \ldots, S_{t}$ the equivalence classes of this relation. Choosing, for each i, an element $\sigma_{i} \in S_{i}$, it follows from the above that we may write:

$$
F\left(g_{1}, \ldots, g_{n}\right)=g_{\sigma_{1}(1)} \ldots g_{\sigma_{1}(n)}\left|S_{1}\right|+\ldots+g_{\sigma_{t}(1)} \ldots g_{\sigma_{l}(n)}\left|S_{t}\right| .
$$

Now, since

$$
g_{\sigma_{i}(1)} \ldots g_{\sigma_{i}(n)} \not \equiv g_{\sigma_{j}(1)} \ldots g_{\sigma_{j}(n)}\left(\bmod P_{1}\right)
$$

if $i \neq j$, from $F\left(g_{1}, \ldots, g_{n}\right) x_{1} x_{2} \ldots x_{n}=0$, we get:

$$
g_{\sigma_{i}(1)} \ldots g_{\sigma_{i}(n)}\left|S_{i}\right| x_{1} x_{2} \ldots x_{n}=0, \text { for all } i .
$$

But $g_{\sigma_{i}(1)} \ldots g_{\sigma_{i}(n)}$ is invertible and $x_{1} x_{2} \ldots x_{n} \neq 0$; hence this can happen only if $\left|S_{i}\right|=0$, for all i (that is, $p \| S_{i} \mid$, for all i).

Therefore, $F\left(g_{1}, \ldots, g_{n}\right)=0$, for arbitrary elements $g_{1}, \ldots, g_{n} \in S$.
Now, $K H$ is a left module over the central subalgebra $K P$ having S as a basis, and $F\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial. By [4, Lemma $1.2, \mathrm{p} .171$], F is a polynomial identity for $K H$.

Corollary. If $\Delta(G, P)$ is nil of bounded exponent, then either P is finite or G contains a normal p-abelian subgroup of finite index.

Proof. Suppose that P is infinite, and take H as in Lemma 3.1. Since $|G / H|<\infty$, we have that $|P H / H|<\infty$ and hence $\left|P / P_{1}\right|<\infty$. Therefore, P_{1} must be infinite. By Lemma 3.3, H contains a characteristic p-abelian subgroup of finite index, and thus the result follows.

Lemma 3.4. If G contains a normal p-abelian subgroup of finite index, then $\Delta(G, P)$ is nil of bounded exponent.

Proof. Let L be such a subgroup of G. We have that L / L^{\prime} is abelian; hence $\Delta\left(L / L^{\prime}, P \cap L / L^{\prime}\right)$ is nil of bounded exponent.

Setting

$$
S=K L / L^{\prime}, Q=\left(G / L^{\prime}\right) /\left(L / L^{\prime}\right) \cong G / L
$$

we see that $K\left(G / L^{\prime}\right)$ is the crossed product $S(Q, \rho, \sigma)$, with ρ and σ as usual.

If $I=\Delta\left(L / L^{\prime}, P \cap L / L^{\prime}\right)$, applying Lemma 1.5 we conclude that $I Q=\Delta\left(G / L^{\prime},(P \cap L) / L^{\prime}\right)$ is nil of bounded exponent. Since L^{\prime} is a finite p-group, $\Delta\left(G, L^{\prime}\right)$ is nilpotent and hence $\Delta(G, P \cap L)$ is nil of bounded exponent.

Now, let us consider the natural epimorphism

$$
\Phi: K G \rightarrow K(G /(P \cap L)
$$

We have that

$$
\Phi(\Delta(G, P))=\Delta(G /(P \cap L), P /(P \cap L))
$$

But $P /(P \cap L) \cong P L / L$, and $P L / L$ is a finite p-group since it is contained in G / L. Therefore, there exists an integer n such that

$$
\Delta(G, P)^{n} \subset \Delta(G, P \cap L)
$$

Since we have shown that this ideal is nil of bounded exponent, the lemma is proved.

We can now give a complete answer to the initial question.
Theorem C. Suppose that G is non-torsion and either solvable or $F C$. Then, $U^{n} \subset \xi(U)$ for some n if and only if either $K G$ is Lie m-Engel for some m or the following conditions hold:
(i) $G^{l} \subset \xi(G)$ for some l.
(ii) A is an abelian subgroup of G and, if A is non central, then K is finite, A is of bounded exponent and for every $x \in G$ and every $t \in A$ there exists an integer r such that $x x^{-1}=t^{p r}$, where $\left(K: \mathbf{F}_{p}\right) \mid r$.
(iii) P is a subgroup of G of bounded exponent, contained in the centralizer of A and, if P is not finite, then G contains a normal p-abelian subgroup of finite index.

Proof. Suppose that $U^{n} \subset \xi(U)$ for some n and that $K G$ is not Lie m-Engel.

By Theorem B, the conditions (i) and (ii) hold, and by (iii) of Theorem B, P is a subgroup of G contained in the centralizer of A. If P is not of bounded exponent, by the corollary to Theorem $\mathrm{B}, K G$ is Lie m-Engel, for some m, a contradiction. Hence, P is of bounded exponent.

Also, since condition (iv) of Theorem B holds, we have that $\Delta(G, P)$ is nil of bounded exponent by Lemma 3.2. By the corollary to Lemma 3.3, the remainder of condition (iii) holds.

Suppose now $K G$ is Lie m-Engel for some m. Then, as we have noted before, $U^{n} \subset \xi(U)$ for a suitable n [see 5, Lemma 4.3. p. 151].

Finally, suppose that conditions (i), (ii) and (iii) hold. If P is finite, then $\Delta(G, P)$ is nilpotent and condition (iv) of Theorem B holds. If G contains a normal p-abelian subgroup of finite index, then using Lemma 3.4, again condition (iv) of Theorem B holds. Since conditions (i), (ii) and (iii) of this theorem are verified, then there exists an n such that $U^{n} \subset \xi(U)$.

Acknowledgement. The author is grateful to S. K. Sehgal for suggesting this problem.

References

1. G. H. Cliff and S. K. Sehgal, Group rings with torsion units over the center, Manuscripta Math. 33 (1980), 145-158.
2. L. Fuchs, Abelian groups (Hungary, 1960).
3. I. N. Herstein, Non commutative rings, MAA (1973).
4. D. S. Passman, The algebraic structure of group rings (Wiley-Interscience, New York, 1977).
5. S. K. Sehgal, Topics in group rings, Pure and Applied Mathematics 50 (Dekker, New York, 1978).

Universidade de São Paulo, São Paulo, Brasil

[^0]: Received October 26, 1981. The author was partially supported by FAPESP (Brazil).

