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GROUP RINGS WITH UNITS OF 
BOUNDED EXPONENT OVER THE CENTER 

SONIA P. COELHO 

Let KG be the group ring of a group G over a field K, and U its group 
of units. Given a group H, we shall denote by £(H) the center of H and 
by T(H) the set of all its torsion elements. 

The following question appears in [5, p. 231]: When is Un C %(U), for 
some n? It was considered by G. Cliff and S. K. Sehgal in [1], where G is 
assumed to be a solvable group. A complete answer at characteristic zero 
is given there. Also they obtain partial results at characteristic p ^ 0, 
with certain restrictions on the exponent n. 

In this note, we shall answer the question at characteristic p assuming 
that G is either a solvable or an FC-group. In fact, we shall need specially 
the following property which is common to both these families of groups: 
if H is a finitely generated subgroup of G such that H/£(H) is torsion, 
then both T(H) and H'y the derived group of H, are finite groups [4, 
Lemma 1.5, p. 116 and 1, Lemma 2.1, p. 147]. 

In Section 1, we answer the question for torsion groups assuming only 
that G is locally finite (Theorem A), and in Section 3 we give the answer 
for non torsion groups that are either solvable or FC (Theorem C). 

First, we introduce some notation. We will denote T(G) simply by T, 
and the integer p 9e 0 will always denote the characteristic of K. For an 
element / in a group, we shall say that t is a p-element if o(t), the order of 
/, is a power of p, and that / is a ^'-element if o(t) is not divisible by p. 
Similarly, a group H will be called a ^'-group if every element of H is a 
^/-element. 

1. The torsion subgroup of G. 

LEMMA 1.1. If Un C £(U) for some n and G has a non central pr-element, 
then K is finite and the orders of the pr-elements of G are bounded. 

Proof. We shall show first that the orders of the //-elements of G are 
bounded. 

It is enough to show that if u is a central //-element of G} then o (u) :g n. 
If not, take such a u, with o(u) > n. Then K(u) = 0 f Ku a direct sum 
of fields. For every i, denote by TTi'.K{u) —> Kt the natural projection 
(that is, if et is the unity element of Kt, then in (u) = ue{). Clearly, at 
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least one of the ir^u), say 7ri(w), has multiplicative order equal to o(u). 
As a consequence, K\ has more than n elements. 

Now, if I is a non central ^'-element of G, we consider K(u, t) = 
(BtKi[t]i where K{[t] denotes the smallest subalgebra of KG that con
tains Kf and t. 

We claim that K\[t\ is not contained in the center of KG. In fact, 
suppose that K\[t] is central and let e = e\ be the unity element of K\. 
Then et is central. Now take x 6 G such that xtx~l T^ t. Then, xetx~l = 
extx~l = e/. 

By considering supports in the last equality we get: 

ulxtx~l = uH} 0 ^ itj < o(u), i ?± j . 

Hence xtx~l = uj~H. 
It follows that: euj~H = e/, or ewi_* = e. Then, (eu)*"1 = e. But 

ew = TI(U), and hence the multiplicative order of ic\{u) divides \j — i\ < 
o(u), a contradiction. 

Now, since / is a ^'element, we have: K\[t] — 0 * Li, a direct sum of 
fields which are Galois extensions of K\. But K\[t] is not central, hence 
one of the L<, say Zi, is not contained in the center of KG. Let L\ be the 
subfield of L\ consisting of its central elements, and let <t> 7^ 1 be an 
Li-automorphism of L\. 

Since Lx = 2£(f), with f0(ï) = 1, we have that 0(f) = f \ for some i. 
Now, take an arbitrary element k Ç Zi. Since £/n C £(^0> w e £ e t that 

(f + k)n 6 Zx. Then, 

(*(f + k))n = 0((f + *)*) = (f + *)", 

and </>(f + k) is a root of Xn — (f + &)w; from this we see that 

<Kf + *) =«( f + £),«" = l , a ^ 1. 

On the other hand, 0(f + &) = f* + &, and thus 

f' + fc = a ( f + ft). 

Solving this equation for &, we have that 

a — 1 

Here, only a depends on &. Since a can take at most n — 1 values, we see 
that |Zi|, the number of elements of Lu is at most n — 1. But Zi 3 ^ i , 
and \Ki\ > w, a contradiction. 

It still remains to prove that i£ is finite. If not, replace K\ by K in the 
proof above. Again, we have that K\{i\ = K[t] is not central, and we can 
repeat the argument to obtain a contradiction. 
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LEMMA 1.2. Assume that Un C £(U) for some n. Then there exists a 
positive integer m, which is a power of p, such that xm is central in KG, for 
every nilpotent element x in KG. 

Proof. Let x G KG be a nilpotent element and let r be such that 
xpr _ Q Then, 1 + x is a ^-element of U and by hypothesis (1 + x)n 6 
£([/). Writing n = £an', with {n!, p) = 1, it is easy to see that xpa is 
central in KG. 

LEMMA 1.3. Assume that Un C £(U) for some n, and let n = pa-n', 
with (ri,p) = l.IfG has a p-element of order greater than 2pza, then 
GpaCt(G). 

Proof. From the proof of Lemma 1.2, we see that xpa is central for 
every nilpotent element x Ç KG. So, set m = pa, and take a p-element 
h Ç G such that o(h) > 2m3. Since fe — 1 is nilpotent, we have that 
(h — \)m = hm — \\s central, hence hm is central. 

Set h! = hm, take x, y G G and consider the nilpotent element 
y(hf — 1). Again, by Lemma 1.2, we have that 

(y(hf - l ) ) m = ym(h'm - 1) 

is central. Hence: 

Xym(h,m - 1) = ym(hfm - l)x, 

xymh,m - xym = ymh'mx - ymx. 

Since o{h') > 2m2, we know that hfm - 1 ^ 0 and hence we have two 
elements of G in the support of the above element. If p 9e 2, we see 
immediately that xym = ymx, thus ym G £(G). If p = 2, we may have: 

Xym = ymhfmx, 

xymhfm = :ymx. 

Using the fact that h'm is central and replacing ymx in the first equation 
by its value in the second one, we get that 

xym = xymh,mhfm, 

or (fc')2m = 1» which contradicts the fact that o(h') > 2m2. 

LEMMA 1.4. Let m be a power of p. If Gm C £(G) and G contains a normal 
p-abelian subgroup <£ such that G/<j) is a finite p-group, then G is nilpotent. 

Proof. This follows as in [5, 6.6, pp. 157-158]. 

LEMMA 1.5. Let S be a commutative ring with identity, I a nil ideal of S, 
of bounded exponent, and Q a finite group. Let S(Q, p, a) be a crossed 
product of Q over S, with an arbitrary factor system p and a such that 
(Tt{I) C I, for every t 6 Q. Then, IQ is a nil ideal of S(Q, p, a), of bounded 
exponent. 

Proof. It is immediate to verify that IQ is an ideal of S(Q, p, a). 
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Let Q = {/i, /2, • . • , tn) and choose m such that sm = 0, for every 

se i. 
Take r > m(n + l ) 2 and x = srfi + . . . + sntn an arbitrary element 

of IQ, Si G / , 1 ^ i ^ w. 
We want to prove that xr = 0. It is enough to show that any 

product of r elements from the set {sJi,. . . , sjn} is zero. Then let 

y = S i-f xx • • • $ ir* ir 

be such a product. 
It is easy to see that there exists an index j such that s^tij occurs 

k times in y with k > m(n + 1), and we may suppose without loss of 
generality that s^lij = sJi. 

As the products sfiSjlj still have the form si, s £ I, t £ Q, and isi = 
at(si)i, for every t £ Q, we can write y m the form 

y = (n^iJT, 
with 

*< e {er,(*i)|* G Q] u {5i},7 e / 0 . 
Since the above set has at most n + 1 elements and & > w(w + 1), 
there must exist an index j such that Zj occurs in y more than m times. 
Now, Zj G / , therefore z™ = 0, and hence y = 0. 

LEMMA 1.6. Le/ G = T, a locally finite group. If Un C i(U) for some n, 
then KT satisfies a polynomial identity. 

Proof. Let m be as in Lemma 1.2. We shall show that KT satisfies a 
polynomial identity in 2m + 1 variables. Consider 2m arbitrary elements 
of KT, sayxi, x2, . . . , x2m. By considering the subgroup generated by the 
supports of these elements, we may suppose that T is finite. 

Denote by J(KT) the Jacobson radical of KT. Then 

KT/J(KT) = e , M n t . ( Z ) , ) , 

a direct sum of full matrix rings over division rings Df. 
Set x' for the image of an element x £ KT under the natural epimor-

phism KT -+ KT/J(KT). For a given index i, take xt an arbitrary 
nilpotent element in Mn.(Di), and choose any element yt £ KT such 
that (j*)' = Xf. Then 3^ is nilpotent, since J(KT) is nilpotent because T 
is finite. By Lemma 1.2, yt

m is central in KT. Hence x™ = (yi™)' is a 
central nilpotent element of KT/J(K), so it must be zero. 

Now it is easy to see that the size of the matrices is bounded by m, 
that is, «j ^ m, for every i. 

On the other hand, given i and dt ^ 0 in Du we can choose u £ U 
such that 2/ = dz (see [5, Lemma 3.3, p. 179]). As un Ç £(£/), d,w is 
central in Du and hence J97; is a field, by [3, Theorem 3.22, p. 79]. 
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Therefore, KT/J(KT) satisfies S2m(Xi, X2j . . . , X2m), the standard 
polynomial of degree 2m in the non commuting variables Xi, X2 , . . . , 
X2m. Again, since J(KT) is nilpotent, we can use Lemma 1.2 to obtain, 
for every z ^ KT: 

(S2m(xU . . . , X 2 m ) ) m 2 = z(S2m(xU . . • , tf2m))W. 

We may now obtain a characterization for U to be of bounded ex
ponent over the center when G is a locally finite group. 

THEOREM A. Let G = J , a locally finite group. Then, Un C S(t/) for 
some n if and only if the following conditions hold: 

(i) Tl C ^(T) for some I. 
(ii) T contains a normal p-abelian subgroup of finite index. 

(iii) Either every pf-element of T is central or T is of bounded exponent 
and K is finite. 

Proof. Suppose Un C £{U) for some n. Then (i) is trivial and (ii) 
follows from Lemma 1.6 and a Theorem of Passman [4, Corollary 3.10, 
p. 197]. 

To prove (iii), assume that not every ^'-element of J is central. By 
Lemma 1.1, K is finite, and for every ^/-element t £ J , V = 1, for a 
suitable r. Now, if n = pa • n', with (n!, p) = 1, and J has a ^-element of 
order greater than 2p*a, then Tpa C K^) by Lemma 1.3, and hence 
every ^'-element is central, a contradiction. So, for every ^-element 
t £ T, ts = 1, for a suitable 5. 

Now take x 6 J and let Jo be a normal ^-abelian subgroup of index u, 
as in (ii). Then, xu 6 Jo, and we may write: xu = yz, where y, z £ Jo, y 
is a ^-element and z is a ^'-element. Since Jo/Jo ' is abelian, taking 
(rs)th-powers, we get: 

xurs = ^ « ( m o d TV) = l(mod Jo')-

But Jo' is finite, so we have that 

xurs\T0>\ = ^ 

and (iii) is proved. 
Assume now that conditions (i), (ii) and (iii) hold, and let J 0 be a 

normal ^-abelian subgroup of finite index in J , as in (ii), and A the set: 
{t Ç T\t is a ^'-element}. 

Suppose first that A is a central subgroup of J . Then, as J is locally 
finite, it is easy to see that T = P X A, where P = {t Ç J|£ is a ^-ele
ment} is a subgroup of J . 

Considering the subgroup <t> = Jo • -4, it is easy to see that J satisfies 
the conditions of Lemma 1.4 and hence it is nilpotent. Furthermore, J 
contains a normal ^-abelian subgroup <t> such that T/<p is a finite £-group 
and we conclude from [5, Theorem 6.1, p. 155] that KT is Lie m-Engel 
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for a suitable m. Hence, Un C %{U) for some n by [5, Lemma 4.3, p. 151]. 
Suppose now that A is a non central subset. By (iii), Ts = 1, for some 

sf and K is finite. Because 7Y is a finite £-group, it is easy to see that 

Po = {t 6 r0 | / is a ^-element} 

is a normal subgroup of T. 
We claim that A(P, P 0) , the kernel of the natural epimorphism 

KT —» KT/Po, is nil of bounded exponent. Indeed, A(T0/To', P 0 /7Y) is 
nil of bounded exponent because To/To is abelian and Po/TÔ is of 
bounded exponent. Setting 

5 = KTo/To', Q = ( 7y7y) / (7V7Y) ~ T/T0, 

we see that KT/TÔ is the crossed product S(Q, p, c), with p and o- as 
usual. If / = A(7V7Y, Po/To'), by Lemma 1.5 we conclude that 
/Q = A(r /7Y, PO/TQ) is nil of bounded exponent. Since 7Y is a finite 
£-group, we see that A (To, To') is nilpotent and hence it is easy to see 
that A(7", Po) is nil of bounded exponent by considering the natural 
epimorphism KT —> KT/T0'. 

Now, To/Po is a normal subgroup of T/P0, of finite index, say, r. By 
[4, Lemma 1.10, p. 176], we get that 

KT/Po C Mr(KT0/Po). 

Pick now u Ç U. Considering the subgroup generated by the support 
of uy we may suppose that T is finite. Hence To/Po is a finite abelian 
^'-group, such that (T0/Po)s = 1. 

Therefore, KTo/Po =®iKu a direct sum of fields, all of them 
contained in K(£), with f* = 1. Hence, 

Mr(KTo/Po) = MT(®tKt) = © , M r ( # « ) , 

and we have that KT/Po C ©< Mr{Fi), with F, = i£(f), for every i. 
Set S for 0 * Mr(Fi) and w' for the image of u by the composition map 
of the natural epimorphism KT —± KT/Po followed by the inclusion 
KT/Po-^S. As K is finite, the group of nonsingular matrices of Mr(K(Ç)) 
is finite, say of order qy depending on r and s only. So, u'q — 1 and we get: 

i*« = 1 + M € A(7\P 0 ) . 

As A(P, Po) is nil of bounded exponent, we can take m a power of p 

such that xm = 0 for all x £ A(P, P0) . Now we can conclude that 

COROLLARY. Le/ G — T, a locally finite group, and assume that the set 
of all p-elements of T is not of bounded exponent. Then the following condi
tions are equivalent: 
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(i) Un C ^(U) for somen. 
(ii) KT is Lie m-Engel for some m. 

Proof. First suppose that Un C t(U) for some n. By the preceeding 
theorem, we get that (i), (ii) and (iii) hold. 

Furthermore, every ^'-element of T is central by Lemma 1.3. Follow 
now the "only if" part of the proof of the theorem to conclude that KT 
is Lie m-Engel for some m. 

By [5, Lemma 4.3, p. 151], the converse is obvious. 

2. A certain nil ideal of KG. In this section, G will be either a solvable 
or an FC-group. As we mentioned in the introduction, if G/£(G) is 
torsion, then we can conclude that T is a locally finite subgroup of G and 
G' is contained in T. 

We shall denote by A the set of all ^'-elements of G and by P the set 
of all ^-elements of G. 

LEMMA 2.1. Suppose that Un C. I-(U) for some n and G has an element 
of infinite order. Then, every idempotent of KG is central. 

Proof. See [1, Lemma 2.4, p. 148]. 

LEMMA 2.2. Suppose that Un C £(U) for some n and G has an element of 
infinite order. Then: 

(i) A is an abelian subgroup of G. 
(ii) If A is non central, then K is finite and for every x 6 G and every 

t G A there exists an integer r such that xtx~l = tpr', and (K:Fp)\r. 
(iii) P is a subgroup of G. 
(iv) T = PXA. 

Proof. For the proof of (i) see [1, Corollary 2.5, p. 148]. 
To prove (ii) we notice that if A is non central, then K is finite by 

Lemma 1.1. 
Now, take x Ç G and t € A such that xtx~l ^ /. We have that 

K(t) = 0<&i, a direct sum of fields such that at least one of them, say 
Ki, is of the form Kt = K(Ç)} where f is a root of unity whose order is 
equal to the order of t, and the natural projection K(t) —* Kx maps 
/ on f. 

Since, by Lemma 2.1, every idempotent is central, we must have 
xtx~l = tl for some i (this can be seen by considering the idempotent 
e = (o(/)) -1 (1 + t + . . . + t0{t)~1)). Hence, conjugation by x defines 
an automorphism <j> of K\. By the above, 0(f) = f \ 

On the other hand, since K\ is finite, 0 is a power of the Frobenius 
automorphism of -Ki, F, given by: 

F(jk) = # \ for all k Ç KL 
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If </> = Fr, we have that 

0(f) = r = r, 
from which we conclude that o{t) = o(f) divides pT — i. Then, 

pr = i (mod o(t)) and xtx~l = tl = /pr. 

Furthermore, as every element of K is fixed by </>, we have that 
kpr = k for every k £ K, and hence K is contained in a field with £ r 

elements, that is: (K:Fp)\r. 
For (iii) and (iv), we observe first that every ^-element commutes 

with every ^'-element. If not, then by (ii) K is finite. Now take T £ P 
and / G A such that irt-ir"1 7^ t and proceed as in [1, 3.2, p. 152] to con
clude that this implies the existence of a non central idempotent, which 
contradicts Lemma 2.1. 

As T is locally finite, the proof of (iii) and (iv) is now trivial. 

LEMMA 2.3. Let A1 be an abelian p'-subgroup of G, and K a finite field. 
If, for every t 6 Ax and every x Ç G, there exists an integer r such that 
xtx~l = tv\ and (K:Fv)\r, then every idempotent of KAY is central in KG. 

Proof. Let e £ KA\ be an idempotent, and let x G G. By considering 
the subgroup generated by the support of e, we may suppose that A\ is 
finite. 

Let Ai = (ti) X . . . X (ts), a direct product of cyclic groups. It is 
easy to see that we may choose an integer r such that xttx~l = tt

p\ for 
every i. 

We have that e = f(ti} . . . , ts), where f(X1} . . . , Xs) is a polynomial 
in the commuting variables Xlt . . . , Xs, with coefficients in K. Con
jugating by x, we have: 

xex-1 = f(hv\ . . . , / / r ) . 

But by hypothesis every element k Ç K satisfies kpr = k, therefore this 
is true for the coefficients of / . Hence 

and 

xex-1 = epr = ,̂ 

as we wished to prove. 

We can now give a partial characterization for U to be of bounded 
exponent over the center, when G is non torsion. 

THEOREM B. Suppose that G has an element of infinite order. Then 
Un C £{U) for some n if and only if the following conditions hold: 
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(i) G1 C£(G) for some I. 
(ii) A is an abelian subgroup of G and, if A is non central, then K is 

finite, A is of bounded exponent and for every t G A and every x G G there 
exists an integer r such that xtx~l = tpr, where (K:Fp)\r. 

(iii) P is a subgroup of G contained in the centralizer of A. 
(iv) There exists an integer m, which is a power of p, such that xm is 

central in KG, for every x G A (G, P). 

Proof. Suppose first that Un C %{U) for some n. (i) is trivial, (ii) 
follows from Lemma 1.1 and Lemma 2.2, and (iii) follows from Lemma 
2.2. 

To prove (iv), let x G A(G, P) . We may suppose that G is finitely gen
erated and hence P is a finite normal subgroup of G. Therefore, x is nil-
potent and we can apply Lemma 1.2 to obtain the result. 

Suppose now conditions (i) to (iv) hold, and pick u G U. Again we 
may suppose that G is finitely generated and hence T is finite. 

We observe that if KA = ®iKu a direct sum of fields, then 
K(A XP) =®iKtP. 

Consider now the natural epimorphism KG —> KG/P, with kernel 
A(G,P). 

Setting 5 ' for the image of a subset S of KG under this epimorphism, 
we have: 

(K(A x P)Y = ®K; 

where each K/ is a field. Furthermore, 

T(G/P) = (AX P)/P, 

and hence 

KT(G/P) =®iKi'. 

Since, by condition (ii) and Lemma 2.3, every idempotent of KA is 
central in KG, and G' C T, we may apply [5, Lemma 3.22, p. 194], and 
u can be written in the form: 

(*) « = Hfigi + *Ji e Ki9 gieG,8£ A(G, P). 
i 

Suppose first that A is central. Taking the (/)th-power in (*), we 
have: 

u = T,fàil + à',à'e A(G,P). 
i 

Now, Yjifilgil is central, and it is sufficient to apply condition (iv). 
Suppose now that K is finite and A is of bounded exponent s. Then, 

Kt C K({), with T = 1, for all i. 
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Computing (/)th-powers in (*), we obtain: 

« ' = E / / g i ' + * ' , / / € K„ gi
l € S(G), 5' 6 A(G, P ) . 

i 

Since Kt C ^ ( f ) , for all i, we have that//7" = 1 for eve ry / / ^ 0 and 
a suitable r which depends on K and 5 only. 

Taking (r)th-powers above, we have: 

ulr = £ g , , r + «",«" G A(G,P). 
i 

Now, £ * £z/r is central and it suffices to use condition (iv). 

COROLLARY. Suppose that the set of all p-elements of G is not of bounded 
exponent. Then the following conditions are equivalent: 

(i) Un C £(£/) for some n. 
(ii) KG is Lie l-Engel for some I. 

Proof. Suppose first Un C %(U) for some n. By the corollary to 
Theorem A, KT is Lie m-Engel for some m and hence T is nilpotent. 

As G' C T, we can conclude that G is solvable (even if it were an 
FC-group). 

By Lemma 1.3, Gpa C %{G) for some a and by [1, Lemma 2.2, p. 148] 
Gf is a p-group. Hence, as we noted before, A(G, G') is a nil ideal. 

Given x, y G i£G, x^ — yx G A(G, G'). By (iv) of Theorem B, for every 
z € KG we have that 

(xy — 3^x)ms = z(xy — yx)m. 

Hence, KG satisfies a polynomial identity. By Passman's theorem 
[2, Theorem 1.1, p. 142], setting <j> for the FC-subgroup of G, we have: 
\G/<t>\ < oo, | ^ | < oo. 

Furthermore, it is easy to see that both are ^-groups. By Lemma 1.4, 
G is nilpotent. We conclude from [5, Theorem 6.1, p. 155] that KG is Lie 
/-Engel for some /. 

As we noted before, the converse is immediate by [5, Lemma 4.3, 
p. 151]. 

3. Nil augmentation ideals of bounded exponent. We shall now 
discuss condition (iv) of Theorem B. 

In all this section, except in Theorem C, G will be either a solvable or 
an FG-group, such that T is a locally finite subgroup of G, and G C T. 

Furthermore, we shall assume that Thas the form: T — P X A, where 

A = {t Ç G\t is a ^'-element} 

is an abelian subgroup of G and 

P = {/ G G\t is a ^-element} 

is a subgroup of G, of bounded exponent. 
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We introduce some notation. Given a group H, <t>(H) will denote the 
PC-subgroup of H. The group 4>(G) will be denoted simply by #. 

LEMMA 3.1. Suppose that there exists an integer m, which is a power of p, 
such that xm is central in KG for all x 6 A(G, P). Then G contains 
normal subgroup H, of finite index, containing <j>, such that H' C\ P is 
finite. 

Proof. By [2, Theorem 1.1, p. 142], if KG satisfies a polynomial 
identity, then \G/4>\ < oo, |0'| < oo. Since G C P X A, and (0 • A)/A 
C <t>(G/A)j it is enough to prove that K(G/A) satisfies a polynomial 
identity. 

In the group ring K(G/A), the ideal A{G/A, (P X A)/A) is the image 
of A(G, P) by the natural epimorphism KG —> K(G/A) and hence it 
also satisfies the hypothesis. 

As (G/A)' C (P X i ) / i , we have that 

A(G/A, (G/A)') C A(G/A, (P X A)/A) 

and it follows easily, as in the proof of the corollary to Theorem B, that 
K(G/A) satisfies the polynomial ( I F - YX)mZ - Z(XY - YX)m. 

In the following lemmas, H will be a normal subgroup of G, of finite 
index, containing <j>, as in the previous lemma, Po will be H' H P (hence 
a finite group) and Pi will be H Pi P. 

LEMMA 3.2. Suppose that there exists a positive integer m, which is a 
power of p, such that xm is central in KG, for all x in A(G, P). Then, 
A(G, P) is nil of bounded exponent. 

Proof. We observe first that it is enough to prove that A(H, Pi) is nil 
of bounded exponent. In fact, suppose that this were proved. Given 
x G A (G, P), then xm is a central element. But every central element of 
A(G, P) is contained in A(G, P) C\ K<t>, which is contained in A(H, Pi). 
Then A(G, P) is nil of bounded exponent. 

Let us prove now that A(H, Pi) is nil of bounded exponent. As Po is 
finite, A(iJ, Po) is nilpotent and hence it suffices to prove that A(H/P0, 
Pi/Po) is nil of bounded exponent. 

We have that (H/Pi)' is a ^'-group, Pi/Po is a central subgroup of 
H/Po, and for all x G A(H/P0, P i /P 0 ) , xm is central in KH/P0. Further
more, all hypothesis on G carry on to H/PG. Therefore, in order to prove 
that A(H/Po, Pi/Po) is nil of bounded exponent, we may replace H/P0 

by H and Pi/Po by Pi and assume in addition that H' is a //-group and 
Pi is central. 

Now, we shall see which is the form of a central element of KH that 
belongs to A{H,Pi). 
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Let Sf be a transversal of T(H) in H. Observing that T(H) = PiXAu 

where 

Ai = {t G H\t is a ^'-element}, 

it is easy to see that 

S = {ab\a e Aube S'} 

is a transversal of P i in J/. 
Now, let x £ </>(#)> y £ H, x = hab, h Ç Pi, afr G 5. Since 

^(a^)^-1(a6)-1 e H' CAX 

and Pi is central, yxy~l has the form: 

yxy~l = Wè , a' g ^4i. 

So denoting by y(x) the sum of the elements of the conjugacy class of 
x, we have that 

y(hab) = h(a,i + . . . + ar)b, aj G Ax, I ^ j ^ r. 

Therefore, we may write every central element z £ KH in the form: 

(1) z = ^a&i, 
i 

where at Ç KT(H), atbi is central in KH for all iy and the b{ are distinct 
elements of Sf. 

We claim that a,-^ = &*«*, for all i. In fact, a s a ^ j is central, we have 
that 

oiibi = b i(a J) i)b i~l = biOLi. 

If in addition z 6 A (77, P i ) , then 

at e A ( P ( # ) , P i ) , foralW. 

In fact, denote by xf the image of an element x £ KH by the natural 
epimorphism KH -> KH/Pi. Since z £ A (if, Pi ) , 

But the b( are distinct elements of a basis of the K(T(H)/Pi)-module 
KH/Pi. Hence a / = 0, for all i, which means that 

at G A(#, Pi) H iCr(ff) = A(T(H), P i ) . 

Therefore every central element z of A (77, Pi) has the form (1), and 
furthermore at £ A(T(H), P i ) , for all i. 

Call 5 the exponent of Pi . Since T(H) is abelian, computing the 
(s)th-power of z in (1) we have that: 
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We have proved that zs = 0, for a fixed s and every central element 
z of A(H, Pi). As every x G A(H, Pi) is such that xm is central, we can 
conclude that A(H, Pi) is nil of bounded exponent. 

LEMMA 3.3. If A(H, Pi) is nil of bounded exponent, then either Pi is 
finite or H contains a characteristic p-abelian subgroup of finite index. 

Proof. Suppose that Pi is infinite. By Passman [4, Corollary 3.10, 
p. 197], it is enough to prove that KH satisfies a polynomial identity. 
Since A{H, P0) is nilpotent it suffices to prove that KH/P0 satisfies a 
polynomial identity. 

We observe that all the hypotheses of the lemma carry on to KH/P0. 
In fact, A(H/P0, Pi/Po) is nil of bounded exponent and P i / P 0 is infinite 
(because Po is finite). Furthermore, (H/P0)

f is a ^'-group and Pi/Po 
is central in H/P0. 

Therefore, in order to prove that KH/P0 satisfies a polynomial 
identity we may replace H/P0 by H and assume in addition that Hr is 
a ^'-group and P i is a central subgroup of H. 

Now, pick n > 0 such that xn = 0 for all x £ A(H, Pi). We want to 
show that there exist elements xi} x2, . . . , xn in A(Pi) = A(Pi, Pi) such 
that Xi2 = 0, for all i, but XiX2 . . . xn ?* 0. In fact, as P i is abelian of 
bounded exponent, it is a direct product of cyclic groups [2, Theorem 
11.2, p. 44]. P i is infinite and hence the number of cyclic groups is 
infinite. Choose hi, • • • , hn generators in different cyclic subgroups and 
set Mi — o(hi) — 1. The elements xt = (ht — l)mi are easily verified to 
satisfy the required conditions. 

Take now 5 = {g*}*e/ a transversal of P i in H, and elements 
gi, • • • , gn € S. Then, the element 

OL = glXi + • • • + gnXn 

belongs to A(H, P), hence an = 0. 
Since the xt are central and xt

2 = 0, computing an we get: 

a71 = F(gu . . . , gn)xix2. . . xn, 

where F(XX, . . . Xn) is a polynomial in the non-commuting variables 
Xi, Xi, . . . , Xn, namely: 

F(Xi, . . . , Xn) = SZ„(i) . . . Xa(n), 

the sum running over all a G Sn, the symmetric group on n elements. 
We want to show that P(gi, . . . , gn) = 0. First we make some 

observations. If 

&r(l)&r(2) • • • g*(n) = gr(l)gr(2) • • • gr(n) m o d ( P i ) 
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for cr, r G Sni then 

g<r(l)g<r(2) • • • gain) = ^ r ( l ) g r ( 2 ) . . . grin) y 

for some a G Pi . 
On the other hand, since 

gig, = ot(i,j)gjgi, 

where a(i,j) G H', we can write the product g<r(i)g<r(2) • • • gain) in the 
form 

bgr(l)gr(2) • • • gr(n) for SOIÎie 6 G # ' • 

Therefore, we obtain: a = b, with a G P i and 6 G i ï ' , which is a 
^'-group. Thus a = b — 1. 

We have shown that 

&r(l)&r<2) ' ' • gain) = gr( l )gr(2) • • • gr(») ( m o d P j ) 

if and only if 

ga(l)ga(2) • • • g<r(w) = gr( l)gr(2) . • • grin)-

We now define an equivalence relation ^ in 5„ setting: for a, T G 5n, 
a r^ T if and only if 

&r(l) • • • ga{n) = gr(]) • • • gr(n)-

We denote by Si, S2, . . . , «S* the equivalence classes of this relation. 
Choosing, for each i, an element o-, G S*, it follows from the above that 
we may write: 

Hgu • • • > gn) = ga.il) • • • g^OolSil + • • • + gatH) • • • gatin)\St\. 

Now, since 

goiil) . . . ger,-(») ^ g<ry(l) • • • gajin) ( m o d P i ) 

if i 5* j , from P(gi, . . . , gn)x1x2...#„ = 0, we get: 

,̂•(1) • • • g*,-<n)|Sf 1*1*2 • ••** = 0, for all i. 

But gaid) . . . gvi(n) is invertible and Xi*2 • • . xn 9^ 0; hence this can 
happen only if |5<| = 0, for all i (that is, £||S<|, for all i). 

Therefore, F(gi, . . . , gn) = 0, for arbitrary elements gi, . . . , gn G S. 
Now, KH is a left module over the central subalgebra KP having S 

as a basis, and F(X\, . . . , Xn) is a multilinear polynomial. By [4, 
Lemma 1.2, p. 171], F is a polynomial identity for KH. 

COROLLARY. If A(G, P) is m7 0/ bounded exponent, then either P is 
finite or G contains a normal p-abelian subgroup of finite index. 
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Proof. Suppose that P is infinite, and take H as in Lemma 3.1. Since 
\G/H\ < oo, we have that \PH/H\ < oo and hence \P/Pi\ < oo. 
Therefore, Pi must be infinite. By Lemma 3.3, H contains a characteristic 
^-abelian subgroup of finite index, and thus the result follows. 

LEMMA 3.4. If G contains a normal p-abelian subgroup of finite index, 
then A(G, P) is nil of bounded exponent. 

Proof. Let L be such a subgroup of G. We have that L/U is abelian; 
hence A(L/Lf, P C\ L/L') is nil of bounded exponent. 

Setting 

S = KL/L', Q = (G/L')/(L/Lf) ^ G/L, 

we see that K(G/L') is the crossed product S(Q, p, a), with p and a as 
usual. 

If / = A(L/Lf, P r\ L/L'), applying Lemma 1.5 we conclude that 
IQ = A (G/L', (P P\ L)/L') is nil of bounded exponent. Since I! is a 
finite £-group, A(G, Lr) is nilpotent and hence A(G, P C\ L) is nil of 
bounded exponent. 

Now, let us consider the natural epimorphism 

$>\KG-*K(G/{PC\L). 

We have that 

*(A(G,P)) = A ( G / ( P n L ) , P / ( P H L ) ) . 

But PI (P C\ L) ^ PL/L, and P L / L is a finite £-group since it is con
tained in G/L. Therefore, there exists an integer n such that 

A ( G , P ) n C A ( G , P H L ) . 

Since we have shown that this ideal is nil of bounded exponent, the lemma 
is proved. 

We can now give a complete answer to the initial question. 

THEOREM C. Suppose that G is non-torsion and either solvable or FC. 
Then, Un C £{U) for some n if and only if either KG is Lie m-Engel for 
some m or the following conditions hold: 

(i) G1 C UG) for some I. 
(ii) A is an abelian subgroup of G and, if A is non central, then K is 

finite, A is of bounded exponent and for every x G G and every t G A there 
exists an integer r such that xtx~l = tpr, where (K:Fp)\r. 

(iii) P is a subgroup of G of bounded exponent, contained in the centralizer 
of A and, if P is not finite, then G contains a normal p-abelian subgroup of 
finite index. 

Proof. Suppose that Un C %(U) for some n and that KG is not Lie 
w-Engel. 
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By Theorem B, the conditions (i) and (ii) hold, and by (iii) of Theorem 
B, P is a subgroup of G contained in the centralizer of A. If P is not of 
bounded exponent, by the corollary to Theorem B, KG is Lie ra-Engel, 
for some m, a contradiction. Hence, P is of bounded exponent. 

Also, since condition (iv) of Theorem B holds, we have that A(G, P) 
is nil of bounded exponent by Lemma 3.2. By the corollary to Lemma 3.3, 
the remainder of condition (iii) holds. 

Suppose now KG is Lie ra-Engel for some ra. Then, as we have noted 
before, Un C %(U) for a suitable n [see 5, Lemma 4.3. p. 151]. 

Finally, suppose that conditions (i), (ii) and (iii) hold. If P is finite, 
then A(G, P) is nilpotent and condition (iv) of Theorem B holds. If G 
contains a normal ^-abelian subgroup of finite index, then using Lemma 
3.4, again condition (iv) of Theorem B holds. Since conditions (i), (ii) 
and (iii) of this theorem are verified, then there exists an n such that 
UnCt{U). 
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