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Abstract

Introduction. Different components of the endocannabinoid (eCB) system such as their most
well-known endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), have
been implicated in brain reward pathways. While shared neurobiological substrates have been
described among addiction-related disorders, information regarding the role of this system in
behavioral addictions such as gambling disorder (GD) is scarce.
Aims. Fasting plasma concentrations of AEA and 2-AGwere analyzed in individuals with GD at
baseline, compared with healthy control subjects (HC). Through structural equation modeling,
we evaluated associations between endocannabinoids and GD severity, exploring the potentially
mediating role of clinical and neuropsychological variables.
Methods. The sample included 166 adult outpatients with GD (95.8% male, mean age 39 years
old) and 41 HC. Peripheral blood samples were collected after overnight fasting to assess AEA
and 2-AG concentrations (ng/ml). Clinical (i.e., general psychopathology, emotion regulation,
impulsivity, personality) and neuropsychological variables were evaluated through a semi-
structured clinical interview and psychometric assessments.
Results. Plasma AEA concentrations were higher in patients with GD compared with HC
(p = .002), without differences in 2-AG. AEA and 2-AG concentrations were related to GD
severity, with novelty-seeking mediating relationships.
Conclusions. This study points to differences in fasting plasma concentrations of endocanna-
binoids between individuals with GD and HC. In the clinical group, the pathway defined by the
association between the concentrations of endocannabinoids and novelty-seeking predicted GD
severity. Although exploratory, these results could contribute to the identification of potential
endophenotypic features that help optimize personalized approaches to prevent and treat GD.

Introduction

Gambling disorder (GD) is a psychiatric disorder characterized by a recurrent betting behavior
despite negative consequences [1]. It has been classified within the “substance-related and
addiction disorders” category in the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5), which recognizes the disorder as a behavioral addiction [1]. The estimated
lifetime prevalence of GD varied between 0.2 and 10.6% worldwide, being around 1% in Spain
[2–4]. It is considered as a complex disorder with amultifactorial etiology, involving psychosocial
and biological factors [4, 5]. In this line, some studies have pointed to the role of different
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neuroendocrine systems in the pathogenesis of GD, which modu-
late neurobiological responses associated with reward and gratifi-
cation [6–9].

Over the past few decades, the study of the endocannabinoid
(eCB) system has garnered closed attention in the field of
psychiatry due to its involvement in several brain functions
such as cognition, emotion, impulsivity, and motivation
[10]. Indeed, the eCB system has been directly implicated in the
regulation of reward homeostasis in both animal and human
studies [11–13]. This system includes endogenous ligands
(i.e., eCBs), G-protein coupled cannabinoid receptors (CBRs),
and enzymes to metabolize eCBs. Anandamide (AEA) and
2-arachidonoylglycerol (2-AG) are arguably the twomost studied
eCBs [14]. They are produced post-synaptically on demand to act
on presynaptic CBRs, mainly types 1 and 2 (CB1R, CB2R). AEA
and 2-AG do not seem fully interchangeable [15, 16], and even
when interacting, they display specific functionality and/or act on
different pathways regarding similar functions [15, 17]. AEA
binds with slightly higher affinity to CB1R than CB2R, whereas
2-AG exhibits greater general agonist efficacy than AEA [14].

Although both types of receptors are located in the brain and
peripheral tissues [18], CB1R has been predominantly found in the
brain [19]. This receptor is widely distributed in mesolimbic struc-
tures integrated in the reward system (e.g., nucleus accumbens and
ventral tegmental area) and other brain regions (e.g., prefrontal
cortex, hippocampus, amygdala, insula, and hypothalamus) impli-
cated in cue-elicited craving, relapse-like behaviors, and condition-
ing processes [14, 20, 21]. Through their union to CB1R, eCBs act as
retrograde inhibitors of neurotransmitter release (both inhibitory,
gamma-aminobutyric acid (GABA), and excitatory, glutamate
(GLU)), with a modulatory role of other neurotransmission sys-
tems also involved in reward processing and addiction (e.g., dopa-
minergic, serotonergic, opioid systems) [22, 23].

The eCB system seems to enhance motivation for different
natural and learned rewards (e.g., palatable food, sex, money, or
drugs) by stimulating dopaminergic signaling [24, 25]. Indeed, the
action of eCBs on CB1R regulates short- and long-term synaptic
plasticity in areas related to reward processing, being dysfunctional
changes in neuroplasticity linked to addiction [25]. Then, it is not
surprising that the dysregulation of the eCB system signaling has
been linked to substance and nonsubstance addictive behaviors
(e.g., food, drugs, sex) [13, 14, 25].

In this context, eCBs have been proposed to influence
dopamine-related positive reinforcement that mediates craving
and impulsive reward-seeking behaviors [26]. Likewise, the eCB
system seems to participate in negative-reinforcement-driven seek-
ing behaviors through their involvement in learning and memory
processes [25]. A dysfunctional eCB system signaling between the
limbic system and areas such as the prefrontal cortex and amygdala
may result in emotional processing and sensory perceptions under-
lying addiction. Such processes influence the acquisition of habit
learning and conditioned responses relevant to progressive impair-
ments in control that characterize addiction [23, 27].

Moreover, the eCB system has been linked to impulsivity and
executive functioning albeit in different ways [28–30]. For example,
circulating AEA concentrations have been related to advantageous
decision-making and better cognitive flexibility while 2-AG con-
centrations have been linked to impaired cognitive flexibility and
inhibitory response tendencies in a nonclinical population
[31]. Likewise, the association of the eCB system with personality
traits, such as novelty-seeking, has also been noted in previous
research [28]. Additionally, the involvement of this system in

emotion regulation has suggested a role in the pathogenesis of
mood disturbances [32, 33]. That said, it is worth mentioning that
impulsivity, poor cognitive processing, a dysfunctional personality
structure (e.g., high novelty-seeking), and emotion dysregulation
represent core features related to the pathogenesis of GD [4, 34–36].

Altogether, dysfunctions on the eCB system seem to be involved
in several processes related to addiction [13, 25]. However, there is
still controversy whether eCB system dysfunctions may be associ-
ated with causes and/or consequences of exposure to potentially
addictive rewards. In fact, exposure to rewards has been proposed
to induce, in turn, changes in the eCB system functioning [27]. In
this sense, additional studies are needed to better understand the
link between the eCB system and the pathogenesis of addiction.
Nonetheless, preclinical and clinical evidence has led to the eCB
system being proposed as a potential therapeutic target in psych-
iatry. In this line, CBR blockade or eCBs synthesis inhibition (e.g.,
enzyme inhibitors) seem to reduce reward consumption and crav-
ing, as well as subsequent relapse [14, 24, 37, 38].

To the best of our knowledge, this is the first study to assess eCBs
in GD. Then, this study aimed to measure baseline AEA and 2-AG
plasma concentrations in fasting among patients with GD, com-
pared with healthy controls (HC). Moreover, through a path ana-
lysis model, associations between eCBs concentrations and GD
severity were analyzed, considering the mediating role of clinical
and neuropsychological variables. Based on previous data, we
expected to find differences in eCBs concentrations between
groups. Besides, we hypothesized a distinctive association between
AEA and 2-AG with GD severity.

Methods

Participants

The final sample consisted of n = 166 treatment-seeking adult
outpatients with a diagnosis of GD according to DSM-5 criteria
[1], mostly men (n = 159, 95.8%) with a mean age of 39.13 years old
(SD = 13.73). They were voluntarily recruited between April 2018
and September 2021 at the Behavioral Addictions Unit of Bellvitge
University Hospital (Barcelona, Spain). A total of 41 HC were
recruited via advertisement from the same catchment area. Exclu-
sion criteria in both groups were the presence of an organic mental
disorder, an intellectual disability, a neurodegenerative disorder, or
an active psychotic disorder. Although a valid blood sample was
available in all cases, 11 patients and 1 HC were excluded from the
initial sample (n = 177 patients with GD and n = 42 HC) due to
incomplete clinical data.

Assessments

Biological measures
Blood samples were obtained after an overnight fasting of at least
8 hours. Blood was centrifuged at 1700 g in a refrigerated centrifuge
(4°C) for over 20 minutes. Plasma was immediately separated and
stored at �80°C until the analysis was carried out. AEA and 2-AG
were analyzed by liquid chromatography-mass spectrometry
(LC/MS–MS) using a previously validated method [39].

Clinical and neuropsychological measures
Clinical and neuropsychological variables were collected using
standardized instruments, which are properly described in the
Supplementary Material. Briefly, clinical variables were measured
using the Spanish adaptation of the following questionnaires: South
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Oaks Gambling Screen (SOGS) [40, 41]; Diagnostic Questionnaire
for Pathological Gambling According to DSM criteria [42, 43],
Symptom Checklist-90-Revised (SCL-90-R) [44, 45]; Tempera-
ment and Character Inventory-Revised (TCI-R) [46, 47]; Impulsive
Behavior Scale (UPPS-P) [48, 49]; and Difficulties in Emotion
Regulation Strategies (DERS) [50, 51]. This last psychometric
assessment was not systematically recorded in the HC group.
Neuropsychological data has been collected by the following instru-
ments: Wisconsin Card Sorting Test (WCST) [52]; Stroop Color
and Word Test (SCWT) [53]; Trail Making Test (TMT) [54]; and
Digits task of the Wechsler Memory Scale-Third Edition (WMS-
III) [55].

Additionally, body mass index (BMI) and disorder-related vari-
ables, such as the age of onset and duration of GD, were collected in
a semi-structured face-to-face clinical interview as described else-
where [56].

Procedure

All participants were evaluated at the Behavioral Addictions Unit of
Bellvitge University Hospital (Barcelona, Spain). The data collec-
tion was conducted by a trained multidisciplinary team (psycholo-
gists, psychiatrists, nurses) withmore than 25 years of experience in
the field of GD.A comprehensive semi-structured clinical interview
was conducted in a first session assessing all aspects related to
gambling behavior. The psychometric assessment of clinical vari-
ables and the extraction of blood samples took place in a second
session. Blood samples were analyzed at the Integrative Pharma-
cology and Systems Neuroscience research group-Hospital del Mar
Research Institute (IMIM) (Barcelona, Spain). The neuropsycho-
logical evaluation was performed in a third session. All the meas-
ures were assessed prior to the beginning of specialized treatment
for GD in our Unit.

Ethics

The present study was conducted according to the Declaration of
Helsinki. The Clinical Research Ethics Committee of Bellvitge
University Hospital approved this study (ref. PR329/19 and
PR338/17). Signed informed consent was obtained from all parti-
cipants.

Statistical analysis

Statistical analysis was conducted with Stata17 for Windows
[57]. The between-group comparison of AEA and 2-AG concen-
trations was done with the analysis of covariance (ANCOVA),
adjusting for sex, age, and BMI, as well as for sex and age regarding
clinical variables (UPPS-P, SCL-90R, TCI-R, DERS). The stand-
ardized Cohen’s d coefficient measured the effect size for the mean
comparisons (the thresholds of 0.20, 0.50, and 0.80 were considered
for low, mild/moderate, and high-large effect sizes) [58].

Path analysis exploring the underlying relationships between
variables among the GD subsample was performed through Struc-
tural EquationModels (SEM). The rationale formodel specification
was based on the background provided by the cumulated empirical
evidence, with the condition of guaranteeing the clinical association
of the relationships. All parameters were free-estimated, and
parameters with no significant tests were deleted with the aim to
obtain a final parsimonious model with the highest possible statis-
tical power. Due to the large number of neuropsychological vari-
ables in the study, a latent variable was defined for the main

measures obtained in each cognition test (WCST nonperseverative
errors, WCST conceptual, TMT-A, TMT-B, Stroop interference,
digits direct, and digits inverse). The goodness-of-fit was evaluated
with standard criteria [59]: root mean square error of approxima-
tion RMSEA < 0.08, Bentler’s Comparative Fit Index CFI > 0.90,
Tucker–Lewis Index TLI > 0.90, and standardized rootmean square
residual SRMR < 0.10. The global predictive capacity of the model
was estimated with the coefficient of determination (CD).

Results

Description of the sample

In the clinical group, most participants were men (95.8%). The
mean age was 39.1 years old (SD = 13.7), the mean age of GD onset
was 27.8 years (SD = 11.9), and mean GD duration was 5.3 years
(SD = 6.3). Most HC were men (90.2%), with a mean age of
49.3 years old (SD = 15.2). Table 1 displays the participants char-
acteristics.

The presence ofGDwas associated with higher BMI, impulsivity
(UPPS-P), general psychopathology (SLC-90R), novelty-seeking,
and harm-avoidance (TCI-R), but lower self-directedness (TCI-R).
Table 2 contains results of ANCOVA comparing clinical features
between groups, adjusting for age and sex.

Comparison of eCBs concentrations between groups

Broadly, the clinical group displayed higher mean AEA concentra-
tions while no between-group differences were found in 2-AG
concentrations, after adjusting for age, sex, and BMI. Table 3 shows
comparison of eCBs concentrations between groups. Additionally,
Figure 1 displays a scatterplot with individual data point concen-
trations of eCBs.

Path analysis

Figure 2 displays the path diagram with the standardized coeffi-
cients of the SEM obtained in the GD group. Supplementary Table
S1 contains the complete SEM results. This final model achieved
adequate goodness-of-fit: RMSEA = 0.065 (95% confidence inter-
val: 0.051 to 0.079), CFI = 0.909, TLI = 0.906 and SRMR = 0.099.
The global predictive capacity was 26% (CD = 0.256).

All variables used to define the latent variable measuring the
neuropsychological performance level achieved significant results.

Table 1. Descriptive features of the sample

Control (n = 41) GD (n = 166)

n % n % p

Sex

Women 4 9.8 7 4.2 .157

Men 37 90.2 159 95.8

Mean SD Mean SD p

Age (years-old) 49.27 15.23 39.13 13.73 <.001*

Age of onset of GD – – 27.81 11.95

Duration of GD – – 5.30 6.27

Abbreviations: GD, gambling disorder; SD, standard deviation.
*Significant comparison.
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Table 2. Comparison of anthropometric, clinical, and neuropsychological variables between groups: ANCOVA

Control (n = 41) GD (n = 166)

Adjusted for sex and age Mean SD Mean SD p |d|

BMI (kg/m2) 24.58 2.60 26.93 5.19 .004* 0.57†

UPPS-P: Lack of premeditation 20.84 4.02 24.27 6.11 .001* 0.66†

UPPS-P: Positive Urgency 20.26 5.85 31.93 10.39 <.00* 1.38†

UPPS-P: Negative Urgency 22.79 5.55 32.11 6.60 <.001* 1.53†

SCL-90R: GSI score 0.40 0.34 1.08 0.65 <.001* 1.31†

TCI-R: Novelty-seeking 98.42 10.63 111.29 12.23 <.001* 1.12†

TCI-R: Harm avoidance 87.69 17.86 99.17 17.15 <.001* 0.66†

TCI-R: Self-directedness 148.96 19.03 131.09 20.24 <.001* 0.91†

DERS: Total – – 90.68 21.37 – –

WCST nonperseverative errors 9.15 10.42 17.46 13.09 <.001* 0.70†

WCST conceptual 66.37 8.66 62.40 14.56 .108 0.33

TMT A 27.65 8.10 30.44 9.85 .096 0.31

TMT B 62.12 22.07 79.27 41.47 .013* 0.52†

STROOP interference 3.29 7.71 3.02 6.89 .830 0.04

Digits direct 9.39 1.93 9.03 1.95 .311 0.19

Digits inverse 6.94 1.89 6.16 1.65 .013* 0.44

Note: –, Not available for this group.
Abbreviations: GD, gambling disorder; SD, standard deviation.
*Significant comparison.
†Effect size into ranges mild–moderate (|d| > 0.50) to high-large (|d| > 0.80).

Figure 1. Scatterplot with individual data point concentrations of eCBs. 2-AG, 2-arachidonoylglycerol (ng/ml); AEA, anandamide (ng/ml); GD, gambling disorder; HC, healthy
control.

Table 3. Comparison of endocannabinoids concentrations between groups: ANCOVA

Control (n = 41) GD (n = 166)

Adjusted for sex, age, and body mass index Mean SD Mean SD p |d|

2-AG (ng/ml) 4.25 1.94 5.71 5.22 .100 0.37

AEA (ng/ml) 0.32 0.14 0.41 0.16 .002* 0.60†

Abbreviations: 2-AG, 2-arachidonoylglycerol (ng/ml); AEA, N-arachidonoylethanolamide (anandamide) (ng/ml); GD, gambling disorder; SD, standard deviation.
*Significant comparison.
†Effect size into ranges mild–moderate (|d| > 0.50) to high-large (|d| > 0.80).

4 Baenas et al.

https://doi.org/10.1192/j.eurpsy.2023.2460 Published online by Cambridge University Press

https://doi.org/10.1192/j.eurpsy.2023.2460


The signal of themeasurement coefficients indicates that the higher
the level in the latent variable, the higher the cognitive impairment.

Higher GD severity (SOGS) was directly associated with higher
novelty-seeking (TCI-R) and psychopathological distress
(SCL-90R, GSI), but lower neuropsychological dysfunction (latent
variable). Indirect mediating links that contributed to increase the
likelihood of higher GD severity were identified: (a) higher AEA
and lower 2-AG concentrations were positively associated with
higher novelty-seeking; (b) the path characterized by higher scores
in harm avoidance and negative urgency as well as lower self-
directedness and lack of premeditation was linked to higher scores
in general psychopathology; and (c) worse cognitive performance
was associated with more general psychopathology.

Discussion

This exploratory study examined circulating AEA and 2-AG con-
centrations in individuals with and without GD. Moreover, rela-
tionships between those eCBs concentrations and GD severity were
assessed through a SEM model that included different clinical and
neuropsychological features. Broadly, the socio-demographic, clin-
ical, and neuropsychological profile that characterized the clinical
groupwas in linewith previous works [60–62]. AEA concentrations
were higher in individuals with GD than in HC after adjusting for
sex, age, and BMI. The SEM analysis showed an association

between eCBs concentrations and GD severity, with novelty-
seeking being a mediating factor. Although it was not a primary
objective of this study, the association between clinical and neuro-
psychological variables and GD severity was previously described
[63–65].

Bearing inmind that this is a cross-sectional study, differences in
eCBs concentrations between groups suggest an involvement of the
eCB system in the pathogenesis of GD. Precisely, higher AEA
concentrations in individuals with GD might indicate a dysfunc-
tional eCB system, which has already been involved with the
reinforcement of rewarding behaviors in other psychiatric condi-
tions, such as substance use disorders or binge eating disorder [12,
16, 17, 27, 66–72]. In contrast to AEA, we did not observe statis-
tically significant differences in 2-AG concentrations between
groups. A possible hypothesis may be that 2-AG is highly sensitive
to cue exposure, as previously proposed [69, 72, 73]. Moreover, it is
worth mentioning that a prominent influence of preanalytical
conditions on the plasma 2-AG concentrations (e.g., food intake,
collection, and processing of blood samples) could be affecting our
results [74]. Therefore, these aspects should be considered in the
design of future studies.

Alternatively, the existence of compensatory mechanisms of the
eCB system in efforts to counterbalance a dysfunctional activity
could contribute to explain our results [26, 75]. This rationale may
be reinforced by 2-AG acting as a full agonist on CB1R in contrast

Figure 2. Path diagram with the standardized coefficients within the GD subsample. Results adjusted for sex and age. Only significant parameters are retained. Fit statistics:
RMSEA = 0.065 (95%CI: 0.051 to 0.079); CFI = 0.909; TLI = 0.906; SRMR = 0.099; CD = 0.256.
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with the partial agonism of AEA, which gives AEA a higher
modulatory capacity onCBRs and the eCB system’s activity, includ-
ing other eCBs [14, 76]. Indeed,Maccarrone et al. [76] reported that
elevated AEA concentrations could mediate a reduced biosynthesis
of 2-AG in brain areas related to reward processing in an animal
model, suggesting efforts to balance the eCB system tone. Further-
more, genetic studies have suggested that dysfunction of the
enzymatic machinery could modulate eCBs concentrations. For
example, the inhibition of the fatty acid amide hydrolase
(FAAH), an enzyme involved in the degradation of AEA, has been
related to increased AEA concentrations, but to an absence of
significant changes in 2-AG or even, to decreased concentrations
[27, 71, 76–78]. Altogether, these possibilities represent some of
many factors that could underlie a dysfunctional eCB system and
serve as a basis for future studies.

In the SEM analysis, we observed that higher AEA concentra-
tions, but lower 2-AG, predicted higher GD severity through its
association with novelty-seeking. While the relationship between
novelty-seeking and GD severity has been previously established
[65, 79–81], interestingly, a previous study reported a link
between the eCB system and novelty-seeking [28]. Physiologically,
the eCB system has been directly related to the balance between
novelty-seeking and behavioral inhibition due to its regulation of
GLU and GABA neurotransmission [82]. That is, a reduction in
GLU transmission linked to the activation of the eCB system has
been associated with decreased behavioral inhibition and
increased novelty-seeking [82–84]. AEA has been described as a
primary eCB involved in the control of the excitability of striatal
neurons through a direct depressant action at GLU synapses,
while it indirectly interferes with GABA inputs regulated by
2-AG [76, 85, 86]. That said, the relationship between the eCB
system and novelty-seeking needs to be further explored, as well as
its association with impulsivity-related measures and severity
in GD.

Another important aspect to mention is that we assessed
peripheral eCBs concentrations. Thus, it is possible that our results
reflected an altered crosstalk between central and peripheral tissues,
involving both top-down (initiated in the central nervous system)
and bottom-up signaling (initiated in peripheral tissues) [87,
88]. Here, on the one hand, we wonder to what extent peripheral
eCBs concentrations may be driven by CB1R-dependent signaling
originated in the central nervous system and linked to changes in
neuroplasticity. On the other hand, stimuli-mediated disturbances
in peripheral eCBs concentrations could concurrently influence
central hedonic processing.

While their lipidic nature facilitates crossing the blood–brain
barrier [15], the involvement of peripheral eCBs in the pathophysi-
ology of addiction-related disorders could also be mediated by the
existence of a gut–brain–vagal axis [89]. In this respect, the origin of
peripheral eCBs is an unresolved issue, although some authors
speculate a predominantly gut origin [68]. Nonetheless, the
involvement of peripheral tissues in the eCB system functioning
at a central level seems more delineated for processes such as
feeding regulation and energy homeostasis than for reward pro-
cessing beyond food [89–91]. Taking into account that CB1R is
found in peripheral tissues [18], future studies are needed to
corroborate the implication of peripheral eCBs-CBR interactions
in addictive-related behaviors other than food. Moreover, it would
be interesting to examine whether other CBR such as CB2R may
play a role in peripheral eCBs-CBR interactions due to its high
concentrations in peripheral tissues including the hematological
system [92].

Finally, some limitations should be highlighted. Individuals with
GD were treatment-seeking patients from a hospital setting, which
could limit the representativeness and generalizability of the results.
Likewise, the cross-sectional nature of this study does not allow for
drawing causal inferences. Moreover, the analysis of peripheral
eCBs concentrations did not allow to infer the central functioning
of the system. Therefore, future longitudinal studies exploring
central correlates are warranted. Some strengths are also worth
noting such as the inclusion of a control group, adjusting for
potential confounding factors, and the use of a previously validated
procedure to obtain eCBs concentrations.

Conclusions

This is the first observational study focused on exploring the eCB
system in a clinical sample with GD. We observed significant
differences in fasting AEA plasma concentrations between individ-
uals with GD and HC, being higher in the clinical group after
adjusting for sex, age, and BMI. Moreover, the SEM analysis
revealed interesting clinical correlates. Specifically, eCBs concen-
trations and novelty-seeking defined a pathway associated with a
more severe profile among individuals with GD. Although these
results might preliminarily contribute to shed light on the neuro-
biological mechanisms underlying GD severity, future research is
warranted to further elucidate the role of the eCB system at a central
level, as well as potential causality relationships.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1192/j.eurpsy.2023.2460.
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