A theorem on cardinal numbers

By W. F. NEWNS.

A classical theorem of Cantor states that the class of all subclasses of a given class has a cardinal greater than that of the given class. This theorem is here established in a sharpened form, which was suggested to me by a question set by Professor J. M. Whittaker, F.R.S., in the 1950 examination for the Honours B.Sc. Degree at Liverpool.¹

THEOREM. Given any class A, with cardinal number a, let T be the class consisting of those subclasses of A which have at least a - 1 members. Then N(T) > a.

Here N(X) denotes the cardinal number of the class X. a-1 is the cardinal number of the class A - (x) where $x \in A$ and N(A) = a. The Axiom of Choice is not employed in the proof. In the case of non-reflexive cardinals, since A and subsets of the form A - (x) are the only members of T, the inequality reduces to a + 1 > a.

PROOF (i). To each member $x \in A$ corresponds a subclass A - (x) of A. Such a subclass has a - 1 members and thus is a member of T. This establishes a (1, 1) correspondence between A and part of T. Hence

$$a \leq N(T).$$

(ii). Suppose N(T) = a. Then there is a correlation σ between A and T. The class A itself, as a member of T, must have a correlate, say $z \in A$.

We write
$$\sigma(z) = A$$
.

To each
$$x \in A$$
 corresponds x' such that

$$\sigma(x') = A - (x).$$

Let A_0 be the class of all such x'. Clearly

$$z \notin A_0. \tag{1}$$

¹ The question was as follows :—"Let A be any class and let T be the class of all subclasses of A which contain more than one member. If A has more than two members, prove that T has a greater cardinal than A."

Moreover, consideration of the obvious correlation between x and x' shows that

$$N(A_0) = a. \tag{2}$$

Since $A_0 \subset A - (z) \subset A$, it follows from (2) that

a-1=a.

Hence all classes of the form A - (x) - (y) have cardinal a, and similarly their correlates form a subclass A_1 of cardinal a. Since A_0 and A_1 are disjoint, the sets $A_0 \cup X$, where $X \subset A_1$, are distinct and have cardinal a. These sets are in (1, 1) correspondence with the subclasses of A_1 and therefore of A.

Thus N(T) = a implies $N(T) \ge 2^a > a$, so that

$$N(T) \neq a$$
.

THE DEPARTMENT OF PURE MATHEMATICS, THE UNIVERSITY, LIVERPOOL.