A theorem on cardinal numbers

By W. F. Newns.

A classical theorem of Cantor states that the class of all sub. classes of a given class has a cardinal greater than that of the given class. This theorem is here established in a sharpened form, which was suggested to me by a question set by Professor J. M. Whittaker, F.R.S., in the 1950 examination for the Honours B.Sc. Degree at Liverpool. ${ }^{1}$

Theorem. Given any class A, with cardinal number a, let T be the class consisting of those subclasses of A which have at least $a-1$ members. Then $N(T)>a$.

Here $N(X)$ denotes the cardinal number of the class $X . a-1$ is the cardinal number of the class $A-(x)$ where $x \in A$ and $N(A)=a$. The Axiom of Choice is not employed in the proof. In the case of non-reflexive cardinals, since A and subsets of the form $A-(x)$ are the only members of T, the inequality reduces to $a+1>a$.

Proof (i). To each member $x \in A$ corresponds a subclass $A-(x)$ of A. Such a subclass has $a-1$ members and thus is a member of T. This establishes a $(1,1)$ correspondence between A and part of T. Hence

$$
a \leqq N(T)
$$

(ii). Suppose $N(T)=a$. Then there is a correlation σ between A and T. The class A itself, as a member of T, must have a correlate, say $z \in A$.

We write

$$
\sigma(z)=A .
$$

To each $x \in A$ corresponds x^{\prime} such that

$$
\sigma\left(x^{\prime}\right)=A-(x) .
$$

Let A_{0} be the class of all such x^{\prime}. Clearly

$$
\begin{equation*}
z \notin A_{0} . \tag{1}
\end{equation*}
$$

[^0]Moreover, consideration of the obvious correlation between x and x^{\prime} shows that

$$
\begin{equation*}
N\left(A_{0}\right)=a \tag{2}
\end{equation*}
$$

Since $A_{0} \subset A-(z) \subset A$, it follows from (2) that

$$
a-1=a .
$$

Hence all classes of the form $A-(x)-(y)$ have cardinal a, and similarly their correlates form a subclass A_{1} of cardinal a. Since A_{0} and A_{1} are disjoint, the sets $A_{0} \cup X$, where $X \subset A_{1}$, are distinct and have cardinal a. These sets are in (1,1) correspondence with the subclasses of A_{1} and therefore of A.

Thus $N(T)=a$ implies $N(T) \geqq 2^{a}>a$, so that

$$
N(T) \neq a .
$$

The Defartment of Pure Mathematics, The University, Liverpool.

[^0]: ${ }^{1}$ The question was as follows :-_" Let A be any class and let T be the class of all subclasses of A which contain more than one member. If A has more than two members, prove that T has a greater cardinal than A."

