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Convergent Richtmyer–Meshkov instability on
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We report the first shock-tube experiments on two-dimensional dual-mode air–SF6
interfaces with different initial spectra subjected to a convergent shock wave. The
convergent shock tube is specially designed with a tail opening to highlight the
Bell–Plesset (BP) and mode-coupling effects on amplitude development of fundamental
mode (FM). The results show that the BP effect promotes the occurrence of mode
coupling, and the feedback of high-order modes to the FM also arises earlier in convergent
geometry than that in its planar counterpart. Relatively, the amplitude growth of the
FM with a higher mode number is inhibited by the feedback, and saturates earlier. The
FM with a lower mode number is affected more heavily by the BP effect, and finally
dominates the flow. A new model is proposed to well predict the amplitude growths of the
FM and high-order modes in convergent geometry. In particular, for FM that reaches its
saturation amplitude, the post-saturation relation is introduced in the model to achieve a
better prediction.

Key words: shock waves

1. Introduction

The impulsive acceleration of a perturbed interface separating fluids of different densities,
typically due to a shock wave traversing the interface, results in the growth of interfacial
perturbations. This instability was first studied theoretically by Richtmyer (1960) and later
experimentally by Meshkov (1969). It is therefore known as the Richtmyer–Meshkov (RM)
instability. The RM instability development is generally driven by baroclinic vorticity
produced on the interface due to misalignment of the pressure gradient (provided by
the shock wave) and density gradient between the two materials. The perturbation
amplitude grows linearly at the early stage under certain conditions. When these conditions
are not satisfied, the amplitude exhibits nonlinear growth and, given sufficient initial

† Email addresses for correspondence: sanjing@ustc.edu.cn, xluo@ustc.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 965 A8-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:sanjing@ustc.edu.cn
mailto:xluo@ustc.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.395&domain=pdf
https://doi.org/10.1017/jfm.2023.395


J. Xu, H. Wang, Z. Zhai and X. Luo

energy, eventually the flow transitions to a turbulent mixing state. The RM instability
is an important phenomenon occurring in many applications. For example, in inertial
confinement fusion (ICF) reactions, the mixing induced by the RM instability (created
by surface non-uniformities at the fuel–shell interface or by non-uniform radiation drive)
results in the contamination of the fuel and limits the fusion energy gain (Lindl et al. 2014;
Chu et al. 2022). An understanding of the various stages of these instabilities is an essential
requirement of ICF efforts. In supersonic combustion, the RM instability increases the
mixing between the fuel and oxidizer, enhancing combustion efficiency (Yang, Kubota
& Zukoski 1993). A better understanding of the RM instability could allow for improved
design of combustors that optimizes mixing for combustion.

In previous studies, a single-mode interface has been widely used to investigate the RM
instability because of its simple configuration. Experimentally, the single-mode interface
was created by using the nitrocellulose membrane technique (Meshkov 1969; Jourdan &
Houas 2005), membrane-less technique (Jacobs 1992; Jacobs et al. 1993, 1995; Balakumar
et al. 2012; Morgan et al. 2012; Vandenboomgaerde et al. 2014) or soap-film technique
(Luo, Wang & Si 2013; Liu et al. 2018), and the shocked interface behaviours have
been thoroughly studied. Theoretically, various single-mode models for different evolution
stages based on several assumptions have been proposed, e.g. models for the linear stage
(Richtmyer 1960; Meyer & Blewett 1972; Wouchuk 2001; Luo et al. 2013), early nonlinear
stage (Zhang & Sohn 1996, 1997; Mariani et al. 2008) and late nonlinear stage (Goncharov
2002; Sohn 2003; Jacobs & Krivets 2005).

In practical applications, however, random multi-mode perturbations commonly exist
on initial interfaces. After a shock wave acceleration, complicated mechanisms, such as
high-order harmonic generation and bubble merger process (Sadot et al. 1998; Niederhaus
& Jacobs 2003; Leinov et al. 2009; Orlicz, Balasubramanian & Prestridge 2013; Pandian,
Stellingwerf & Abarzhi 2017; Elbaz & Shvarts 2018; Mohaghar et al. 2019), are generally
involved. Previous studies have shown that in the multi-mode RM instability, each mode
develops independently at the linear stage. When the mode amplitude develops comparable
to its wavelength, the evolution enters the nonlinear stage, and mode coupling becomes
very significant (Haan 1989, 1991; Ofer et al. 1996). Finally, under the assumption that
there are no longer any larger-wavelength perturbations yet to saturate, the interface
development enters the bubble merging stage, where smaller bubbles are gradually
swallowed up by larger bubbles (Alon et al. 1995; Sadot et al. 1998; Guo et al. 2019).

Experiments of a dual-mode RM instability under high-Mach-number conditions have
been performed (Di Stefano et al. 2015a,b), and the results indicated that new modes
are generated from mode coupling, and their amplitudes grow and saturate over time.
The dual-/multi-mode RM instability under weak shock conditions in planar geometry
was also investigated to explore the dependence of interface development on its initial
shape (Luo et al. 2020; Liang et al. 2021a). The growth rate of the multi-mode RM
instability was found to strongly rely on the wavenumber, phase and amplitude of initial
constituent modes. The interaction of a small-wavelength multi-mode perturbation with a
large-wavelength inclined interface perturbation was investigated using three-dimensional
(3-D) simulations (McFarland et al. 2015). It was shown that the flow has a distinct
memory of the initial conditions that are present in both large-scale-driven entrainment
measures and small-scale-driven mixing measures. A similar conclusion was also drawn
by Mohaghar et al. (2017) in their experimental work using density and velocity statistics.
Further, the effect of initial perturbations on the evolution of the inclined RM turbulent
mixing layer was investigated by Mohaghar, McFarland & Ranjan (2022) through 3-D
simulations. The results indicated that the multi-mode perturbations produce a completely
different mixing mechanism compared with the single-mode case.
965 A8-2
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Convergent RM instability on dual-mode interfaces

Compared with the planar RM instability, the convergent RM instability is more closely
related to ICF. In the convergent RM instability, both radial and angular directions are
involved, and the perturbation development is associated with more mechanisms. Bell
(1951) and Plesset (1954) first analysed the early-time growth of the Rayleigh–Taylor
(RT) instability (Rayleigh 1883; Taylor 1950) in cylindrical and spherical geometries, and
found that the perturbation growth rate varies with interface radius, referred to as the
Bell–Plesset (BP) effect. Several nonlinear models (Mikaelian 2005b; Liu, He & Yu 2012;
Liu et al. 2014; Wang et al. 2015) revealed that the BP effect suppresses nonlinearity and
extends the linear stage longer than that in the planar configuration, as demonstrated in
laser-driven experiments (Fincke et al. 2005). Besides, for continuous radial flow behind
a convergent shock, the interface as a whole is in a non-uniform pressure field, which
inevitably introduces the RT effect (Lanier et al. 2003; Lombardini, Pullin & Meiron 2014;
Ding et al. 2017; Samulski et al. 2022). Therefore, coupling of the BP effect, RT effect and
multiple impacts (shocks reflected back and forth between the interface and convergence
centre) greatly increases the complexity of the convergent RM instability.

Experimental measurements of single-mode perturbation amplitude in the convergent
RM instability were performed by Ding et al. (2017), and the RT stabilization caused by
interface deceleration was found to reduce the growth rate. By reasonably evaluating the
RT stabilization, a modified model based on the Bell equation was proposed to predict the
perturbation growth before reshock. Luo et al. (2018) found that the long-term effect of the
RT stabilization even leads to a phase inversion on the single-mode light–heavy interface
before reshock provided that the initial interface has sufficiently small perturbations.
Further, Zhai et al. (2019) numerically investigated the RT effect on the phase inversion
observed in experiments (Luo et al. 2018), considering effects of the initial amplitude,
azimuthal mode number and reshock timing. A novel shock tube was designed to study
the nonlinear features of the convergent single-mode RM instability (Luo et al. 2019). The
shock tube employs a concave–oblique–convex wall profile which first transforms a planar
shock into a cylindrical arc, then gradually strengthens the cylindrical shock along the
oblique wall and finally converts it back into a planar one. Therefore, the new facility can
realize the analysis of nonlinearity of the convergent RM instability by eliminating the RT
effect and reshock. The perturbation amplitude experiences a linear growth much longer
than that in planar geometry, which is mainly ascribed to the counteraction between the
promotion by the BP effect and the suppression by nonlinearity.

Previous studies associated with the convergent RM instability mainly focused on the
development of a single-mode perturbation. However, the interaction of a convergent shock
with multi-mode interfaces is more relevant to ICF. Relative to the convergent single-mode
RM instability, mode-coupling effects are introduced in the convergent multi-mode RM
instability. Kumar, Hornung & Sturtevant (2003) studied the growth of a multi-mode initial
interface, formed by sandwiching a polymeric membrane between wire-mesh frames, in a
conical geometry, and found that the turbulent mixing zone has a relatively larger growth
rate than that in the planar counterpart. Mode coupling in the convergent RM instability
of a dual-mode interface has been numerically investigated by Zhou et al. (2020). The
first-mode amplitude growth was found to depend heavily on the second mode, and
the amplitude signs of harmonics generated for all possible dual-mode configurations
were obtained. Besides, the second-order weakly nonlinear solutions for a dual-mode
interface subjected to a uniformly radical motion, i.e. a pure BP environment, were
obtained by Guo, Cheng & Li (2020). Until now, experiments related to the convergent
multi-mode RM instability have been scarce mainly because a uniformly convergent
shock and a well-defined initial interface are difficult to generate in experiments and
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Figure 1. Sketches of a convergent shock interacting with a dual-mode interface (a) and of the interface
formation process (b). IS, incident convergent shock; II, initial interface.

complicated mechanisms are involved. In our previous work, a smoothly convergent shock
was generated based on shock dynamics theory (Zhai et al. 2010; Zhan et al. 2018; Luo
et al. 2019), and a well-defined initial multi-mode interface was formed by the soap-film
technique (Liang et al. 2021a; Guo et al. 2022). These provide us an opportunity to explore
the developments of multi-mode interfaces accelerated by a convergent shock.

In the convergent RM instability, the BP effect always exists. During the coasting stage
of an ICF implosion (Craxton et al. 2015), the shell moves at a constant velocity, which
means that perturbations on the shell evolve in an approximately pure BP environment.
Therefore, it is necessary to explore the pure BP growth of multi-mode perturbations.
However, the RT effect, BP effect, mode coupling and reshock are generally coupled
together, and it is difficult to decouple them. It is unclear as to how the BP effect and
mode coupling behave in the convergent multi-mode RM instability. Starting from a
simple configuration, i.e. a dual-mode interface, interaction of a convergent shock with a
dual-mode air–SF6 interface is experimentally investigated in this work. The experiments
are conducted in the same convergent shock tube as that used by Luo et al. (2019). In
this convergent shock tube, the RT effect and reshock are avoided, and compressibility is
also negligible. Therefore, the BP and mode-coupling effects can be highlighted. Six kinds
of dual-mode air–SF6 interfaces with different initial perturbation spectra are formed to
explore the dependency of shocked flow on initial conditions. The objectives of present
work are twofold. The first is to evaluate the mode-coupling effects on the growth rate of
each mode in convergent geometry. The second is to demonstrate the different roles of the
BP effect and mode coupling in dual-mode perturbation developments.

In the following, the experimental methods are first provided. Then, the flow features
are qualitatively described and the mode amplitude growth for each dual-mode case is
presented and compared with the single-mode counterpart to highlight the mode-coupling
effects. Finally, the predictions of the mode amplitude growth are presented to evaluate the
BP effect.

2. Experimental methods

The dual-mode interface, as sketched in figure 1(a), is superimposed by two cosine
perturbations: r(θ) = R0 + a0 cos(m1θ + φ1)+ a0 cos(m2θ + φ2), where R0 = 270 mm
refers to the mean radius of initial interface, a0 = 1.0 mm is the initial amplitude of
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Convergent RM instability on dual-mode interfaces

each fundamental mode, mi (i = 1, 2) is the azimuthal mode number and φi (i = 1, 2)
is the initial phase. The dual-mode interfaces can be divided into two groups based on
the phase difference between fundamental modes: in-phase and anti-phase. Each group
includes three mode combinations: (m1,m2) = (48, 24), (72, 24) and (72, 48). Therefore,
the effects of relative phase and mode combination on the shocked dual-mode interface
evolution can be studied. To facilitate comparison and to obtain the background flow field,
three single-mode cases corresponding to the three fundamental modes involved and one
undisturbed case are also considered. The detailed initial conditions for each dual-mode
case (denoted by relative phase m1–m2) and each single-mode case (denoted by SM m) are
listed in table 1.

The soap-film technique (Luo et al. 2016; Liang et al. 2021a; Guo et al. 2022) is used to
form the well-defined dual-mode interfaces. Before interface formation, the transparent
devices (devices A and B) shown in figure 1(b) are manufactured by combining two
transparent acrylic plates (3.0 mm in thickness) with pedestals (7.0 mm in height). Two
identical constraint strips (0.50 mm in width and 0.25 mm in thickness) are attached to the
pre-carved grooves on device A to constrain the soap film. The ratio of the total height
of the constraint strips protruding into the flow field to the height of the whole flow field
is smaller than 10 %, and thus the constraint strips have negligible effects on the shocked
flow (Wang et al. 2022). To generate the soap-film interface, the constraint strips are wetted
by the soap solution (78 % pure water, 2 % sodium oleate and 20 % glycerin by mass) in
advance, then a rectangular brush with the soap solution attached is pulled carefully along
the constraint strips and finally the soap-film interface is generated.

To create an air–SF6 interface, air in device A needs to be replaced by SF6. As illustrated
in figure 1(b), a thin membrane is used to seal device A, and two pipes are inserted into
device A through the membrane. The SF6 is injected into device A through the inlet pipe
and air is exhausted through the outlet pipe. An oxygen concentration detector is placed at
the outlet pipe to monitor the oxygen concentration in device A. Once the volume fraction
of oxygen is reduced to less than 0.5 %, the pipes and thin membrane are removed to
avoid shock reflection, and experiments are conducted immediately. The time interval is
short enough and will not introduce additional uncertainty of gas concentration (Luo et al.
2019). According to one-dimensional gas dynamics theory, the gas components on both
sides of the interface, as listed in table 1, are determined by velocities of the incident and
transmitted shock waves measured from experimental schlieren images.

Experiments are conducted in a convergent shock tube with a smooth concave–oblique–
convex wall designed to modify the shock shape (Luo et al. 2019; Li et al. 2020). The
present design enables a strong convergent shock near the convergence centre to exit the
convergent section without shock focusing and reflecting. Thus, interface deceleration and
reshock are eliminated, and contributions from the BP effect and mode coupling to the
perturbation growth are isolated. The postshock flow is recorded by high-speed schlieren
photography. The frame rate of the camera (FASTCAM SA-Z, Photron Limited) is 50 400
frames per second, and the spatial resolution of each image is 0.285 mm pixel−1. The
ambient pressure and temperature are 101.3 ± 0.1 kPa and 294.7 ± 2 K, respectively. The
Mach number of the convergent shock just before it meets the interface is Ms = 1.26 ±
0.01.

Before performing the experiments, the boundary-layer effect is first evaluated. It is
found from the schlieren images that no obvious turbulence characteristics appear on the
evolving interface. In addition, the Reynolds numbers (Re) at four moments are discussed
here. Note that the calculation methods of Re almost involve the vorticity field information,
which is unable to be obtained in the present experiments. In this work, Re for the RM
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Times 0.1 ms 0.4 ms 0.7 ms 1.0 ms

Re 6.8 × 103 8.4 × 103 8.9 × 103 9.1 × 103

Table 2. The values of Reynolds number at different moments.

Models δ = 4.9
√
μrm
ρ�v

δ∗ = 1.72
√
μrm
ρ�v

δ∗∗ = 0.664
√
μrm
ρ�v

Air 0.63 mm 0.22 mm 0.09 mm
SF6 0.28 mm 0.10 mm 0.04 mm

Table 3. The boundary-layer thickness calculated from different laminar models.

instability turbulence is calculated, trying to give a rough judgement on whether there is
a transition. The Reynolds number is calculated by Re = hḣ/νmix, where h is half of the
mixing width, ḣ is the growth rate of h and νmix is the mixing kinematic viscosity of the
two gases. The mixing kinematic viscosity can be obtained by using (μ1 + μ2)/(ρ1 +
ρ2), where μ1 and μ2 (ρ1 and ρ2) are the viscosities (densities) of the mixed gases at
the left and right sides of the interface, respectively (Mohaghar et al. 2017; Guo et al.
2022). According to one-dimensional gas dynamics theory, νmix is calculated as 2.79 ×
10−6. The values of Re at four moments are given in table 2. As stated by Dimotakis
(2000), achieving Re ∼ 104 is conjectured to be necessary to observe a mixing transition
and is a more restrictive condition beyond conditions for turbulent transition. However,
the Reynolds numbers in our experiments have not yet developed to meet the necessary
conditions for a mixing transition. As a result, a laminar model is suitable for calculating
the boundary-layer thickness in our experiments. In this work, three laminar models are
used to calculate the boundary-layer thickness, and their expressions are given in table 3.
In this table, rm = 100 mm refers to the maximum distance that the interface moves in the
radial direction, ρ = 1.204 kg m−3 (ρ = 6.143 kg m−3) and μ = 1.83 × 10−5 Pa s (μ =
1.6 × 10−5 Pa s) are the density and viscosity coefficient of pure air (SF6), respectively,
and �v = 93.4 m s−1 represents the postshock flow velocity. The results calculated show
that the boundary-layer thickness during the time studied is much smaller than the inner
height of the test section (7.0 mm), and it has a limited effect on the interface movements.

Then any 3-D effects of the soap-film interface are evaluated. Taking case I72-24 as
an example, the interface amplitudes at the boundary slice (z = ±3.5 mm) and symmetry
slice (z = 0 mm) are 2.0 and 1.907 mm according to previous work (Luo et al. 2013; Liang
et al. 2021b). The absolute difference between these two amplitudes is 0.093 mm, which is
much smaller than the size of a single pixel in the schlieren images. Therefore, 3-D effects
may be considered negligible.

3. Results and discussion

3.1. Interface morphologies and flow features
Developments of the unperturbed and single-mode interfaces are similar to those in
the work of Luo et al. (2019) and, therefore, the related descriptions are omitted.
Distinct schlieren images showing developments of the in-phase dual-mode interfaces are
presented in figure 2. The time origin (t = 0 μs) is defined as the moment when the IS
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Figure 2. Experimental schlieren images illustrating the in-phase dual-mode interface evolution. RS, reflected
shock; TS, transmitted shock; SI, shocked interface. Other symbols have the same meaning as those in figure 1.
Numbers denote the time in μs.

arrives at the average position of the II, i.e. r = R0. Taking case I48-24 as an example,
before IS impact (t = −44μs), the interface profile looks quite thick because the interface
in the schlieren image is covered by two dual-mode strips. When IS passes across II, it
bifurcates into a downstream-moving TS and an upstream-propagating RS (t = 35 μs).
The SI leaves its original location, and its profile is thin and clean. This indicates that
the diffusion layer (Jacobs & Krivets 2005) and three-dimensionality (Luo et al. 2018)
of the interface are greatly reduced. At early times, the interface is still single-valued
and the shape of the original perturbation is visible. As time proceeds, the perturbation
width, defined as the difference between the maximum and minimum radii of the points
on the interface in the radial direction, increases continuously. Eventually, finger-like
bubbles (lighter fluid penetrating into heavier fluid) and spikes (heavier fluid penetrating
into lighter fluid) arise (t = 591–1007 μs) due to increasing nonlinearity. In this case, no
prominent vortices arise during the time studied, and four nearly equal bubbles occupy the
flow.

For the other two cases, some spikes start to roll up with a pair of vortices formed on
their necks (t = 1073 μs in case I72-24 for example), causing the interface to become
multi-valued. In case I72-24, there are two large bubbles and four small bubbles, and an
arrangement of a large bubble with two small bubbles on both sides is observed. In case
I72-48, there are four large bubbles and two small bubbles, and an arrangement of a small
bubble with two large bubbles on both sides is observed. Spikes between the large and
small bubbles skew towards the large bubbles, which is indicative of the bubble merger
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Figure 3. Schlieren images illustrating the anti-phase dual-mode interface evolution.

process (Sadot et al. 1998; Alon et al. 1994, 1995). The flow diversity demonstrates that
the initial mode combination significantly affects the perturbation morphology. As spikes
grow, they seem to be dragged. As discussed earlier, the boundary-layer effect can be
neglected. Actually, the spikes move forward followed by the soap-film droplets. After the
shock wave impact, the soap film breaks into small droplets immediately. These droplets
cannot catch up with the high-speed flow, which leads to the black lines along the line of
sight in the schlieren images. The relationship between the size of the soap droplets and the
shock strength was investigated by Ranjan et al. (2008) and Cohen (1991). According to
their work, the mean radius of the soap droplets is estimated to be 30 μm for the shock with
Ms ∼ 1.3. Moreover, Liang et al. (2019) investigated the interaction of a planar air–SF6
interface with a planar shock, and found a negligible effect of the soap droplets on the
interface motion.

Figure 3 shows developments of the anti-phase dual-mode interfaces. In case A48-24,
large bubble and small bubble are arranged alternately, and again no prominent vortices
arise (t = 1004μs). In case A72-24 , the flow is occupied by four large bubbles and a small
bubble, and four large bubbles are distributed symmetrically on both sides of the small
bubble (t = 1050 μs). Spikes between the two large bubbles are less prominent than those
between the large and small bubbles. In case A72-48, there are also four large bubbles
and a small bubble, and similarly, four large bubbles are distributed symmetrically on both
sides of the small bubble (t = 1041μs). However, spikes between the two large bubbles
are more prominent than those between the large and small bubbles, which is contrary to
case A72-24. Actually, the flow features in case A72-48 are quite similar to those in case
I72-48. For these anti-phase cases, spikes between the large and small bubbles also skew
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Figure 4. Comparison of dimensionless mixing width for single- and dual-mode cases.

towards the large bubble, whereas spikes between the two large bubbles develop without
an inclination. Comparison with the in-phase cases indicates that the flow features also
depend heavily on the initial phase difference.

3.2. Mixing width and mode amplitude growths
Variation of the dimensionless perturbation width (w) of each dual-mode case is given
in figure 4. The time is scaled as τw = (m/R0)v

lin
w (t − t∗), where vlin

w is the experimental
linear growth rate of the width and t∗ the time when compression phase ends. The width
is normalized as w̄ = (m/R0)(w − w∗), where w∗ is the perturbation width at t = t∗. The
perturbation widths of single-mode cases are also provided for comparison to evaluate the
mode-coupling effects. Generally, the perturbation width of each dual-mode case develops
similarly to its single-mode counterpart at early times, but grows slower from the middle to
late stages. This indicates that mode coupling occurs from the middle stage and suppresses
the perturbation width development. A similar conclusion was also drawn by Miles et al.
(2004). Liang et al. (2021a) reported in their planar multi-mode RM instability study that
although the mode-coupling effects reduce global mixing, they enhance local mixing. The
perturbation width seems to be affected less significantly by initial phase difference. Miles
et al. (2004) also concluded that the phase-difference effect is limited during the linear
and early nonlinear stages, but becomes prominent during the deep nonlinear stage.

Distinct interfacial morphologies facilitate the recognition of interface contours, and a
spectrum analysis can therefore be performed. By using an image processing program
(Guo et al. 2022; Liang & Luo 2022), the interface profile is first extracted. Taking
case I72-48 as an example, as shown in figure 5, the white dotted lines overlayed on
two schlieren images at different moments are the interface profiles extracted for Fourier
analysis. Although the very small vortex structures on the spikes are not identified, the
main features of the interface are well captured. Then, by applying the fast Fourier
transform, amplitude developments of the fundamental modes are obtained, as shown
in figure 6. The dimensionless time is τ = (24/R0)v

lin(t − t∗), with vlin being the
experimental linear growth rate of the mode amplitude. The amplitude is scaled as
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Figure 5. Comparison of the interface profile extracted with the actual interface at two different moments for
case I72-48.

α = (24/R0)(a − a∗), where a∗ is the mode amplitude at t = t∗. Although Fourier analysis
becomes strictly invalid once the vortex rolls up, the interfaces are still analysed through
fast Fourier transform before the vortex is further developed to obtain more information of
the fundamental mode amplitude. This treatment may lead to probable misidentification
of extremely high-order mode amplitudes, but has a limited effect on the fundamental
low-order mode amplitude. To explore the mode-coupling effects in dual-mode interface
evolution, the first-order mode amplitudes in the corresponding single-mode cases are also
provided.

As shown in figure 6(a), the amplitude of the mode with mode number 24 (m24 mode
for short) in case I48-24 is much smaller than that in the single-mode case, i.e. the m24
mode amplitude growth is suppressed by mode coupling. On the contrary, the m24 mode
amplitude in case A48-24 is slightly larger than that in the single-mode case, i.e. the m24
mode amplitude growth is promoted by mode coupling. This implies that the role of mode
coupling is affected by the phase difference of the two fundamental modes. Comparing
case I48-24 with case I72-24, the m24 mode amplitude growth is suppressed in the former
but is promoted in the latter, which indicates that the role of mode coupling is also affected
by the mode number combination. In ICF, the lower-m mode amplitude growth is generally
severe and takes a long time to saturate, which will result in severe deformation of the
hotspot interface and sharp decrease of the hotspot volume (Dittrich et al. 2014). Through
designing the initial perturbation spectrum, one may expect to suppress the amplitude
growth of the lower-m mode. In figure 6(b), the m48 mode amplitude growth in case
A72-48 is almost consistent with that in the single-mode case during the time studied,
which indicates that the mode-coupling effects on this mode evolution are negligible.
Similar phenomena are found in the amplitude growths of the m48 mode in case I72-48
(although it shows a slight suppression after τ ∼ 0.25) and the m72 mode in case A72-24,
as given in figure 6(c). In short, the mode-coupling effects in convergent geometry are still
strongly dependent upon the initial perturbation spectrum.

To predict the amplitude signs of the modes generated in convergent geometry, based on
the second-order solution derived by Haan (1991) in planar geometry, Zhou et al. (2020)
proposed a modified model, named the modified Haan model, which is given as

akj±ki ≈ ±1
2(kj ± ki)aL

ki
aL

kj
, (3.1)
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Figure 6. Comparison of dimensionless amplitudes of the fundamental modes for all dual-mode cases. The
first-order mode amplitudes in corresponding single-mode cases are also provided.

where k is the wavenumber and aL
k is the mode-k amplitude. From the amplitude signs of

the modes generated, as provided in table 4, the mode-coupling effects on the amplitude
growths of the fundamental modes can be demonstrated. For example, in case I48-24, the
harmonic with mode number of 24 generated by coupling between fundamental modes
has a negative amplitude, suppressing the m24 amplitude growth. In planar geometry (Luo
et al. 2020), the authors found that for the initial dual-mode interface with combination
of k and k/3 modes, mode coupling has a negligible influence on the growth of each
basic wave. In convergent geometry, however, the m72 amplitude growth in case I72-24
is greatly suppressed, and the m24 amplitude growth is slightly promoted, as shown in
figure 6. In case I72-24, coupling between positive m72 and positive m24 will generate the
harmonics of positive m96 and negative m48. Further, coupling between negative m48 and
positive m24 will generate negative m72 and positive m24, and coupling between positive
m96 and positive m24 will also generate negative m72. As a result, the m72 amplitude
growth is greatly suppressed, whereas the m24 amplitude growth is slightly promoted.
For clarity, the amplitude signs of fundamental modes resulting from the feedback of
second-order harmonics are listed in table 5. In other words, the feedback of second-order
harmonics to fundamental modes becomes prominent in convergent geometry. Because the
experimental time in this work is similar to that in previous work (Luo et al. 2020), we can
conclude that the BP effect promotes the occurrence of mode coupling, and the feedback
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am1 am2 am1+m2 am1−m2

+ + + −
− + − +
+ − − +
− − + −

Table 4. Amplitude signs of the modes generated by mode coupling.

Case Basic modes [+72,+24] [+72,+48] growth
I48-24 +48 − ↓

+24 − ↓
[+96,+24] [+72,−48] [+96,+72] (−48,+24) growth

I72-24 +72 − − ↓
+24 + − + unsure

[+72,+120] [+72,−24] [+48,+120] (+48,−24) growth
I72-48 +72 − − ↓

+48 − + unsure

[−72,+24] [−72,−48] growth
A48-24 −48 + ↓

+24 − ↓
[−96,+24] [−72,+48] [−96,−72] (+48,+24) growth

A72-24 −72 + + ↓
+24 + − − unsure

[−72,−120] [−72,+24] [−120,+48] (+48,+24) growth
A72-48 −72 + + ↓

+48 + − unsure

Table 5. Amplitude signs of fundamental modes resulting from the feedback of second-order harmonics. The
[i, j] indicates mode coupling between the i mode and j mode before there is a saturated mode, because a
saturated mode k has no contribution to the generation of lower-k mode, and can be affected only by coupling
of two lower-k modes (Ofer et al. 1996). The (i, j) indicates mode coupling between the i mode and j mode
during the whole time studied. The arrow ↓ means that the amplitude growth is inhibited.

of high-order modes to fundamental mode also arises earlier in convergent geometry than
that in its planar counterpart.

Note that the m72 mode amplitude growth in the I/A72-48 cases almost stagnates at
the late stage, but such a phenomenon has not been observed in the I/A72-24 cases. From
the perspective of energy transfer, due to the presence of the m48 mode which acts as
a transitional role between the m24 and m72 modes, energy is more easily transferred
from higher-m modes to lower-m modes. Therefore, the m72 mode amplitude growth in
the I/A72-48 cases saturates much earlier than in the I/A72-24 cases. For multi-mode
cases, a collective band saturation amplitude S(k) was introduced by Haan (1989). The
mode whose amplitude reaches S(k) is considered to be saturated. Provided that the
initial spectrum is a smooth one, i.e. all neighbouring mode amplitudes are roughly equal
initially, they showed that local structures with much larger amplitude than that of the
individual mode will be formed by neighbouring modes. The local structure encounters
large kinematic drag, leading to a much lower saturation amplitude S(k) than 0.1λ (λ is
the mode wavelength) for the individual mode (Shvarts et al. 1995; Ofer et al. 1996).
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This means that the constituent modes in multi-mode cases with such an initial spectrum
are more likely to enter the nonlinear stage due to mode coupling. However, Ofer et al.
(1996) pointed out that for the initial dual-mode spectrum, S(k) of the mode should still be
taken as 0.1λ until there are saturated modes at the late stage. After that, the mode-coupling
effects gradually become prominent, and the low-order and high-order harmonics are
continuously generated and accumulated, which enables the concept of collective band
saturation amplitude to take effect again.

The influence of mode coupling on saturation time (the time when a given mode
amplitude grows to 0.1λ) of main modes is shown in figure 7. In all dual-mode cases,
the higher-m fundamental mode amplitude always reaches saturation first. The two
fundamental modes’ amplitudes in the I/A72-48 cases are both saturated within the
experimental time, whereas only the higher-m fundamental mode amplitude saturates
in the other cases. The dimensionless saturation times when the modes just reach their
saturation amplitudes are also marked in figure 7. To highlight the mode-coupling effects,
the same method is used to obtain the dimensionless saturation time of the fundamental
mode in the single-mode cases. Comparison of dimensionless saturation times for different
cases is provided in table 6. Note that the fundamental mode m72 amplitude saturates at
τ ∼ 0.18, but before this time the mode-coupling effects on its growth are less significant,
as shown in figure 6. As a result, the evolution before saturation is almost the same as that
in the single-mode case, resulting in the same saturation time. Similarly, the saturation
times of mode m48 in the I/A72-48 cases are consistent with the single-mode results.
However, for mode m48 in the I/A48-24 cases, amplitude saturation is not achieved by the
time that mode coupling occurs (τ ∼ 0.15). Because mode coupling suppresses the m48
mode amplitude growth, its saturation time is therefore delayed relative to the single-mode
case. In short, the fundamental mode combination affects the saturation time, but the initial
phase difference has a limited effect on the saturation time.

To determine the dominant modes in dual-mode cases, the evolution of the average mode
number is studied. The definition of the average mode number is given as

〈m〉 =
∑

m

(a2
m × m)

/∑
m

a2
m, (3.2)

where m refers to all main modes on the spectrum and am represents the amplitude of mode
m. Generally, the average mode number development can be divided into three stages
marked with different colour blocks in figure 8. At stage I, the average mode number
decreases, because the fundamental mode amplitude reduces due to shock compression.
At stage II, the average mode number increases because of incipient development of the
fundamental modes after shock impact. At stage III, the average mode number gradually
reduces as time proceeds in all cases except I48-24. The reduction of the average mode
number indicates that energy in the spectrum is generally transferred from higher-m
modes to lower-m modes, and finally the lower-m modes dominate the spectrum. This
is well known as the inverse cascade process, corresponding to the bubble merger process.
Shvarts et al. (1995) numerically discussed the variation of the average wavenumber in
3-D planar multi-mode RT instability, and found that the spectrum becomes increasingly
peaked towards lower k and the mean wavenumbers decrease in time as in the
two-dimensional (2-D) case. That is, the 3-D case is shown to share many qualitative
features with the 2-D case, such as an inverse cascade of large structure generation. The
inverse cascade process is believed to be a common feature of multi-mode flows in both
3-D and 2-D flows. This work gives the quantitative description of the inverse cascade
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Figure 7. The absolute values of main modes’ amplitudes comparing with their 0.1λ in all cases. The
‘saturation zone’ means that the mode reaches its saturated amplitude (0.1λ), and the borders are determined
by variation of the saturated mode amplitude (0.1λ) with the mode number at initial and final moments during
the time studied. Different symbols represent different modes. For each mode, two amplitudes at initial and
final moments are provided. The dimensionless times marked correspond to the times when the modes have
just reached their saturation amplitudes.

process from the perspective of the average mode number in the 2-D dual-mode RM
instability. In case I48-24, the bubble merger process is absent as shown in figure 2.
Thus its average mode number does not decrease, and the higher-m fundamental mode
is dominant. This conclusion is consistent with the observation in figure 7. In short, the
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Case SM-1st I48-24 A48-24 I72-24 A72-24 I72-48 A72-48

Mode number 24 0.26 — — — — — —
Mode number 48 0.20 0.24 0.24 — — 0.20 0.20
Mode number 72 0.17 — — 0.18 0.18 0.18 0.18

Table 6. The dimensionless saturation times of modes in single- and dual-mode cases. The dashes mean that
the corresponding fundamental mode does not saturate or exist in this case.
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Figure 8. Development of average mode number of spectrum in all cases. The colour blocks represent three
different stages.

average mode number reduction at stage III is ascribed to amplitude saturation of higher-m
modes and generation of lower-m modes due to mode coupling.

3.3. Theoretical prediction of the mode amplitude

3.3.1. Theoretical models for planar geometry
The RT effect and reshock are eliminated in the current convergent geometry, which
provides a possibility to evaluate the BP effect on the fundamental mode development.
In planar geometry, Ofer et al. (1996) solved the modal model proposed by Haan (1991),
and obtained a second-order solution for multi-mode RT instability, which is written as

ak(t) = alin
k (t)− 1

2 kA

(∑
k′

alin
k′ (t)alin

k+k′(t)− 1
2

∑
k′<k

alin
k′ (t)alin

k−k′(t)

)
, (3.3)

where k, k′ ∈ R
+ and alin

k (t) is the k mode amplitude at the linear stage. The second term
on the right-hand side of (3.3) represents the contributions of mode (k + k′) and mode
(k − k′) to k mode generation. To apply (3.3) to the RM instability, through replacing the
constant acceleration g with an impulsive acceleration δt�v, Luo et al. (2020) deduced a
dual-mode modal model, named the RM-Ofer model. By applying the RM-Ofer model to
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a dual-mode RM instability with fundamental k and k/2 modes, the growth rates of the
fundamental modes and the harmonic generated can be given as

vk/2(t) = vlin
k/2 − 1

2 kA+
[(√

2 + 1
2

)
vlin

k a+
k/2 + vlin

k v
lin
k/2t + 1

2v
lin
k/2a+

k

]
,

vk(t) = vlin
k + 1

2 kA+(2vlin
k/2a+

k/2 + vlin
k/2v

lin
k/2t),

v3k/2(t) = 3
8 kA+[2vlin

k/2v
lin
k t + vlin

k/2a+
k + (1 + √

2)vlin
k a+

k/2],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

where a+
k is the postshock amplitude of mode k. The RM-Ofer model considers mode

coupling, but ignores nonlinearity. Therefore, it fails to predict the mode amplitude growth
when nonlinearity is prominent (Luo et al. 2020). To evaluate nonlinearity, a planar
dual-mode model combining the nonlinear single-mode model proposed by Zhang & Guo
(2016) with the RM-Ofer model, named the mZG-Ofer model, has been proposed by Luo
et al. (2020). The mZG-Ofer model is expressed as

vk/2(t) =
vlin

k/2 − 1
2 kA+

[(√
2 + 1

2

)
vlin

k a+
k/2 + vlin

k v
lin
k/2t + 1

2v
lin
k/2a+

k

]
1 + âk

{
vlin

k/2 − 1
2 kA+

[(√
2 + 1

2

)
vlin

k a+
k/2 + vlin

k v
lin
k/2t + 1

2v
lin
k/2a+

k

]}
t
,

vk(t) =
vlin

k + 1
2 kA+(2vlin

k/2a+
k/2 + vlin

k/2v
lin
k/2t)

1 + âk[vlin
k + 1

2 kA+(2vlin
k/2a+

k/2 + vlin
k/2v

lin
k/2t)]t

,

v3k/2(t) =
3
8 kA+[2vlin

k/2v
lin
k t + vlin

k/2a+
k + (1 + √

2)vlin
k a+

k/2]

1 + 3
8 âk2A+[2vlin

k/2v
lin
k t + vlin

k/2a+
k + (1 + √

2)vlin
k a+

k/2]}t ,

â = 3
4

(1 − A+)(3 − A+)
3 − A+ + √

2(1 − A+)1/2
4(3 − A+)+ √

2(9 − A+)(1 − A+)1/2

(3 − A+)2 + 2
√

2(3 + A+)(1 − A+)1/2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.5)

The mZG-Ofer model considers both mode coupling and nonlinearity, and its applicability
in predicting the mode amplitude nonlinear growth of dual-mode interfaces subjected to
planar shock waves has been verified (Luo et al. 2020).

Comparison of the experimental results with theoretical predictions from the mZG-Ofer
model is given in figure 9. The model gives a good prediction for the higher-m fundamental
mode amplitude growth, but it greatly underestimates the lower-m fundamental mode
amplitude growth. This indicates that the BP effect cannot be ignored, and it has a stronger
effect on the lower-m mode growth than the higher-m mode. A similar conclusion was also
drawn in previous theoretical work on single-mode perturbations (Wang et al. 2015), and
our work provides additional experimental evidence. In addition, the mZG-Ofer model
generally provides good predictions for amplitude growth rates of the modes generated
because they generally have high mode numbers. In experiments, the amplitude signs of
m1 + m2 mode and m1 − m2 mode generated in in-phase (anti-phase) cases are positive
(negative) and negative (positive), respectively, which are consistent with the theoretical
predictions from the modified Haan model, as shown in table 4. As a result, the amplitude
signs of the modes generated by mode coupling in convergent geometry can also be
predicted by Haan’s solution proposed for planar geometry.
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Figure 9. Variations of amplitudes of fundamental modes and modes generated with time. Theoretical results
from the mZG-Ofer model, Guo’s model and PM model are shown to compare with experimental results. Here
m+ and m− refer to m1 + m2 mode and m1 − m2 mode.

3.3.2. Theoretical models for convergent geometry
In convergent geometry, according to previous work (Bell 1951; Mikaelian 2005a), the
linear solution of a single-mode growth rate in a pure BP environment can be expressed as

ȧ(t) = v0C2
r , (3.6)

where v0 = a+
0 �v(mA − 1)/R0 is the initial growth rate and Cr = R0/R is the

convergence ratio with R = R0 + Vt (V is the constant interface velocity). To quantify
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nonlinearity in the single-mode interface evolution, the expression for third-order feedback
to the fundamental mode was obtained by Wang et al. (2015), which is given as

af = a3
0

1
8

(
3

m2

R2 − A
R

m
R

)(
1 − 1

Cr

)2

+ a2
0v0

1
24

t
[
(7 − 8A2)

m2

R2 − 19Am − 18
R2

]
Cr

+ a2
0v0

1
24

t
{

2
[
(8A2 − 10)

m2

R2 + 7
A
R

m
R

− 3
R2

]
−
[
(8A2 − 13)

m2

R2 − 5
A
R

m
R

+ 12
R2

]
1

Cr

}

+ a0v
2
0

1
24

t2
{[
(A2 + 2)

m2

R2 − 22
A
R

m
R

+ 27
R2

]
C2

r + 2
[
(5A2 − 5)

m2

R2 + 13
A
R

m
R

− 3
R2

]
Cr

}

− a0v
2
0

1
24

t2
[
(11A2 − 5)

m2

R2 − 2
A
R

m
R

]
+ v3

0 t3
(

1
120

A2 m2

R2 − 11
60

A
1
R

m
R

+ 3
8

1
R2

)
C3

r

− v3
0 t3
{[(

1
60

A2 + 1
12

)
m2

R2 − 11
30

A
R

m
R

]
C2

r +
[(

19
120

A2 − 1
24

)
m2

R2 + 1
60

A
R

m
R

]
Cr

}
.

(3.7)

The nonlinear effects on the single-mode perturbation growth in a pure BP environment
were found to be reasonably evaluated by (3.7) (Luo et al. 2019). Recently, by solving
the governing equations for multi-mode perturbation growth on a cylindrically convergent
interface, Guo et al. (2020) obtained second-order weakly nonlinear solutions for
dual-mode perturbations in a pure BP environment, which are expressed as

a1,m1 = a0
m1

+ ȧ0
m1

Crt,

a1,m2 = a0
m2

+ ȧ0
m2

Crt,

a+ = (a0
m2

ȧ0
m1

+ a0
m1

ȧ0
m2
)

1
2R

[A(m1 + m2)− 1](Cr − 1)t

+ ȧ0
m1

ȧ0
m2

1
6R

[A(m1 + m2)(C2
r − 4Cr)− 3C2

r ]t2,

a− = 1
2R

[A(m1 − m2)(a0
m1

ȧ0
m2

− a0
m2

ȧ0
m1
)

− (a0
m1

ȧ0
m2

+ a0
m2

ȧ0
m1
)](Cr − 1)t

+ ȧ0
m1

ȧ0
m2

1
6R

[A(m1 − m2)(C2
r + 2Cr)− 3C2

r )]t
2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

where a1,m refers to the linear solutions for the dual-mode BP growth, a0
m is the initial

perturbation amplitude of the m mode and ȧ0
m is the initial growth rate. The subscripts

+ and − represent the modes m1 + m2 and m1 − m2, respectively. This model is named
Guo’s model hereafter. Since the model solves the second-order governing equations, it
only gives a linear solution to the growth of the fundamental mode, and does not consider
mode coupling. However, for the modes m1 + m2 and m1 − m2, the solution does consider
both the BP effect and mode coupling.

The predictions from Guo’s model are illustrated in figure 9. For the mode generated,
the model only provides good predictions to the amplitude growth at the early stage,
because the amplitude growth has entered the strongly nonlinear stage at late times. For
the fundamental mode, the model behaves differently. In the I/A48-24 and I/A72-24 cases,
the model generally predicts well the lower-m mode amplitude growth, but it greatly
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overestimates the higher-m mode amplitude growth at the early stage. This implies that
the higher-m (lower-m) fundamental mode amplitude growth is more significantly affected
by mode coupling (BP effect). In the I/A72-48 cases, however, both higher- and lower-m
modes are overestimated by the model, probably because nonlinearity that gradually
becomes significant after mode saturation has not been considered in the model. From the
discussion on the mode saturation time, the higher-m mode amplitude reaches saturation
earlier, and the amplitudes of both fundamental modes saturate in the I/A72-48 cases. In
short, for the fundamental mode which reaches (does not reach) its saturation amplitude,
its amplitude growth cannot (can) be predicted by Guo’s model.

3.3.3. The present model
To reasonably evaluate the amplitude growths of the fundamental modes and modes
generated, the BP effect and mode coupling as well as nonlinearity should be considered
in the model. In this work, the amplitude of mode m is considered to be composed of two
parts, i.e.

am = alin
m + anonlin

m , (3.9)

where alin
m is the linear amplitude and anonlin

m is the nonlinear feedback from the third-order
harmonic to mode m. Amplitude alin

m is calculated by

alin
m =

∫ t

t+0
vmcC2

r dt, (3.10)

where vmc is the growth rate given by (3.4), t+0 is the time just after the shock passage
and anonlin

m is obtained through substituting v0 and a0 by vmc and amc respectively in (3.7).
Note that the wavenumber k is calculated as m/R in convergent RM instability. For lower-m
modes, nonlinearity is negligible, and, thus, only the first term in (3.9) is retained. Note
that (3.9) can degenerate to amc calculated by (3.4) when the BP effect and nonlinearity
are absent, i.e. Cr = 1, in which case the limit of large R as m/R → k is adopted and the
second term in (3.9) is equal to zero. It can also reduce to (3.6) when both mode coupling
and nonlinearity are not considered, i.e. vlin

m a+
m and vlin

m v
lin
m in (3.4) and the second term

in (3.9) is equal to zero. In addition, when m → 0, the items related to mode coupling
in (3.9) tend to zero, and (3.9) will degenerate to (3.6). This verifies the conclusion that
lower-m mode amplitude growth is more heavily affected by the BP effect. After the mode
amplitude reaches saturation, nonlinearity is significant, but (3.7), from which anonlin

m is
obtained, is only valid for weakly nonlinear stages (Wang et al. 2015). For multi-mode
initial spectra, Ofer et al. (1996) considered that the mode amplitude growth obeys the
following relation after saturation:

asat
m (t) = atsat

m

[
1 + log

(
alin

m (t)
alin

m (tsat)

)]
, (3.11)

where asat
m (t) is the amplitude of mode m after saturation, atsat

m is the saturation amplitude
(here given by 0.1λ) and tsat is the time at which saturation occurs. This post-saturation
relation has been verified in convergent geometry (Milovich et al. 2004; El Rafei et al.
2019). In this work, the post-saturation relation is adopted in the model to evaluate the
saturated mode’s nonlinear behaviour. To sum up, (3.9)–(3.11) constitute the present model
(named the PM model).
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The PM model indicates that the mode amplitude develops as a 1/t decay after
saturation, which is consistent with the late bubble growth rate of multi-mode RM
instability given by both potential flow models (Alon et al. 1994, 1995; Oron et al. 2001)
and vortex models (Rikanati, Alon & Shvarts 1998). The results in figure 9 show that the
PM model generally gives good predictions for the amplitude growths of the fundamental
modes with both lower and higher mode numbers. Relatively, the PM model provides
a better prediction for the amplitude growth of the fundamental mode with a higher
(lower) mode number than Guo’s (mZG-Ofer) model. For the fundamental mode with
a higher mode number, the PM model slightly overestimates the experimental result. First,
the fundamental mode with a higher mode number is less affected by the BP effect
which always promotes the perturbation growth. Second, the RM-Ofer model is only
accurate to second-order precision and does not consider the feedback from the high-order
harmonics. However, the feedback from the second-order harmonics always inhibits the
development of the fundamental mode with a higher mode number, as indicated in table 5.
For the fundamental mode with a lower mode number, the feedback behaves differently,
and it is difficult to determine its role. In addition, the PM model greatly improves the
predictions for the amplitude growths of the saturated modes relative to Guo’s model.
For the modes generated, the PM model provides good predictions at the early stage, but
slightly overestimates at the late stage, probably because the BP effect is involved in the
model.

In summary, for the development of the fundamental mode which does not reach its
saturation amplitude, its amplitude growth is more affected by the BP effect than mode
coupling. For the development of the fundamental mode which reaches its saturation
amplitude, its amplitude growths are more significantly affected by mode coupling than
the BP effect. After the mode reaches its saturation amplitude, the amplitude growth can
be described by the post-saturation relation given by Ofer et al. (1996).

4. Conclusion

Shock-tube experiments on the development of a dual-mode air–SF6 interface subjected to
a convergent shock wave are carried out. The convergent shock tube is specially designed
with a tail opening to eliminate the RT effect and reshock, and to highlight the BP
effect on mode amplitude growth. Six kinds of dual-mode interface with different initial
perturbation spectra that are produced by changing the mode combination and phase
difference between fundamental modes are considered. The results show that the flow
features are strongly dependent upon the initial spectrum. At the late stage, the flow is
generally dominated by bubbles with different sizes. The number and arrangement of large
bubbles and small bubbles as well as the inclination of spikes are closely associated with
the mode combination and phase difference.

The developments of perturbation mixing width show that for dual-mode case, mode
coupling arises from the middle stage and suppresses the width growth compared with
the single-mode counterpart. Depending upon the initial spectrum, the fundamental mode
amplitude growth is either promoted, inhibited or unaffected by mode coupling. In general,
mode coupling inhibits the amplitude growth of the fundamental mode with a higher mode
number, but causes different behaviours for the amplitude growth of the fundamental mode
with a lower mode number. The fundamental mode amplitude variation can be explained
by the feedback of the high-order modes. The BP effect promotes the occurrence of mode
coupling, and the feedback of high-order modes to fundamental mode also arises earlier in
convergent geometry than that in its planar counterpart. Moreover, the amplitude growth
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is found to saturate earlier for the fundamental mode with a higher mode number, and the
saturation time is affected by mode coupling. By introducing the concept of the average
mode number, the flow is found to be dominated by the fundamental mode with a lower
mode number.

By incorporating mode coupling and nonlinearity into the planar dual-mode model,
a model is established to predict the amplitude growth of the fundamental mode. The
model provides good (poor) predictions for the amplitude growth of the fundamental
mode with a higher (lower) mode number, which indicates that the amplitude growth of
the fundamental mode with a lower mode number is more significantly affected by the
BP effect which is not included in the model. Further, an existing convergent dual-mode
model (Guo et al. 2020) considering the BP effect and weak nonlinearity is used to
predict the amplitude growths of the fundamental modes and modes generated. For the
modes generated, the model can predict the amplitude growths at the early stage. For the
fundamental mode with a lower mode number that does not reach its saturation amplitude,
the model provides a good prediction, whereas for the fundamental mode with a higher
mode number that reaches its saturation amplitude, the prediction is less satisfactory.
This indicates that the fundamental mode with a higher (lower) mode number is more
heavily affected by mode coupling (BP effect). Finally, the amplitude developments of the
fundamental modes and modes generated can be reasonably well predicted by combining
the planar mode-coupling model, the linear BP model and the third-order feedback
model. In particular, for the fundamental mode that reaches its saturation amplitude, the
post-saturation relation given by Ofer et al. (1996) is introduced into the model to achieve
a better prediction.

This work can provide a support for designing the initial mode combination when
one wants to manipulate the mode amplitude growth. In future work, development of
multi-mode perturbations subjected to a convergent shock wave will be investigated and a
more complicated mode-coupling mechanism will be explored.
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