THE DESCENDING CHAIN CONDITION IN MODULAR LATTICES

THOMAS G. NEWMAN

(Received 5 May 1970)

Communicated by B. Mond

In a recent paper Kovács [1] studied join-continuous modular lattices which satisfy the following conditions:

(i) every element is a join of finitely many join-irredicibles, and,

(ii) the set of join-irreducibles satisfies the descending chain condition. He was able to prove that such a lattice must itself satisfy the descending chain condition. Interest was expressed in whether or not one could obtain the same result without the assumption of modularity and/or of join-continuity. In this paper we give an elementary proof of this result without the assumption of join-continuity (which of course must then follow as a consequence of the descending chain condition). In addition we give a suitable example to show that modularity may not be omitted in general. We first state the main result:

THEOREM. If L is a modular lattice in which (i) and (ii) hold, then L satisfies the descending chain condition.

The proof will be given after establishing a preliminary result.

LEMMA. Let L be a modular lattice and let K be the set of all $x \in L$ such that the principal ideal (x) generated by x satisfies the descending chain condition. Then K is an ideal of L(possibly void). Moreover, K satisfies the descending chain condition.

PROOF. It is enough to prove that K is join closed since everything else is obvious and holds in general. Let $a, b \in K$ and suppose we are given a chain $a \lor b \ge x_1 \ge x_2 \ge \cdots$. Observe that the descending chain condition holds in the interval $[a, a \lor b]$ —by the isomorphism theorem in modular lattices—since it is transposed to $[a \land b, b]$. Now consider the chains $\{a \land x_n\}$ in (a) and $\{a \lor x_n\}$ in $[a, a \lor b]$. By the descending chain condition there is an n such that for $m \ge n$ we have $a \lor x_n = a \lor x_m$ and $a \land x_n = a \land x_m$. But $x_m \le x_n$ so that by modularity $x_m = x_n$ for $m \ge n$. This shows that $a \lor b \in K$ and completes the proof.

443

PROOF OF THE THEOREM. Let J denote the set of join irreducibles of L and let K be as in the Lemma. We intend to show that $J \subseteq K$. To show an $x \in J$ is an element of K we may assume that each $y \in J$, y < x, is a member of K. This is because (ii) holds. Now by (i) and the Lemma this implies that any y < x is a member of K. It is now obvious that $x \in K$ since any chain $x \ge x_1 \ge x_2 \ge \cdots$ is either constant or eventually in K. Hence $J \subseteq K$ and by (i) we have K = L. Therefore L satisfies the descending chain condition.

Close examination of the proof shows that we can state:

COROLLARY. If L is any lattice in which (i) and (ii) hold and in which K (as defined above) is an ideal, then L satisfies the descending chain condition.

We now give an example of a join-continuous lattice which satisfies (i) and (ii) but not the descending chain condition. Let L consist of the following elements in the real plane: (a) the origin (0,0); (b) the line segment from (0,1) to (1,0) and; (c) the line segment from (0,1) to (1,2). It is easily checked that L is a joincontinuous lattice with the order on L induced by the pointwise order on the plane (a sketch is most helpful). The points (t, 1-t), $0 \le t \le 1$, in the line segment described in (b) are atoms and thereby join-irreducible. An element (t, 1 + t), $0 \le t \le 1$, is given irredundantly as the join of (0,1) and (t, 1-t). It is now clear that (i) and (ii) hold in L, yet the line segment described in (c) has infinite descending chains so that the descending chain conditions does not hold.

Reference

 L. G. Kovács, 'The descending chain condition in join continuous modular lattices' J. Aust. Math. Soc. 10 (1969), 1–4.

Texas Tech University Lubbock, Texas, 19409 U.S.A.