54D05, 54E45

BULL. AUSTRAL. MATH. SOC. VOL. 26 (1982), 331-342.

AVERAGE DISTANCES IN COMPACT CONNECTED SPACES

David Yost

We give a simple proof of the fact that compact, connected topological spaces have the "average distance property". For a metric space (X, d), this asserts the existence of a unique number a = a(X) such that, given finitely many points $x_1, \ldots, x_n \in X$, then there is some $y \in X$ with

$$\frac{1}{n}\sum_{i=1}^{n}d(y, x_i) = a$$

We examine the possible values of a(X), for subsets of finite dimensional normed spaces. For example, if diam(X) denotes the diameter of some compact, convex set in a euclidean space, then $a(X) \leq \operatorname{diam}(X)/\sqrt{2}$. On the other hand, $a(X)/\operatorname{diam}(X)$ can be arbitrarily close to 1, for non-convex sets in euclidean spaces of sufficiently large dimension.

1. The Gross-Stadje theorem

In [7], Stadje proved the following interesting result.

THEOREM 1. Let X be a compact, connected topological space and $d: X^2 \rightarrow \mathbb{R}$ a continuous, symmetric function. Then there is a unique number a = a(X, d) with the following property: for all $n \in \mathbb{N}$, and for

Received 5 May 1982. The author is very grateful to Graham Elton, Sid Morris and John Strantzen for a number of stimulating discussions, and to Ian Robinson for some calculations.

all $x_1, \ldots, x_n \in X$, there is a point $y \in X$ such that

$$\frac{1}{n}\sum_{i=1}^{n}d(x_{i}, y) = a$$
.

Typically, d will be a metric on X, although that assumption is not necessary. Bearing this in mind, the property characterizing a(X, d)is called the "average distance property". For the special case when dis a metric, Theorem 1 had previously been proved by Gross [1]. In the general case, we will call a(X, d) the Gross-Stadje number for (X, d).

One purpose of this note is to present a simple proof of the Gross-Stadje Theorem. Our proof of the existence of the Gross-Stadje number is new and completely elementary. First, it will be helpful to introduce some notation.

Het $F = \bigcup_{n=1}^{\infty} X^n$. Thus F is the set of all ordered finite-tuples, with members from X. If $x \in X$, and $F = (x_1, \ldots, x_n) \in F$, put $d(x, F) = \frac{1}{n} \sum_{i=1}^{n} d\{x, x_i\}$. Then put $\alpha_F = \inf\{d(x, F) : x \in X\}$ and $\beta_F = \sup\{d(x, F) : x \in X\}$.

We claim that $\alpha_F \leq \beta_G$ whenever $F, G \in F$. Let us write $F = (x_1, \ldots, x_m)$ and $G = (y_1, \ldots, y_n)$. It suffices to show that, for some $i \leq n$ and some $j \leq m$, we have $d(y_i, F) \leq d(x_j, G)$. Suppose that this is not true. Then $d(y_i, F) > d(x_j, G)$, for all $i \leq n$, $j \leq m$. Summing over i and j then yields

$$m \sum_{i=1}^{n} d(y_{i}, F) > n \sum_{j=1}^{m} d(x_{j}, G)$$

Since d is symmetric, both sides of this inequality are equal to $\sum_{i=1}^{n} \sum_{j=1}^{m} d(y_i, x_j)$. This is a contradiction, so our claim must be correct.

Now existence of a(X, d) can be easily proved. What we wish to show is that $(\exists ! a \in \mathbb{R})(\forall F \in F) (a \in \{d(x, F) : x \in X\})$. For any $F \in F$, the map $x \mapsto d(x, F)$ is a continuous function on X. Since X is compact and connected, $\{d(x, F) : x \in X\}$ must be the closed interval $[\alpha_F, \beta_F]$. The conclusion of Theorem 1 then becomes $(\exists !a)(\forall F \in F)(\alpha_F \leq a \leq \beta_F)$. Our previous claim tells us that $\sup\{\alpha_F : F \in F\} \leq \inf\{\beta_F : F \in F\}$. Existence of a follows immediately.

It is a little harder to prove the uniqueness of a. First note that each $F \in F$ induces, in a natural way, an atomic probability measure on X. We will use the same symbol for the probability measure and the ordered tuple; thus $d(x, F) = \int_X d(x, y) dF(y)$. Let P denote the set of all regular Borel probability measures on X, equipped with the vague topology. (For details of the relationship between P and X, we refer the reader to [4, Section 22Å].) In this topology, a net P_α is convergent to P if and only if $\int_X f(x) dP_\alpha(x) + \int_X f(x) dP(x)$, for every continuous function $f: X \neq \mathbb{R}$. Then P is a compact, convex set, and it can be deduced from the Krein-Milman theorem [4, Section 13B] that F is dense in P. If $F_\alpha + P$ vaguely, and $x_\alpha \neq x$ in X, it is a routine exercise to show that $d(x_\alpha, F_\alpha) \neq d(x, P)$. From these facts it follows that

$$\underline{v} = \sup \min d(x, F) = \max \min d(x, P)$$

 $F \in F x \in X$ $P \in P x \in X$

and

$$\overline{v} = \inf \max d(x, F) = \min \max d(x, P) .$$

F(F) x(X) P(P) x(X)

We have already shown that $\underline{v} \leq \overline{v}$. A generalization of Ville's version of the minimax theorem [6, p. 69] tells us that $\underline{v} = \overline{v}$. Thus $\sup \alpha_F = \inf \beta_F$, and so *a* is unique. This completes our proof of $F \in F$

Theorem 1.

Graham Elton has pointed out (private communcation) that (X, d) will have the following strong version of the average distance property: given any regular, Borel probability measure P on X, there is a point $x \in X$ with d(x, P) = a(X, d). This result follows from the last paragraph. It also follows from the proof above that there are two probability measures, P and Q, on X such that $d(x, P) \leq a(X, d) \leq d(x, Q)$ for all $x \in X$. Joan Cleary and Sid Morris (private communication) have used this idea to calculate the Gross-Stadje numbers of regular polygons.

If there is a single probability measure P, on X, such that d(x, P) is independent of x, then a(X, d) is easy to determine. We only have to calculate d(x, P) for a convenient point $x \in X$. Morris and Nickolas [5] have used this to evaluate the Gross-Stadje numbers of sufficiently symmetric metric spaces, such as spheres.

Sometimes it is difficult to find a(X, d) exactly, and we must settle for some sort of estimate. In such a situation, the following result might be useful.

PROPOSITION 2. Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha \leq \beta$.

(i) Suppose (X, d) has the following property: given any $F \in F$, there is a point $y \in X$ with $\alpha \leq d(y, F) \leq \beta$. Then $\alpha \leq a(X, d) \leq \beta$.

(ii) Suppose there is a point $y \in X$ such that $\alpha \leq d(x, y) \leq \beta$ for all $x \in X$. Then $\alpha \leq a(X, d) \leq \beta$.

Proof. (i) The hypothesis clearly implies that

sup min $d(x, F) \leq \beta$ and $\alpha \leq \inf \max d(x, F)$. F = x F = x

(ii) This follows immediately from (i). //

2. The range of values for metric spaces

From now on, (X, d) will be a compact, connected metric space, and a(X, d) will be abbreviated to a(X). We assume further that X is not a singleton, and so has strictly positive diameter, diam(X). Normalizing, we define the dispersion number of X by m(X) = a(X)/diam(X). It can then be shown [7, p. 277] that $\frac{1}{2} \leq m(X) < 1$.

In this section, we will consider the range of values that m(X) may take. The dispersion number gives us some information about how 'spread out' a space is, although perhaps not as much information as we would like. If m(X) is close to 1, then the points of X are, generally speaking, far apart from one another. The converse is not true. It is possible that $m(X) = \frac{1}{2}$, for a space X which we might intuitively describe as fairly

spread out.

PROPOSITION 3. Suppose that $m(X) > \frac{1}{2}$. Then there is a metric space Y, obtained from X by gluing on a line segment, for which $m(Y) = \frac{1}{2}$.

Proof. Let I^{∞} denote the space of all sequences from [0, 1], equipped with the metric $d(\{\alpha_n\}, \{\beta_n\}) = \sup_{n=1}^{\infty} |\alpha_n - \beta_n|$. Assume without loss of generality that diam(X) = 1. Since X is separable, we may suppose that it is embedded in I^{∞} . Let $a \in I^{\infty}$ be the constant sequence $(\frac{1}{2}, \frac{1}{2}, \ldots)$. Since X is compact, there is a point $x \in X$ such that d(a, x) is a minimum; that is, d(a, x) = d(a, X). Let $Y = X \cup [x, a]$, where [x, a] is the line segment joining x to a. Then Y is certainly a compact, connected set. Since x is a closest point (in X) to a, Y X is just the half-open segment (x, a]. Moreover $d(a, y) \leq \frac{1}{2}$ for all $y \in I^{\infty}$, and hence for all $y \in Y$. It follows from Proposition 2 that $a(Y) \leq \frac{1}{2}$. Clearly diam(Y) = 1, and thus $m(Y) = \frac{1}{2}$. //

If (S, d) is any metric space, let H(S) denote the family of all compact, connected, non-empty subsets of S. We can turn H(S) into a metric space as follows. For any $X, Y \in H(S)$, define $\rho(X, Y) = \sup\{d(x, Y) : x \in X\}$, and $d_H(X, Y) = \max\{\rho(X, Y), \rho(Y, X)\}$. Then d_H is a metric for H(S) [2, Section 28]. If S is compact, then so is H(S) under this metric.

PROPOSITION 4. For any metric space (S, d), the map $a : H(S) \rightarrow \mathbb{R}$ is continuous. More precisely, we have

$$|a(X)-a(Y)| \leq \rho(X, Y) + \rho(Y, X) \leq 2d_H(X, Y)$$

for all $X, Y \in H(S)$.

Proof. Fix X, $Y \in H(S)$, and put $\delta_1 = \rho(X, Y)$ and $\delta_2 = \rho(Y, X)$. Let x_1, \ldots, x_n be any points in X. Then there are points $y_1, \ldots, y_n \in Y$ with $d(x_i, y_i) \leq \delta_1$ for each *i*. Determine $y \in Y$ so so that $a(Y) = \frac{1}{n} \sum_{i=1}^n d(y, y_i)$. Then there is a point $x \in X$ with $d(x, y) \leq \delta_{\gamma}$. Routine calculations then show that

$$a(Y) - \delta_1 - \delta_2 \leq \frac{1}{n} \sum_{i=1}^n d(x, x_i) \leq a(Y) + \delta_1 + \delta_2$$
.

An application of Proposition 2 yields

 $a(Y) - \delta_1 - \delta_2 \le a(X) \le a(Y) + \delta_1 + \delta_2$. //

THEOREM 5. Let E be any finite dimensional normed space. Then there is a constant k = k(E) < 1 such that $m(X) \le k$ whenever X is a compact connected subset of E. Moreover,

 $\{m(X) : X \text{ is a compact, connected subset of } E\}$ is the whole interval $[\frac{1}{2}, k(E)]$.

Proof. It suffices to show that $a(X) \le k$ whenever diam(X) = 1. Clearly any set of diameter 1 is isometric to a subset of S, the closed unit ball of E. So let $T = \{X \in H(S) : \text{diam}(X) = 1\}$. Then T is a compact, metric space, $a : T \rightarrow \mathbb{R}$ is continuous, and a(X) < 1 for every $X \in T$. It follows that $k(E) = \max\{a(X) : X \in T\} < 1$.

Finally, choose $X \in T$ so that a(X) = m(X) = k(E), and let Y be a line segment with length 1. If $0 \le \lambda \le 1$, then

$$\lambda X + (1-\lambda)Y = \{\lambda x + (1-\lambda)y : x \in X, y \in Y\}$$

is a compact, connected subset of E, and is clearly not a singleton. Thus we can define a continuous map $[0, 1] \rightarrow \mathbb{R}$ by $\lambda \mapsto m(\lambda X + (1-\lambda)Y)$. Since $0 \mapsto \frac{1}{2}$ and $1 \mapsto k(E)$, the intermediate value theorem finishes the proof. //

Let us define $k_n = \sup\{k(E) : E \text{ is an } n \text{-dimensional normed space}\}$. It is almost obvious that $k_1 = \frac{1}{2}$. It would be interesting to know* whether $k_n < 1$ for n = 2, 3, ... The next result shows that $k_n \neq 1$ as $n \neq \infty$.

THEOREM 6. If X is a compact, convex set in some n-dimensional normed space, then $m(X) \le n/(n+1)$. This estimate is sharp.

Proof. For each $x \in X$, let A(x) = (1/(n+1))(x+nX). Then each

* See note added in proof.

To see that this estimate is sharp, give \mathbb{R}^{n+1} the l_1 -norm, $\|(\alpha_0, \alpha_1, \ldots, \alpha_n)\| = \sum_{i=0}^n |\alpha_i|$, and let X be the convex hull of $F = \{e_0, e_1, e_2, \ldots, e_n\}$. Then X is contained in the *n*-dimensional affine subspace $\{(\alpha_0, \alpha_1, \ldots, \alpha_n) : \sum_{i=0}^n \alpha_i = 1\}$. Routine calculations show that d(x, F) = 2n/(n+1), for any $x \in X$. Since diam(X) = 2, it follows that m(X) = n/(n+1). //

3. Subsets of euclidean spaces

Stadje claims [7, p. 278] that if X is a compact, convex subset of the euclidean space \mathbb{R}^n , then $m(X) \leq \frac{1}{2}\sqrt{5-2\sqrt{3}}$. Recently, Strantzen [8] has shown that $m(X) \leq \sqrt{n/(2n+2)}$ for any such X, and that this bound is sharp. This improves Stadje's estimate for n = 2 and n = 3, and disproves his claim for $n \geq 4$. However, we still have the uniform estimate $m(X) \leq 1/\sqrt{2}$, whenever X is a compact, convex subset of some euclidean space. Theorem 6 shows that no such uniform bound exists for non-euclidean spaces.

It is still of interest to know whether there is such a uniform bound, for non-convex sets in euclidean spaces. There is not; we will see from Theorem 9 that $k(\mathbf{R}^n) \rightarrow 1$ as $n \rightarrow \infty$. The next two results help to identify those sets with large dispersion numbers.

THEOREM 7. Let X be a compact, connected subset of some normed space. Let Y be a closed, connected subset of X, and suppose that the convex hull of Y contains X. Then $m(X) \leq m(Y)$.

Proof. Clearly diam(Y) = diam(X), so we need show only that $a(X) \leq a(Y)$. Let F be any finite ordered-tuple from Y. Then F is also a finite ordered-tuple from X, so d(x, F) = a(X) for some $x \in X$. However, $x = \sum_{i} \lambda_{i} y_{i}$, for some $y_{i} \in Y$, $\lambda_{i} \geq 0$ with $\sum_{i} \lambda_{i} = 1$. Then $a(X) = d\left(\sum_{i} \lambda_{i} y_{i}, F\right) \leq \sum_{i} \lambda_{i} d(y_{i}, F)$, and so $a(X) \leq d(y_{i}, F)$, for at least one value of i. It follows from Proposition 2 that $a(X) \leq a(Y)$. //

COROLLARY 8. Let X be a compact, connected subset of a finite dimensional normed space, whose boundary ∂X is connected. Then $m(X) \leq m(\partial X)$.

Proof. It follows from the separation theorem that X is contained in the convex hull of ∂X . //

Corollary 8 was first proved by Graham Elton for finite dimensional euclidean spaces.

Let S^n denote, as usual, the surface of the unit ball in \mathbb{R}^{n+1} . Graham Elton, Sid Morris and Peter Nickolas (private communication) have shown that the sequence $m(S^n)$ increases monotonically, and has limit $1/\sqrt{2}$. Given Corollary 8, it is then tempting to conjecture that $m(X) \leq 1/\sqrt{2}$, whenever X is contained in a finite dimensional euclidean space. The truth is quite different.

THEOREM 9. There exist compact, connected sets $X_n \subset \mathbb{R}^n$ such that $m(X_n) \neq 1$ as $n \neq \infty$. More precisely, X_n can be chosen so that $m(X_n) \geq n/(n+1)$. (Obviously X_n cannot be convex.)

Proof. In \mathbb{R}^{n+1} , let F_n be the finite set $\{e_i/\sqrt{2} : 0 \le i \le n\}$. For $0 \le j < k \le n$, let A(j, k) be the arc with centre at $(1/((n-1)\sqrt{2})) \left(\sum_{i=0}^n e_i - e_j - e_k\right)$, which joins $e_j/\sqrt{2}$ to $e_k/\sqrt{2}$. Then A(j, k) has radius $\sqrt{n/(2n-2)}$, and parameterization

$$\begin{split} x_{j}(\theta) &= \frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{2(n^{2}-1)}} ,\\ x_{k}(\theta) &= \frac{n\sin\theta}{\sqrt{2(n^{2}-1)}} ,\\ x_{i}(\theta) &= \frac{1-\cos\theta}{\sqrt{2(n-1)}} - \frac{\sin\theta}{\sqrt{2(n^{2}-1)}} , \text{ for } i \neq j, k , \end{split}$$

where $0 \leq \theta \leq \arccos(1/n)$. Then $X_n = \bigcup\{A(j, k) : 0 \leq j \leq k \leq n\}$ is a compact, connected subset of the *n*-dimensional affine subspace $\{(x_0, \ldots, x_n) : \sum_{i=0}^n x_i = \sqrt{2}\}$. It is routine to show that $||x-e_i/\sqrt{2}|| = 1$, whenever $x \in A(j, k)$ and $j \neq i \neq k$. Thus, for any $x \in X$,

$$\begin{split} d(x, F_n) &= \frac{1}{n+1} \sum_{i=0}^n \|x - e_i / \sqrt{2}\| \\ &= \frac{1}{n+1} \left(n - 1 + \|x - e_j / \sqrt{2}\| + \|x - e_k / \sqrt{2}\| \right) & \text{for suitable } j, k \\ &\geq \frac{1}{n+1} \left(n - 1 + \|e_j / \sqrt{2} - e_k / \sqrt{2}\| \right) \\ &= \frac{n}{n+1} \end{split}$$

It follows that $a(X_n) \ge n/(n+1)$. When n = 2, X_n is the well-known Reuleaux triangle, and it is easy to see that $diam(X_2) = 1$. Thus $m(X_2) \ge 2/3$.

Unfortunately, it is not true that $\operatorname{diam}(X_n) = 1$ for $n \ge 3$. One can show that ||x-y|| is a maximum (over $x, y \in X_n$) when x and y are the midpoints of two arcs which do not share a common vertex. It follows that $\operatorname{diam}(X_n) = (\sqrt{n(n+1)} - \sqrt{2})/(-1) \Rightarrow 1$ as $n \Rightarrow \infty$. Thus $m(X_n) \Rightarrow 1$ as $n \Rightarrow \infty$.

If Y_n is any closed, connected subset of X_n which contains F_n , the same reasoning shows that $a(Y_n) \ge n/(n+1)$ and $diam(Y_n) \ne 1$. For example, we could choose

(i)
$$Y_n = \bigcup \{A(i-1, i) : 1 \le i \le n\}$$
, or
(ii) $Y_n = A(0, n) \cup \bigcup \{A(i-1, i) : 1 \le i \le n\}$, or
(iii) $Y_n = \bigcup \{A(0, i) : 1 \le i \le n\}$.

In case (i), Y_n will be homeomorphic to a line segment, and in case (ii), Y_n will be homeomorphic to a circle. For the last choice, it is possible to show that diam $(Y_n) = 1$ and so $m(Y_n) \ge n/(n+1)$. //

Some numerical calculations show that the dispersion number for the Reuleaux triangle is 0.668 (to three significant figures). It follows that $k(\mathbb{R}^2) \geq 0.668$. Graham Elton (private communication) has shown that $k(\mathbb{R}^2) \leq 0.775$. It would be interesting to narrow this gap.

ADDED IN PROOF (25 June 1982). We have recently shown that $k_n < 1$. A sketch of the proof follows.

If $\|\cdot\|$ is any norm on \mathbb{R}^n , let ν denote its restriction to $I^n = [-1, 1]^n$, and also the derived metric. If E is any *n*-dimensional normed space, Auerbach's Lemma [J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I*, Springer-Verlag, Berlin, 1977, Proposition 1.c.3] asserts the existence of norm-one vectors $x_1, \ldots, x_n \in E$ and norm-one functionals $f_1, \ldots, f_n \in E^*$ with $f_i(x_j) = \delta_{ij}$. Easy calculations show that

$$\max_{i=1}^{n} |\alpha_{i}| \leq \left\| \sum_{i=1}^{n} \alpha_{i} x_{i} \right\| \leq \sum_{i=1}^{n} |\alpha_{i}| \text{ for all } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$$

Identifying E with \mathbb{R}^n , we then have $\|\cdot\|_{\infty} \leq \|\cdot\| \leq \|\cdot\|_1$. Thus if X is a compact, connected subset of some *n*-dimensional normed space, with diameter one, then X is isometric to a metric space of the form (Y, v), where $Y \in H(I^n)$ and $v_{\infty} \leq v \leq v_1$.

Now $N = \{v : v_{\infty} \leq v \leq v_{1}\}$ is a compact subset of $C(I^{n})$; by the

Ascoli-Arzela theorem. It is routine to show that the maps $a : H(I^n) \times N \to \mathbb{R}$ and diam : $H(I^n) \times N \to \mathbb{R}$ are continuous. It follows from compactness that

$$k_{n} = \sup \{a(X, v) : (X, v) \in H(I^{n}) \times N \text{ and } \operatorname{diam}(X, v) = 1\}$$

is strictly less than one.

We also note that $k_n \ge 1 - 2^{-n}$. To see this, give \mathbb{R}^n the norm $\|\cdot\|_{\infty}$, and consider the subset $X = \{(\alpha_1, \ldots, \alpha_n) : 0 \le \alpha_i \le 1 \text{ for all } i,$ and $0 < \alpha_i < 1 \text{ for at most one value of } i\}$.

References

- [1] O. Gross, "The rendezvous value of a metric space", Advances in game theory, 49-53 (Annals of Mathematics Studies, 52. Princeton University Press, Princeton, New Jersey, 1964).
- [2] Felix Hausdorff, Set theory, 2nd edition (Chelsea, New York, 1962).
- [3] Ed. Helly, "Über Mengen knovexer Körper mit gemeinschaftlichen Punkten", Deutsche Math.-Ver. 32 (1923), 175-176.
- [4] Richard B. Holmes, Geometric functional analysis and its applications (Graduate Texts in Mathematics, 24. Springer-Verlag, New York, Heidelberg, Berlin, 1975).
- [5] Sidney A. Morris and Peter Nickolas, "On the average distance property of compact connected metric spaces", Arch. Math. (to appear).
- [6] Hukukane Nikaidô, "On von Neumann's minimax theorem", Pacific J. Math. 4 (1954), 65-72.
- [7] Wolfgang Stadje, "A property of compact connected spaces", Arch.
 Math. (Basel) 36 (1981), 275-280.
- [8] John Strantzen, "An average distance result in Euclidean n-space", Bull. Austral. Math. Soc. 26 (1982), 321-330.

- [9] E. Szekeres and G. Szekeres, "The average distance theorem for compact convex regions", Bull. Austral. Math. Soc. (to appear).
- [10] D.J. Wilson, "A game with squared distance as payoff", Bull. Austral. Math. Soc. (to appear).

Department of Pure Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia.