AVERAGE DISTANCES IN COMPACT CONNECTED SPACES

David Yost

We give a simple proof of the fact that compact, connected topological spaces have the "average distance property". For a metric space (X, d), this asserts the existence of a unique number $a=\alpha(X)$ such that, given finitely many points $x_{1}, \ldots, x_{n} \in X$, then there is some $y \in X$ with

$$
\frac{1}{n} \sum_{i=1}^{n} d\left(y, x_{i}\right)=a
$$

We examine the possible values of $a(X)$, for subsets of finite dimensional normed spaces. For example, if $\operatorname{diam}(X)$ denotes the diameter of some compact, convex set in a euclidean space, then $a(X) \leq \operatorname{diam}(X) / \sqrt{2}$. On the other hand, $\alpha(X) / \operatorname{diam}(X)$ can be arbitrarily close to 1 , for non-convex sets in euclidean spaces of sufficiently large dimension.

1. The Gross-Stadje theorem

In [7], Stadje proved the following interesting result.
THEOREM 1. Let X be a compact, connected topological space and $d: X^{2} \rightarrow R$ a continuous, symmetric function. Then there is a unique number $a=a(X, d)$ with the following property: for $a l Z n \in \mathbb{N}$, and for

Received 5 May 1982. The author is very grateful to Graham Elton, Sid Morris and John Strantzen for a number of stimulating discussions, and to Ian Robinson for some calculations.
all $x_{1}, \ldots, x_{n} \in X$, there is a point $y \in X$ such that

$$
\frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, y\right)=a
$$

Typically, d will be a metric on X, although that assumption is not necessary. Bearing this in mind, the property characterizing $a(X, d)$ is called the "average distance property". For the special case when d is a metric, Theorem 1 had previously been proved by Gross [1]. In the general case, we will call $\alpha(X, d)$ the Gross-Stadje number for (X, d).

One purpose of this note is to present a simple proof of the GrossStadje Theorem. Our proof of the existence of the Gross-Stadje number is new and completely elementary. First, it will be helpful to introduce some notation.

Iet $F=\bigcup_{n=1}^{\infty} X^{n}$. Thus F is the set of all ordered finite-tuples, with members from X. If $x \in X$, and $F^{\prime}=\left(x_{1}, \ldots, x_{n}\right) \in F$, put $d(x, F)=\frac{1}{n} \sum_{i=1}^{n} d\left(x, x_{i}\right)$. Then put $\alpha_{F}=\inf \{d(x, F): x \in X\}$ and $\beta_{F}=\sup \{d(x, F): x \in X\}$.

We claim that $\alpha_{F} \leq \beta_{G}$ whenever $F, G \in F$. Let us write $F=\left(x_{1}, \ldots, x_{m}\right)$ and $G=\left(y_{1}, \ldots, y_{n}\right)$. It suffices to show that, for some $i \leq n$ and some $j \leq m$, we have $d\left(y_{i}, F\right) \leq d\left(x_{j}, G\right)$. Suppose that this is not true. Then $d\left(y_{i}, F\right)>d\left(x_{j}, G\right)$, for all $i \leq n, j \leq m$. Summing over i and j then yields

$$
m \sum_{i=1}^{n} d\left(y_{i}, F\right)>n \sum_{j=1}^{m} d\left(x_{j}, G\right)
$$

Since d is symmetric, both sides of this inequality are equal to $\sum_{i=1}^{n} \sum_{j=1}^{m} d\left(y_{i}, x_{j}\right)$. This is a contradiction, so our claim must be correct.

Now existence of $a(X, d)$ can be easily proved. What we wish to show is that $(\exists!a \in \mathbf{R})(\forall F \in F)(a \in\{d(x, F): x \in X\})$. For any $F \in F$, the
map $x \longmapsto d(x, F)$ is a continuous function on X. Since X is compact and connected, $\{d(x, F): x \in X\}$ must be the closed interval $\left[\alpha_{F}, \beta_{F}\right]$. The conclusion of Theorem I then becomes $(\exists!a)(\forall F \in F)\left(\alpha_{F} \leq a \leq \beta_{F}\right)$. Our previous claim tells us that $\sup \left\{\alpha_{F}: F \in F\right\} \leq \inf \left\{\beta_{F}: F \in F\right\}$. Existence of a follows immediately.

It is a little harder to prove the uniqueness of a. First note that each $F \in F$ induces, in a natural way, an atomic probability measure on X. We will use the same symbol for the probability measure and the ordered tuple; thus $d(x, F)=\int_{\dot{X}} d(x, y) d F(y)$. Let P denote the set of all regular Borel probability measures on X, equipped with the vague topology. (For details of the relationship between P and X, we refer the reader to [4, Section 22A].) In this topology, a net P_{α} is convergent to P if and only if $\int_{X} f(x) d P_{\alpha}(x) \rightarrow \int_{X} f(x) d P(x)$, for every continuous function $f: X \rightarrow \mathbf{R}$. Then P is a compact, convex set, and it can be deduced from the Krein-Milman theorem [4, Section 13B] that F is dense in P. If $F_{\alpha} \rightarrow P$ vaguely, and $x_{\alpha} \rightarrow x$ in X, it is a routine exercise to show that $d\left(x_{\alpha}, F_{\alpha}\right) \rightarrow d(x, P)$. From these facts it follows that

$$
\underline{v}=\sup _{F \in F} \min _{x \in X} d(x, F)=\max _{P \in P} \min _{x \in X} d(x, P),
$$

and

$$
\bar{v}=\inf _{F \in F} \max _{x \in X} d(x, F)=\min _{P \in P} \max _{x \in X} d(x, P)
$$

We have already shown that $\underline{v} \leq \bar{v}$. A generalization of Ville's version of the minimax theorem [6, p. 69] tells us that $\underline{v}=\bar{v}$. Thus $\sup _{F \in F} \alpha_{F}=\inf _{F \in F} \beta_{F}$, and so a is unique. This completes our proof of Theorem 1.

Graham Elton has pointed out (private communcation) that (X, d) will have the following strong version of the average distance property: given any regular, Borel probability measure P on X, there is a point $x \in X$ with $d(x, P)=a(X, d)$. This result follows from the last paragraph.

It also follows from the proof above that there are two probability measures, P and Q, on X such that $d(x, P) \leq a(X, d) \leq d(x, Q)$ for all $x \in X$. Joan Cleary and Sid Morris (private communication) have used this idea to calculate the Gross-Stadje numbers of regular polygons.

If there is a single probability measure P, on X, such that $d(x, P)$ is independent of x, then $a(X, d)$ is easy to determine. We only have to calculate $d(x, P)$ for a convenient point $x \in X$. Morris and Nickolas [5] have used this to evaluate the Gross-Stadje numbers of sufficiently symmetric metric spaces, such as spheres.

Sometimes it is difficult to find $a(X, d)$ exactly, and we must settle for some sort of estimate. In such a situation, the following result might be useful.

PROPOSITION 2. Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha \leq \beta$.
(i) Suppose (X, d) has the following property: given any $F \in F$, there is a point $y \in X$ with $\alpha \leq d(y, F) \leq \beta$. Then $\alpha \leq a(X, d) \leq \beta$.
(ii) Suppose there is a point $y \in X$ such that $\alpha \leq d(x, y) \leq \beta$ for all $x \in X$. Then $\alpha \leq \alpha(X, d) \leq \beta$.

Proof. (i) The hypothesis clearly implies that

$$
\sup _{F} \min _{x} d(x, F) \leq \beta \text { and } \alpha \leq \inf _{F} \cdot \max d(x, F)
$$

(ii) This follows immediately from (i). //

2. The range of values for metric spaces

From now on, (X, d) will be a compact, connected metric space, and $a(X, d)$ will be abbreviated to $a(X)$. We assume further that X is not a singleton, and so has strictly positive diameter, diam(X) .
Normalizing, we define the dispersion number of X by $m(X)=a(X) /$ diam (X). It can then be shown $[7, \mathrm{p} .277]$ that $\frac{1}{2} \leq m(X)<1$.

In this section, we will consider the range of values that $m(X)$ may take. The dispersion number gives us some information about how 'spread out' a space is, although perhaps not as much information as we would like. If $m(X)$ is close to 1 , then the points of X are, generally speaking, far apart from one another. The converse is not true. It is possible that $m(X)=\frac{1}{2}$, for a space X which we might intuitively describe as fairly
spread out.
PROPOSITION 3. Suppose that $m(X)>\frac{1}{2}$. Then there is a metric space Y, obtained from X by gluing on a line segment, for which $m(Y)=\frac{1}{2}$.

Proof. Let I^{∞} denote the space of all sequences from $[0,1]$, equipped with the metric $d\left(\left(\alpha_{n}\right),\left(\beta_{n}\right)\right)=\sup _{n=1}^{\infty}\left|\alpha_{n}-\beta_{n}\right|$. Assume without loss of generality that $\operatorname{diam}(X)=1$. Since X is separable, we may suppose that it is embedded in I^{∞}. Fet $a \in I^{\infty}$ be the constant sequence $\left(\frac{1}{2}, \frac{1}{2}, \ldots\right)$. Since X is compact, there is a point $x \in X$ such that $d(a, x)$ is a minimum; that is, $d(a, x)=d(a, X)$. Let $Y=X v[x, a]$, where $[x, a]$ is the line segment joining x to a. Then Y is certainly a compact, connected set. Since x is a closest point (in X) to $a, Y \backslash X$ is just the half-open segment $(x, a]$. Moreover $d(a, y) \leq \frac{1}{2}$ for all $y \in I^{\infty}$, and hence for all $y \in Y$. It follows from Proposition 2 that $a(Y) \leq \frac{1}{2}$. Clearly $\operatorname{diam}(Y)=1$, and thus $m(Y)=\frac{1}{2} . \quad / /$

If (S, d) is any metric space, let $H(S)$ denote the family of all compact, connected, non-empty subsets of S. We can turn $H(S)$ into a metric space as follows. For any $X, Y \in H(S)$, define $\rho(X, Y)=\sup \{d(x, Y): x \in X\}$, and $d_{H}(X, Y)=\max \{\rho(X, Y), \rho(Y, X)\}$. Then d_{H} is a metric for $H(S)$ [2, Section 28]. If S is compact, then so is $H(S)$ under this metric.

PROPOSITION 4. For any metric space (S, d), the map $a: H(S) \rightarrow \mathbb{R}$ is continuous. More precisely, we have

$$
|a(X)-a(Y)| \leq \rho(X, Y)+\rho(Y, X) \leq 2 d_{H}(X, Y)
$$

for all $X, Y \in H(S)$.
Proof. Fix $X, Y \in H(S)$, and put $\delta_{1}=\rho(X, Y)$ and $\delta_{2}=\rho(Y, X)$. Let x_{1}, \ldots, x_{n} be any points in X. Then there are points $y_{1}, \ldots, y_{n} \in Y$ with $d\left(x_{i}, y_{i}\right) \leq \delta_{1}$ for each i. Determine $y \in Y$ so so that $a(y)=\frac{1}{n} \sum_{i=1}^{n} d\left(y, y_{i}\right)$. Then there is a point $x \in X$ with
$d(x, y) \leq \delta_{2}$. Routine calculations then show that

$$
a(Y)-\delta_{1}-\delta_{2} \leq \frac{1}{n} \sum_{i=1}^{n} d\left(x, x_{i}\right) \leq a(Y)+\delta_{1}+\delta_{2} .
$$

An application of Proposition 2 yields

$$
a(Y)-\delta_{1}-\delta_{2} \leq a(X) \leq a(Y)+\delta_{1}+\delta_{2}
$$

THEOREM 5. Let E be any finite dimensional normed space. Then there is a constont $k=k(E)<1$ such that $m(X) \leq k$ whenever X is a compact connected subset of E. Moreover,

$$
\{m(X): X \text { is a compact, connected subset of } E\}
$$

is the whole interval $\left[\frac{1}{2}, k(E)\right]$.
Proof. It suffices to show that $a(X) \leq k$ whenever $\operatorname{diam}(X)=1$. Clearly any set of diameter l is isometric to a subset of S, the closed unit ball of E. So let $T=\{X \in H(S): \operatorname{diam}(X)=1\}$. Then T is a compact, metric space, $a: T \rightarrow \mathrm{R}$ is continuous, and $a(X)<I$ for every $X \in T$. It follows that $k(E)=\max \{a(X): X \in T\}<1$.

Finally, choose $X \in T$ so that $a(X)=m(X)=k(E)$, and let Y be a line segment with length 1 . If $0 \leq \lambda \leq 1$, then

$$
\lambda X+(1-\lambda) Y=\{\lambda x+(1-\lambda) y: x \in X, y \in Y\}
$$

is a compact, connected subset of E, and is clearly not a singleton. Thus we can define a continuous map $[0,1] \rightarrow \mathbb{R}$ by $\lambda \mapsto m(\lambda X+(1-\lambda) Y)$. Since $0 \mapsto \frac{1}{2}$ and $1 \mapsto k(E)$, the intermediate value theorem finishes the proof. //

Let us define $k_{n}=\sup \{k(E): E$ is an n-dimensional normed space $\}$. It is almost obvious that $k_{1}=\frac{1}{2}$. It would be interesting to know* whether $k_{n}<1$ for $n=2,3, \ldots$. The next result shows that $k_{n} \rightarrow 1$ as $n \rightarrow \infty$.

THEOREM 6. If X is a compact, convex set in some n-dimensional normed space, then $m(X) \leq n /(n+1)$. This estimate is sharp.

Proof. For each $x \in X$, let $A(x)=(1 /(n+1))(x+n X)$. Then each

[^0]$A(x)$ is a compact, convex subset of X. If $x_{1}, x_{2}, \ldots, x_{n+1}$ are any elements of X, it is easy to verify that $(1 /(n+1)) \sum_{i=1}^{n+1} x_{i} \in \prod_{i=1}^{n+1} A\left(x_{i}\right)$. We can then deduce from Helly's theorem [3], the existence of some $a \in \cap A(x)$. Now fix $x \in X$. Since $a \in A(x)$, there is a $y \in X$ with $x \in X$
$a=(1 /(n+1))(x+n y)$. Then $\|x-a\|=(n /(n+1))\|x-y\| \leq(n /(n+1)) \operatorname{diam}(X)$ and so $a(X) \leq(n /(n+1)) \operatorname{diam}(X)$.

To see that this estimate is sharp, give \mathbb{R}^{n+1} the τ_{1}-norm,
$\left\|\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)\right\|=\sum_{i=0}^{n}\left|\alpha_{i}\right|$, and let X be the convex hull of $F=\left\{e_{0}, e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then X is contained in the n-dimensional affine subspace $\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right): \sum_{i=0}^{n} \alpha_{i}=1\right\}$. Routine calculations show that $d(x, F)=2 n /(n+1)$, for any $x \in X$. Since $\operatorname{diam}(X)=2$, it follows that $m(X)=n /(n+1)$. //

3. Subsets of euclidean spaces

Stadje claims [7, p. 278] that if X is a compact, convex subset of the euclidean space \mathbf{R}^{n}, then $m(X) \leq \frac{1}{2} \sqrt{5-2 \sqrt{3}}$. Recently, Strantzen [8] has shown that $m(X) \leq \sqrt{n /(2 n+2)}$ for any such X, and that this bound is sharp. This improves Stadje's estimate for $n=2$ and $n=3$, and disproves his claim for $n \geq 4$. However, we still have the uniform estimate $m(X) \leq 1 / \sqrt{2}$, whenever X is a compact, convex subset of some euclidean space. Theorem 6 shows that no such uniform bound exists for non-euclidean spaces.

It is still of interest to know whether there is such a uniform bound, for non-convex sets in euclidean spaces. There is not; we will see from Theorem 9 that $k\left(\mathbb{R}^{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. The next two results help to identify those sets with large dispersion numbers.

THEOREM 7. Let X be a compact, connected subset of some normed space. Let Y be a closed, connected subset of X, and suppose that the convex hull of Y contains X. Then $m(X) \leq m(Y)$.

Proof. Clearly $\operatorname{diam}(Y)=\operatorname{diam}(X)$, so we need show only that $\alpha(X) \leq a(Y)$. Let F be any finite ordered-tuple from Y. Then F is also a finite ordered-tuple from X, so $d(x, F)=a(X)$ for some $x \in X$. However, $x=\sum_{i} \lambda_{i} y_{i}$, for some $y_{i} \in Y, \lambda_{i} \geq 0$ with $\sum_{i} \lambda_{i}=1$. Then $a(X)=d\left(\sum_{i} \lambda_{i} y_{i}, F\right) \leq \sum_{i} \lambda_{i} d\left(y_{i}, F\right)$, and so $a(X) \leq d\left(y_{i}, F\right)$, for at least one value of i. It follows from Proposition 2 that $a(X) \leq a(Y)$. //

COROLLARY 8. Let X be a compact, connected subset of a finite dimensional normed space, whose boundary ∂X is connected. Then $m(X) \leq m(\partial X)$.

Proof. It follows from the separation theorem that X is contained in the convex hull of ∂X. //

Corollary 8 was first proved by Graham Elton for finite dimensional euclidean spaces.

Let S^{n} denote, as usual, the surface of the unit ball in \mathbb{R}^{n+1}. Graham Elton, Sid Morris and Peter Nickolas (private communication) have shown that the sequence $m\left(S^{n}\right)$ increases monotonically, and has limit $1 / \sqrt{2}$. Given Corollary 8 , it is then tempting to conjecture that $m(X) \leq 1 / \sqrt{2}$, whenever X is contained in a finite dimensional euclidean space. The truth is quite different.

THEOREM 9. There exist compact, connected sets $X_{n} \subset \mathbb{R}^{n}$ such that $m\left(X_{n}\right)+1$ as $n \rightarrow \infty$. More precisely, X_{n} can be chosen so that $m\left(X_{n}\right) \geq n /(n+1)$. (obviously X_{n} cannot be convex.)

Proof. In \mathbb{R}^{n+1}, let F_{n} be the finite set $\left\{e_{i} / \sqrt{2}: 0 \leq i \leq n\right\}$. For $0 \leq j<k \leq n$, let $A(j, k)$ be the arc with centre at $(1 /((n-1) \sqrt{2}))\left(\sum_{i=0}^{n} e_{i}-e_{j}-e_{k}\right)$, which joins $e_{j} / \sqrt{2}$ to $e_{k} / \sqrt{2}$. Then $A(j, k)$ has radius $\sqrt{n /(2 n-2)}$, and parameterization

$$
\begin{aligned}
& x_{j}(\theta)=\frac{\cos \theta}{\sqrt{2}}-\frac{\sin \theta}{\sqrt{2\left(n^{2}-1\right)}}, \\
& x_{k}(\theta)=\frac{n \sin \theta}{\sqrt{2\left(n^{2}-1\right)}}, \\
& x_{i}(\theta)=\frac{1-\cos \theta}{\sqrt{2}(n-1)}-\frac{\sin \theta}{\sqrt{2\left(n^{2}-1\right)}}, \text { for } i \neq j, k,
\end{aligned}
$$

where $0 \leq \theta \leq \operatorname{arcos}(1 / n)$. Then $X_{n}=U\{A(j, k): 0 \leq j \leq k \leq n\}$ is a compact, connected subset of the n-dimensional affine subspace $\left\{\left(x_{0}, \ldots, x_{n}\right): \sum_{i=0}^{n} x_{i}=\sqrt{2}\right\}$. It is routine to show that $\left\|x-e_{i} / \sqrt{2}\right\|=1$, whenever $x \in A(j, k)$ and $j \neq i \neq k$. Thus, for any $x \in X$,

$$
\begin{aligned}
d\left(x, F_{n}\right) & =\frac{1}{n+1} \sum_{i=0}^{n}\left\|x-e_{i} / \sqrt{2}\right\| \\
& =\frac{1}{n+1}\left(n-1+\left\|x-e_{j} / \sqrt{2}\right\|+\left\|x-e_{k} / \sqrt{2}\right\|\right) \text { for suitable } j, k \\
& \geq \frac{1}{n+1}\left(n-1+\left\|e_{j} / \sqrt{2}-e_{k} / \sqrt{2}\right\|\right) \\
& =\frac{n}{n+1} .
\end{aligned}
$$

It follows that $a\left(X_{n}\right) \geq n /(n+1)$. When $n=2, X_{n}$ is the well-known Reuleaux triangle, and it is easy to see that $\operatorname{diam}\left(X_{2}\right)=1$. Thus $m\left(X_{2}\right) \geq 2 / 3$.

Unfortunately, it is not true that $\operatorname{diam}\left(X_{n}\right)=1$ for $n \geq 3$. One can show that $\|x-y\|$ is a maximum (over $x, y \in X_{n}$) when x and y are the midpoints of two arcs which do not share a common vertex. It follows that $\operatorname{diam}\left(X_{n}\right)=(\sqrt{n(n+1)}-\sqrt{2}) /(-1) \rightarrow 1$ as $n \rightarrow \infty$. Thus $m\left(X_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.

If Y_{n} is any closed, connected subset of X_{n} which contains F_{n}, the same reasoning shows that $a\left(Y_{n}\right) \geq n /(n+1)$ and $\operatorname{diam}\left(Y_{n}\right) \rightarrow 1$. For
example, we could choose
(i) $Y_{n}=U\{A(i-1, i): 1 \leq i \leq n\}$, or
(ii) $Y_{n}=A(0, n) \cup \cup\{A(i-1, i): 1 \leq i \leq n\}$, or
(iii) $Y_{n}=U\{A(0, i): l \leq i \leq n\}$.

In case (i), Y_{n} will be homeomorphic to a line segment, and in case (ii), Y_{n} will be homeomorphic to a circle. For the last choice, it is possible to show that $\operatorname{diam}\left(y_{n}\right)=1$ and so $m\left(y_{n}\right) \geq n /(n+1)$. //

Some numerical calculations show that the dispersion number for the Reuleaux triangle is 0.668 (to three significant figures). It follows that $k\left(\mathbf{R}^{2}\right) \geq 0.668$. Graham Elton (private communication) has shown that $k\left(\mathbf{R}^{2}\right) \leq 0.775$. It would be interesting to narrow this gap.

ADDED IN PROOF (25 June 1982). We have recently shown that $k_{n}<1$. A sketch of the proof follows.

If $\|\cdot\|$ is any norm on \mathbb{R}^{n}, let v denote its restriction to $I^{n}=[-1,1]^{n}$, and also the derived metric. If E is any n-dimensional normed space, Auerbach's Lemma [J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977, Proposition l.c.3] asserts the existence of norm-one vectors $x_{1}, \ldots, x_{n} \in E$ and norm-one functionals $f_{1}, \ldots, f_{n} \in E^{*}$ with $f_{i}\left(x_{j}\right)=\delta_{i j}$. Easy calculations show that

$$
\max _{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right| \text { for all } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R} .
$$

Identifying E with \mathbb{R}^{n}, we then have $\|\cdot\|_{\infty} \leq\|\cdot\| \leq\|\cdot\|_{1}$. Thus if X is a compact, connected subset of some n-dimensional normed space, with diameter one, then X is isometric to a metric space of the form (Y, V), where $Y \in H\left(I^{n}\right)$ and $v_{\infty} \leq v \leq v_{1}$.

Now $N=\left\{v: v_{\infty} \leq v \leq v_{1}\right\}$ is a compact subset of $C\left(I^{n}\right) ;$ by the

Ascoli-Arzela theorem. It is routine to show that the maps
a : $H\left(I^{n}\right) \times N \rightarrow \mathbb{R}$ and diam $: H\left(I^{n}\right) \times N \rightarrow \mathbf{R}$ are continuous. It follows from compactness that

$$
k_{n}=\sup \left\{a(X, v):(X, v) \in H\left(I^{n}\right) \times N \text { and } \operatorname{diam}(X, v)=1\right\}
$$

is strictly less than one.
We also note that $k_{n} \geq 1-2^{-n}$. To see this, give \mathbf{R}^{n} the norm $\|\cdot\|_{\infty}$, and consider the subset
$X=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right\}: 0 \leq \alpha_{i} \leq 1\right.$ for all i, and $0<\alpha_{i}<1$ for at most one value of if.

References

[1] 0. Gross, "The rendezvous value of a metric space", Advances in game theory, 49-53 (Annals of Mathematics Studies, 52. Princeton University Press, Princeton, New Jersey, 1964).
[2] Felix Hausdorff, Set theory, 2nd edition (Chelsea, New York, 1962).
[3] Ed. Helly, "Über Mengen knovexer Körper mit gemeinschaftlichen Punkten", Deutsche Math.-Ver. 32 (1923), 175-176.
[4] Richard B. Holmes, Geometric functional analysis and its applications (Graduate Texts in Mathematics, 24. Springer-Verlag, New York, Heidelberg, Berlin, 1975).
[5] Sidney A. Morris and Peter Nickolas, "On the average distance property of compact connected metric spaces", Arch. Math. (to appear).
[6] Hukukane Nikaidô, "On von Neumann's minimax theorem", Pacific J. Math. 4 (1954), 65-72.
[7] Wolfgang Stadje, "A property of compact connected spaces", Arch. Math. (Basel) 36 (1981), 275-280.
[8] John Strantzen, "An average distance result in Euclidean n-space", Bull. Austral. Math. Soc. 26 (1982), 321-330.
[9]
E. Szekeres and G. Szekeres, "The average distance theorem for compact convex regions", Bull. Austral. Math. Soc. (to appear).
[10] D.J. Wilson, "A game with squared distance as payoff", Bull. Austral. Math. Soc. (to appear).

Department of Pure Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia.

[^0]: * See note added in proof.

