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AVERAGE DISTANCES IN COMPACT
CONNECTED SPACES

DAVID YOST

We give a simple proof of the fact that compact, connected

topological spaces have the "average distance property". For a

metric space {X, d) , this asserts the existence of a unique

number a = a(X) such that, given finitely many points

x , ..., x € X , then there is some y € X with

- I d{y, x.) = a .

We examine the possible values of a(X) , for subsets of finite

dimensional normed spaces. For example, if diam(AT) denotes the

diameter of some compact, convex set in a euclidean space, then

a{X) < diamU)/\/2 . On the other hand, a{*)/diamU) can be

arbitrarily close to 1 , for non-convex sets in euclidean spaces

of sufficiently large dimension.

1. The Gross-Stadje theorem

In [7], Stadje proved the following interesting result.

THEOREM 1. Let X be a compact, connected topological space and

d • XT •*• R a continuous, symmetric function. Then there is a unique

number a = a(X, d) with the following property: for all n € M , and for
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332 Davi d Yost

all x.. , . . . , x € X 3 there is a point y € X such that

n
, - ^ d { X i , y)=a .

Typically, d will be a metric" on X , although that assumption is

not necessary. Bearing this in mind, the property characterizing a.{X, d)

is called the "average distance property". For the special case when d

is a metric, Theorem 1 had previously been proved by Gross [7]. In the

general case, we will call CL{X, d) the Gross-Stadje number for (X, d) .

One purpose of. this note is to present a simple proof of the Gross-

Stadje Theorem. Our proof of the existence of the Gross-Stadje number is

new and completely elementary. First, it will be helpful to introduce some

notation.

00

liet F = U X . Thus F is the set of all ordered finite-tuples,
7 n=i

with inembers from X . I f x € X , and F = [x , .. . , x ) € F , put

n
d(x, F) = i £- d{x, x.) : Then put a = inf{d(x, F) -. x € X} and

i l

8p = supW(x, F) : x € X) .

We claim that a . < L whenever F, G € F . Let us write

F = [x, . . . , x ) and G = [y , . . . , y ) . I t suffices to show that , for

some i 5 n and some j < m , we have d(y., F) 2 dfx., (?) . Suppose that

th i s is not t rue. Then d{y^, F) > d{x., G) , for a l l i < « , j S m .

Summing over £ and ,7 then yields

n m

Since d is symmetric, both sides of this inequality are equal to

n m
Y, X d[y., x.) . This is a contradiction, so our claim must be correct.

Now existence of a{X, d) can be easily proved. What we wish to show

is that (3!a € R)(VF € F) (a € {d{x, F) : x € X}) . For any F € F , the
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map x i-**- d(x, F} is a continuous function on X . Since X is compact

and connected, id(x, F) : x € X} must be the closed interval [pt_, fjj .

The conclusion of Theorem 1 then becomes (3!a)(VF € F) (a < a 5 £_) . Our

previous claim tells us that sup{af : F € F} < inf{gf : F € F} .

Existence of a follows immediately.

It is a little harder to prove the uniqueness of a . First note that

each F € F induces ,.,-in- a natural way, an atomic probability measure on

X . We will use the same symbol for the probability measure and the

ordered tuple; thus d(x, F) = . d{x, y)dF(y) . Let P denote the set

>X

of all regular Borel probability measures on X , equipped with the vague

topology. (For details of the relationship between P and X , we refer

the reader to 14, Section 22A.].) In this topology, a net Pa is

convergent to P if and only if f(x)dP (x) -*• /(x)dP(x) , for every

'X >X •

continuous function / : X •*• R . Then P is a compact, convex set , and i t

can be deduced from the Krein-Milman theorem [4, Section 13B] that F is

dense in P . If F' -*• P vaguely, and x •*• x in X , i t i s a routine

exercise to show that ^0*7,5 •fa) "*" d(x, P) . From these facts i t follows

that

£ = sup min d{x, F) = max min d(x, P) ,
F6F x(.X Pi? xiX

and

v = in f max d(x, F) = min max d(x, P) .
F£F xZX Pi? xiX

We have already shown that V_ ^ V . A generalization of Vil le 's version of

the minimax theorem [6, p. 69] t e l l s us that V_ = V . Thus

sup ap = inf Bj, , and so a is unique. This completes our proof of
F€F F€F

Theorem 1.

Graham Elton has pointed out (private communcation) that (X, d) will

have the following strong version of the average distance property: given

any regular, Borel probability measure P on X , there is a point x € X

with d(x, P) = a(X, d) . This result follows from the last paragraph.
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I t also follows from the proof above that there are two probability

measures, P and Q , on X such that d{x, P) 5 a{X, d) S d(x, Q) for

a l l x € X . Joan Cleary and Sid Morris (private communication) have used

this idea to calculate the Gross-Stadje numbers of regular polygons.

If there is a single probability measure P , on X , such that

d(x, P) is independent of x , then a(X, d) is easy to determine. We

only have to calculate d{x, P) for a convenient point x € X . Morris

and Nickolas [5] have used this to evaluate the Gross-Stadje numbers of

sufficiently symmetric metric spaces, such as spheres.

Sometimes i t is difficult to find a(X, d) exactly, and we must

set t le for some sort of estimate. In such a situation, the following

result might be useful.

PROPOSITION 2. Fix a, 3 € R with a 5 3 .

(i) Suppose (X, d) has the following property: given any F € F 3

there is a point y € X with a < d(y, F) 5 3 . Then a 5 a{X, d) 2 6 .

(ii) Suppose there is a point y € X such that a 5 d(x, y) 5 3 for

all x € X . Then a 2 a(X, d) 5 6 .

Proof. (i) The hypothesis clearly implies that

sup min d(x, F) S 3 and a 2 inf max d{x, F) .
F x F x

(ii) This follows immediately from (i). II

2. The range of values for metric spaces

From now on, (X, d) will be a compact, connected metric space, and

a{X, d) will be abbreviated to a(X) . We assume further that X is not

a singleton, and so has s t r ic t ly positive diameter, diam(Af) .

Normalizing, we define the dispersion number of X by

m(X) = aU)/diamU) . I t can then be shown [7, p. 277] that \ < m(X) < 1 .

In this section, we will consider the range of values that m(X) may

take. The dispersion number gives us some information about how 'spread

out' a space i s , although perhaps not as much information as we would like.

If m{X) is close to 1 , then the points of X are, generally speaking,

far apart from one another. The converse is not true. I t is possible that

tn(X) = \ , for a space X which we might intuitively describe as fairly
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spread out.

PROPOSITION 3. Suppose that m(X) > h . Then there is a metric

space Y , obtained from X by gluing on a line segment, for which

m{Y) = h .

00

Proof. Let I denote the space of all sequences from [0, l] ,
oo

equipped with the metric d[[a ) , (3 )) = sup |ot —S | . Assume without
n=l n

loss of generality that diam(iT) = 1 . Since X is separable, we may
oo oo

suppose that it is embedded in J . Let a € I be the constant sequence

(h, h, •••) • Since X is compact, there is a point x € X such that

d{a, x) is a minimum; that is, d{a, x) = d(a, X) . Let Y = X u [a;, a] ,

where [x, a] is the line segment joining x to a . Then Y is

certainly a compact, connected set. Since x is a closest point (in X )

to a , Y\X is just the half-open segment (a;, a] . Moreover
OO

d(a, y) 2 h for a l l y (. I , and hence for a l l y € Y . I t follows from

Proposition 2 that a(Y) S h • Clearly diam(Y) = 1 , and thus

m(Y) = h • / /
If (S, d) is any metric space, l e t S(S) denote the family of a l l

compact, connected, non-empty subsets of S . We can turn H(S) into a

metric space as follows. For any X, Y € H(S) , define

PU, Y) = sup{d(;c, Y) : x € *} , and dJX, Y) = max{pU, Y), p(Y, X)} .
a

Then d is a metric for H(S) [2, Section 28]. If S is compact, then

so is H(S) under this metric.

PROPOSITION 4. For any metric space {S, d) , the map a -. H(S) •* R

is continuous. More precisely, we have
\a(X)-a(Y)\ < p(X, Y) + p(Y, X) < 2dR(X, Y)

for all X, Y € H{S) .

Proof. Fix X, Y € 5(5) , and put 61 = pU, Y) and 6g = p(y,

Let x., ..., x be any points in X . Then there are points

y , ..., w € 7 with cf(x., y.) 5 6 for each £ . Determine z/ 6 Y

1 "
that a(Y) = — Y d[u, y .) . Then there is a point x d X with

M a 'Z'

so

so tat a(Y)
Ma*
^=l
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d(x, y) S 6 . Routine calculations then show that

An application of Proposition 2 yields

- 6n - 6O < a(X) < a(y)

THEOREM 5. Let E be any finite dimensional normed space. Then

there is a constant k = k(E) < 1 such that m(X) 5 k whenever X is a

compact connected subset of E . Moreover,

im(X) : X is a compact, connected subset of E)

is the whole interval [h, k{E)] . • . .

Proof. I t suffices to show that a{X) 5 k whenever diam(̂ f) = 1 .

Clearly any set of diameter 1 is isometric to a subset of S , the closed

unit ball of E . So le t T = {X € H(S) : diam(J> = 1} . Then T is a

compact, metric space, a : T •*• R is continuous, and a(X) < 1 for every

X € T . I t follows that k(E) = max{aU) : X € T} < 1 .

Finally, choose X € T so that a{X) = m{X) = k{E) , and le t Y he a

line segment with length 1 . If 0 < A < 1 , then

XX + (l-A)y = {\x+(l-\)y : x € X, y € Y}

i s a compact, connected subset of E , and is clearly not a singleton.

Thus we can define a continuous map [0, 1] -*• R by A i—»• T??(A^+(1-A)Y) .

Since 0 i—• h and 1 i—*• k(E) , the intermediate value theorem finishes the

proof. / /

Let us define k = sup{fc(2?) : E is an n-dimensional normed space} .

I t is almost obvious that k. = h . I t would be interesting to know*

whether k < 1 for n = 2, 3, . . . • The next result shows that k •* 1
n n

as n ->• » .

THEOREM 6. If X is a compact, convex set in some n-dimensional

normed space, then m{X) 2 n/(n+l) . This estimate is sharp.

Proof. For each x € X , let A(x) = (l/(n+l)) (x+nX) . Then each

* See note added in proof.
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A(x) is a compact, convex subset of X . If x , x , ..., x are any

n+1 M+1

elements of X , it is easy to verify that (l/(w+l)) £ x. € fl A[x.) .
i=l * i=l *

We can then deduce from He I ly's theorem [3], the existence of some

a € (1 A(x) . Now fix x € X . Since a € .A(x) , there is a y £ X with

a = (l/(n+l)}(x+ny) . Then ||x-a|| = [n/(n+l))\\x-y\\ < (n/(w+l))diam(X) and

so a(X) 2 (n/(n+l))diamU) .

To see that this estimate is sharp, give FT the Z -norm,

n
|| (a , a , . . . , a )|| = £ | a . | , and le t X be the convex hull of

1=0

F = {e , e , e , . . . , e } . Then X i s c o n t a i n e d i n t h e n - d i m e n s i o n a l

a f f i n e subspace il.01.-.* ^ J - ' - J 0 1 ) : Z ct. = l [ . Rout ine c a l c u l a t i o n s
I. • 0 1 n i=Q i j

show that d(x, F) = 2n/(n+l) , for any x € X, . Since diam(X) = 2 , i t

follows that m(X) = n/(w+l) . / /

3. Subsets of euclidean spaces

Stadje claims [7, p. 278] that if X is a compact, convex subset of

the euclidean space R" , then m(X) S W 5-2V3 . Recently, Strantzen [«]

has shown that m(X) < VM/(2W+2) for any such ^ , and that this bound is

sharp. This improves Stadje's estimate for n = 2 and n = 3 , and

disproves his claim for n > U . However, we still have the uniform

estimate m{X) 5 l/V2~ , whenever X is a compact, convex subset of some

euclidean space. Theorem 6 shows that no such uniform bound exists for

non-euclidean spaces.

It is still of interest to know whether there is such a uniform bound,

for non-convex sets in euclidean spaces. There is not; we will see from

Theorem 9 that k[f^) •*• 1 as n •*•<*>. The next two results help to

identify those sets with large dispersion numbers.

THEOREM 7. Let X be a compact, connected subset of some normed

space. Let Y be a closed, connected subset of X , and suppose that the

convex hull of Y contains X . Then m{X) 5 m(.Y) .
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Proof. Clearly diam(Y) = diam(Z) , so we need show only that

a(X) < a(Y) . Let F be any finite ordered-tuple from Y . Then F is

also a finite ordered-tuple from X , so d{x, F) = a(X) for some x € X .

However, x = £ X .y . , for some y . € Y , X. > 0 with £ X. = 1 . Then

a{X) = d £ X y., F < £ X.d(w., F) , and so a(X) < d(y., F) , for at least

one value of i . It follows from Proposition 2 that a(#) £ a(Y) . //

COROLLARY 8. Let X be a compact, connected subset of a finite

dimensional normed space3 whose boundary dX is connected. Then

m{X) <

Proof. It follows from the separation theorem that X is contained

in the convex hull of 3X . //

Corollary 8 was first proved by Graham Elton for finite dimensional

euclidean spaces.

Let £> denote, as usual, the surface of the unit ball in Fr

Graham Elton, Sid Morris and Peter Nickolas (private communication) have

shown that the sequence m{£> ) increases monotonically, and has limit

l/V2~ . Given Corollary 8, it is then tempting to conjecture that

m(X) 5 l/\/2 , whenever X is contained in a finite dimensional euclidean

space. The truth is quite different.

THEOREM 9. There exist compact, connected sets X c IR" such that

m[x ) •*• 1 as n->-°°. More precisely, X can be chosen so that

m[x ) > n/(n+l) . [obviously X cannot be convex.)

Proof. In R"+1 , let F be the finite set {e./V2 : 0 5 i 2 n] .

For 0 5 j < k 5 n , let A(j9 k) be the arc with centre at

n
, which joins e ./\/2 to ev/\/2 . Then

0 K

A(j, k) has radius Vw/(2n-2) , and parameterization
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cos9 sin8
x (6) =
d

nsin6

,»> l-cos8 sin8 _ . , . ,
x.(6) = — = = , for v t o, k ,

where 0 5 6 < arcos(l/n) . Then X^ = UU(j, fc) : 0 £ J 5 fe £ n} is a

compact, connected subset of the n-dimensional affine subspace

•i (x , ..., x ) : y x. = V2( . It is routine to show that
<• ° " i=0 -1

= 1 , whenever x € A{j, k) and j t i ? k . Thus, for any

x € X ,

n

1
i=0

d{x, Fn) = ̂  I \\x-e./V2\\

= -^r- {n-l+\\x-e ./V2\\+\\x-ev/V2\\) for su i tab le j , k

" n+1
n

~ n+1 *

I t follows that a[x ) > n/(n+l) . When n = 2 , X is the well-known

Reuleaux tr iangle, and i t is easy to see that diam(^2) = 1 . Thus

Unfortunately, i t is not true that diam(jf ) = 1 for n > 3 . One

can show that ||x-i/|| is a maximum (over x, y € X ) when x and y are

the midpoints of two arcs which do not share a common vertex. I t follows

that diam(;r ) = (vn(n+l)-v5)/( - l ) -»• 1 as n •* « . Thus m[x ) -»• 1 as

If J i s any closed, connected subset of X which contains F ,

the same reasoning shows tha t a(Y ) ^ n/(n+l) and diam(Y ) - * • ! . For
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example, we could choose

(i) Yn = U{A(£-1, i) : 1 < i 5 n) , or

( i i ) Y = A(0, n) u U{A(i-l, i) : 1 < i < n} , or

( i i i ) YM = U{A(0, i ) : 1 2 i < n] .

In case ( i ) , Y will be homeomorphic to a line segment, and in case

( i i ) , Y will be homeomorphic to a circle. For the last choice, i t is

possible to show that diam(Y ) = 1 and so m[Y ) > w/(w+l) . / /

Some numerical calculations show that the dispersion number for the

Reuleaux triangle is 0.668 (to three significant figures). I t follows

that /c(R J — 0.668 . Graham Elton (private communication) has shown that

k(R ) 5 0.775 . It would be interesting to narrow this gap.

ADDED IN PROOF (25 June 1982) . We have recently shown that k < 1 .

A sketch of the proof follows.

If ||#|| i s any norm on (Fc , l e t V denote i t s restr ict ion to

I = [-1, l ] , and also the derived metric. If E i s any n-dimensional
normed space, Auerbach's Lemma [J. Lindenstrauss and L. Tzafriri, Classical
Banach Spaces I, Springer-Verlag, Berlin, 1977, Proposition I .e .3] asserts
the existence of norm-one vectors x. , . .. , x € E and norm-one

f u n c t i o n a l s f , . . . , f € E* wi th f. [x.] = 6 . . . Easy c a l c u l a t i o n s show
1 Yl t' J ' tj

that

n II n || n
max |a . | 2 £ a;xA\ - £ K ' l for a l l a , . . . , a € R .

Identifying E with Ft" , we then have || • IL £ II' II ^ II'!!-,_ • Thus i f X

i s a compact, connected subset of some n-dimensional normed space, with

diameter one, then X is isometric to a metric space of the form (Y, v) ,

where Y € #(/*) and vro 5 V 5 V1 .

Now M = {v : V̂  S V £ v } is a compact subset of C^f1) ; by the
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Ascoli-Arzela theorem. I t is routine to show that the maps

a : #(/*) KN + R and diam : Hi/1) K N + R are continuous. I t follows

from compactness that

kn = supfaU, v) : U , v) € Hi/1) x N and diamU, v) = l}

is s t r i c t ly less than one.

We also note that & * 1 - 2 . To see t h i s , give R the norm

|| • Ĥ  , and consider the subset

X = { (o^, . . . , an) : 0 S ou S 1 for a l l i ,

and 0 < a. < 1 for at most one value of i} .
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