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AVERAGE DISTANCES IN COMPACT
CONNECTED SPACES

Davip YosT

We give a simple proof of the fact that compact, connected
topological spaces have the "average distance property". For a
metric space (X, d) , this asserts the existence of a unique
number a = a{X) such that, given finitely many points

X

IIRRRE xn € X , then there is some y € X with

1
n d[y, xi) =q .

o
N
=

We examine the possible values of a(X) , for subsets of finite
dimensional normed spaces. For example, if diam(X) denotes the
diameter of some compact, convex set in a euclidean space, then
a(X) < diam(X)/V2 . On the other hand, a(X)/diam(X) can be
arbitrarily close to 1 , for non-convex sets in euclidean spaces

of sufficiently large dimension.

1. The Gross-Stadje theorem
In [7], Stadje proved the following interesting result.
THEOREM 1. Let X be a compact, connected topological space and

d: ¥ +R a continuous, symmetric function. Then there is a unique
number a = a{X, d) with the following property: for all n € N, and for

Received 5 May 1982. The author is very grateful to Graham Elton, Sid
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all x5 ..., X

1 nGX,thereisapoint y € X such that

o

1
L

dlz,, y) =a-.
1 i Ce

1

Typically, d will be a met¥ic'on X , although that assumption is
not necessary. Bearing this in mind, the property characterizing a(X, d)
is called the "average distance I;ropeArty"’. For the special case when d
is a metric, Theorem 1 had previously been proved by Gross [1]. 1In the

general case, we will call a(X, d) the Gross-Stadje number for (X, d)

One purpose of. tp.jls note is to present a simple proof o_f the Gross-
Stadje Theorem. Our proof of the existence of the Gross-Stadje number is
new and completely. elementary. First, it will be helpful to introduce some

notation.

o : .
I/et F= U ¥'. Thus F is the set of all ordered finite-tuples,
. n=

vith hembers from X . If € X, and F=(z, ..., .'z:n) € F, put

n

d(z, F) L Y. d{x, =.) . Then put a, = inf{d(x, F) : z € X} and
n i 1 F

Bp = sup{d(:z:, F) : x € X} »

We claim that op < B, whenever F, G ¢ F. Let us write
F= ('xl, ey xm) and G = (yl, vees yn) . It suffices to show that, for
some T <7 and some J < m , we have d[y., F) < d(.'z:j, G) . Suppose that
this is not true. Then »d(y F) > d[x. G) , forall isn, j<m.

Summing over 7 and J then ylelds

mZd(.,F)>nZd(a:, G)

i=1 J=1

Since d is symmetric, both sides of this inequality are equal to

m
z Yy df Y0 % ) This is a contradiction, so our claim must be correct.
i=1 j=1

Now existence of a(X, d) can be easily proved. What we wish to show
is that (3la € R)(VF € F)(a € {d(z, F) : = € X}) . For any F € F , the
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map x ++ d(x, F) is a continuous function on X . Since X is compact
and connected,- {d(x, F) : £ € X} must be the closed interval [GF, BF] .

The conclusion of Theorem 1 then becomes (3!a)(VF € F) [aF = a's BF) . ‘Our

previous claim tells us that sup{aF : F€F} = inf{BF : F EF} .
Existence ,of a follo.»}s immedié.tely.
It is a little harder to prove the uniqueness of a . First note that

each F € F induces, in a natural way, an atomic probability measure on

X . We will use the same symbol for the probability measure and the

ordered tuple; thus d(x, F) = J d(z, y)dF(y) . Let P denote the set
X

of all regular Borel pfobability measures on X , equipped with the vague

topology. (For details of the relationship between P and X , we refer

the reader to [4, Section 224].) In this topology, & net Pa is
convergent to P if a.nd‘oﬁnly if J f(x)_dPa(:c) > J )f‘('a:)dP(:z:)' . for every
' X : X

continuous function f : X *R . Then P is a compact, convex set, and it

can be deduced from the Krein-Milman theorem [4, Section 13B] that F is

dense in P . If F, > P vaguely, and z 2>z in X , it is a routine
exercise to show that d(xa, Fa) + d(x, P) . From these facts it follows
that
v = sup min d(x, F) = max min d(x, P) ,
FEF x€Xx PEP x€X
and

D = inf max d(z, F) = min max d(z, P) .
FPEF x€Xx DP€P x€X

We have already shown that v = . A generalization of Ville's version of

the minimax theorem (6, p. 69] tells us that v = v . Thus

sup @p = inf BF , and so a is unique. This completes our proof of
FeF FeF
Theorem 1.

Graham Elton has pointed out (private communcation) that (X, d) will
have the following strong version of the average distance property: given
any regular, Borel probability measure P on X , there is a point x € X

with d(z, P) = a(X, d) . This result follows from the last paragraph.
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It also follows from the proof above that there are two probability
measures, P and @ , on X such that d(xz, P) < a(X, d) = d(x, @) for
all x € X . Joan Cleary and Sid Morris (private communication) have used

this idea to calculate the Gross-Stadje numbers of regular polygons.

If there is a single probability measure P , on X , such that
d(x, P) is independent of x , then a(X, d} is easy to determine. We
only have to calculate d(x, P) for a convenient point x € X . Morris
and Nickolas [5] have used this to evaluate the Gross-Stadje numbers of

sufficiently symmetric metric spaces, such as spheres.

Sometimes it is difficult to find a(X, d) exactly, and we must
settle for some sort of estimate. In such a situation, the following

result might be useful.

PROPOSITION 2. Fix o, B €R with o =8 .

(1) Suppose (X, d) has the following property: given any F € F ,
there is a point y € X with asdly, F) =B . Then o =alx,d) sB8.

(i) Suppose there is a point y € X such that o = d(z, y) =B for
all z €X. Then a=<al(X,d) <B.

Proof. (Z) The hypothesis clearly implies that

sup min d(x, F) =<8 and a < inf -max d{x, F)
F x F =x

(i2) This follows immediately from (Z). //

2. The range of values for metric spaces

From now on, (X, d) will be a compact, connected metric space, and
a(X, d) will be abbreviated to a(X) . We assume further that X is not
a singleton, and so has strictly positive diameter, diam(X) .
Normalizing, we define the dispersion number of X by
m(X) = a(X)/diam(X) . It can then be shown [7, p. 277] that % <= m(X) < 1.

In this section, we will consider the range of values that m(X) may
take. The dispersion number gives us some information about how 'spread
out' a space is, although perhaps not as much information as we would like.
If m(X) is close to 1 , then the points of X are, generally speaking,
far apart from one another. The converse is not true. It is possible that

m(X) =% , for a space X which we might intuitively describe as fairly
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spread out.

PROPOSITION 3. Suppose that m(X) > % . Then there is a metric
space Y , obtained from X by gluing on a line segment, for which

mY) =% .
Proof. Let I  denote the space of all sequences from [0, 1] ,
o«
equipped with the metric d((o.n) , (Bn}) = sup ‘an—Bnl . Assume without
n=1
loss of generality that diam(X) = 1 . Since X is separable, we may
(o]

suppose that it is embedded in I . Tet a € I@ be the constant sequence
(5, %, ...) . Since X is compact, there is a point x € X such that
d(a, ) is a minimum; that is, d(a, z) = d(a, X) . Let Y= X v [z, a],
where [z, a] is the line segment joining & to a . Then Y is
certainly a compact, connected set. Since &« is a closest point (in X )
to a, Y\X is just the half-open segment (x, a] . Moreover

dla, y) =% for all y € I , and hence for all y € Y . It follows from
Proposition 2 that a(Y) =% . Clearly diam(Y) =1 , and thus

m¥) =% . /!

If (S, d) is any metric space, let H(S) denote the family of all
compact, connected, non-empty subsets of S . We can turn H(S) into a
metric space as follows. For any X, Y € H(S) , define
p(X, ¥) = sup{d(x, ¥) : = € X} , and dy(X, ¥) = max{p(X, ¥), p(¥, X)} .

Then dH is a metric for H(S) [2, Section 28]}. If S is compact, then
so is H(S) under this metric.

PROPOSITION 4. For any metric space (S, d) , the map a : H(S) + R

i8 continuous. More precisely, we have

la(0-a(x)] = o(x, ¥) + p(¥, X) = 2d,(X, ¥)

for all X, Y € H(S) .
Proof. Fix X, Y € H(S) , and put 61 = p(X, ¥) and 8, = ply, X) .

Let :x:l, ey :cn be any points in X . Then there are points

Yi» --o5 Y, €Y with d(xi, yi) = 51 for each % . Determine y € Y so

so that a(Y) =-:'; d(y, yi) . Then there is a point x € X with

.
R
HPﬁ
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d(x, y) = 62 . Routine calculations then show that

oI

a(y) - 6. - 6§

<1
1~ 27n

dfz, z;) s a(y) +8 +5, .

i=1
An application of Proposition 2 yields
| a(Y)-61-625a(X)5a(Y)+61+62. /»/}
THEOREM 5. Let E be any finite dimensional normed space. Then
there is a constant k = k(E) <1 such that m(X) =k whenever X is a

compact connected subset of E-. Moreover,
{m(X) : X is a compact, connected subset of E}
ig the whole interval [%, k(E)].

Proof. It suffices to show that a(X) < k whenever diam(X) =1 .
Clearly any set of diameter 1 is isometric to a subset of S , the closed
unit ball of E . So let T = {x € H(S) : diam(X} =1} . Then T is a
compact, mettric space, "a : T = R is continuous, and a(X) < 1 for every
X € T . It follows that K(E) = max{a(X) : X € T} <1 .

Finally, choose X € T so that a(X) = m(X) = k(E) , and let Y be a
line segment with length 1 . If O <A <1 , then

A+ (1-0Y = Oar(1-M)y : 3 € X, y € ¥}

is a compact, connected subset of E , and is clearly not a singleton.
Thus we can define a continuous map [0, 1] * R by A+ m()\X+(l—)\)Y) .
Since O+ % and 1+ k(E) , the intermediate value theorem finishes the

proof. 1/

Let us define kn = sup{k(E) : E is an n-dimensional normed space} .
It is almost obvious that kl = % . It would be interesting to know¥*
whether kn <1 for m=2, 3, ... . The next result shows that kn +1
as n > o

THEOREM 6. If X is a compact, convex set in some n-dimensional

normed space, then m(X) < n/(n+l) . This estimate i8¢ sharp.

Proof. For each x € X , let A(x) = (1/(n+1))(x+nX) . Then each

¥ See note added in proof.
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A(x) 1is a compact, convex subset of X . If xl, .'c2, ey xn+l are any
n+l n+l

elements of X , it is easy to verify that (1/(n+l)) ¥ x, € N A(:c‘b)
i=1 i=1

We can then deduce from Helly's theorem [3], the existence of some

a € N A(x) . Now fix x € X, Since a € A(x) , there is a y € X with
xeX

a= (l/(n+l)}(x+ny) . Then |lz-al = (n/(n+l)]||.z‘-y|| < (n/(n+1))aiam(X) and
so a(X) = (n/(n+1))diam(X) .

. . . . +1
To see that this estimate is sharp, give R* the Zl—norm,

n
(e s o, .., a)ll= Y Ja.| , and let X be the convex hull of
0 1 n i=0 1
F = {eo, el, e2, cees en} . Then X is contained in the n-dimensional
n
affine subspace (ot s Oy vouy O ) : Z &, = 1y . Routine calculations
T07 1 A A
show that d(z, F) = 2n/{(n+l) , for any x € X . Since diam(X) =2 , it
follows that m(X) = n/(n+1) . //

3. Subsets of euclidean spaces

Stadje claims [7, p. 278] that if X is a compact, convex subset of

the euclidean space R"? , then m(X) < % 5-2V3 . Recently, Strantzen [§]
has shown that m(X) < Vn/(2n+2) for any such X , and that this bound is
sharp. This improves Stadje's estimate for n =2 and n = 3 , and
disproves his claim for #n = L4 . However, we still have the uniform
estimate m(X) = 1/\/2_ , whenever X 1is a compact, convex subset of some
euclidean space. Theorem 6 shows that no such uniform bound exists for

non-euclidean spaces.

It is still of interest to know whether there is such a uniform bound,

for non-convex sets in euclidean spaces. There is not; we will see from

Theorem 9 that k(Rn] + 1 as mn > ., The next two results help to

identify those sets with large dispersion numbers.

THEOREM 7. Let X be a compact, connected subset of some normed
space. Let Y be a closed, connected subset of X , and suppose that the
convex hull of Y contains X . Then m(X) = m(Y) .
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Proof. Clearly diam(Y) = diam(X) , so we need show only that
a(X) <=a(Y) . Let F be any finite ordered-tuple from Y . Then F is

also a finite ordered-tuple from X , so d(x, F) = a{X) for some x € X .

However, x = g Aiyi , for some Y; €Y, )‘i >0 w.1th %Ai =1 . Then

alx) = d[g A Y F] s%:xid(yi, F) , and so a(X) < dly;, F) , for at least

one value of ¢ . It follows from Proposition 2 that a(X) < a(Y) . //

COROLLARY 8. Let X be a compact, connected subset of a finite
dimensional normed space, whose boundary 03X is connected. Then
m(X) = m(3x) .

Proof. It follows from the separation theorem that X 1is contained

in the convex hull of 23X . /l
Corollary 8 was first proved by Graham Elton for finite dimensional

euclidean spaces.

+
Let .S'n denote, as usual, the surface of the unit ball in IRn 1 .

Graham Elton, Sid Morris and Peter Nickolas (private communication) have

shown that the sequence m(Sn ) increases monotonically, and has limit
1/V2 . Given Corollary 8, it is then tempting to conjecture that
m(X) = 1/V2 , whenever X is contained in a finite dimensional euclidean

space. The truth is quite different.

THEOREM 9. There exist compact, comnected sets Xn c®" such that
m(Xn) +1 as n >« . More precisely, X, can be chosen so that

m(Xn) > n/(n+1) . (Obviously X cannot be convez. )

Proof. In R™1 | 1et F_ Ve the finite set {ei/\/'z' :0=1<n}
For 0=j<k=n, let A(j, k) be the arc with centre at
n
(1/((n-1)v2)) «;}=:o e;~¢;=¢y| » vhich joins ej/\/§ to ek/\/E . Then

A(d, k) has radius Vn/(2n-2) , and parameterization
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z.(8) = cos® _ sinf
J bl
2 a(n2)
xk(e) - nsinb ,
V 2(n%-1)
z(6) = izeos® __ sin® o sk,

t V2(n-1) ./ 2(’12_1]
where O < 6 < arcos{1/n) . Then Xn =U{4(j, k) : 0= =k=<n} is a

compact, connected subset of the #n-dimensional affine subspace
n

{(xo, coes xn) : Z z; = \/5} . It is routine to show that
i=0

||x-ei/\/§|l =1 , whenever x € A(j, k) and J #1 # k . Thus, for any

x € X,
1 n
d(z, £)) = g L l=-e V2l
=0

= —nil (n-l+||x—ej/V§II+Ilw—ek/\/Ell) for suitable J, k
1

2 A7 (ndslle /Va-e, /V2I)

=

Tondl

It follows that a(Xn) 2 n/(n+l) . When n =2, X, is the well-known
Reuleaux triangle, and it is easy to see that diam(Xz) =1 . Thus
m(x,) = 2/3 .

Unfortunately, it is not true that dia.m(Xn) =1 for n=3 . One

can show that |lz-yll is a maximm (over =z, y € X ) wvhen x and y are

the midpoints of two arcs which do not share a common vertex. It follows
that diam(x ) = (Va(n+1)-V2)/( -1) > 1 as n+e . Thus m(X) +1 as

n > oo

if Yn is any closed, connected subset of Xn which contains Fn R

the same reasoning shows that a(Yn) 2z n/(n+l) and diam(Yn) +1 . For
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example, we could choose

(i) Yn = U{4(i-1, 2) : 1 =1 sn} , or
(ii) Y, = A(0, n) v U{4(2-1, ) : 1 =i =n}, or
(iidi) Y = u{a(o, €) : 1 =i <n} .

In case (i), Yn will be homeomorphic to a line segment, and in case
(ii), Yh will be homeomorphic to a circle. For the last choice, it is
possible to show that diam(Yn) =1 and so m(Yn) > n/(n+l) . //

Some numerical calculations show that the dispersion number for the
Reuleaux triangle is 0.668 (to three significant figures). It follows
that kURz) = 0.668 . Graham Elton (private communication) has shown that
k[Rz) = 0.775 . It would be interesting to narrow this gap.

ADDED IN PROOF (25 June 1982). We have recently shown that kn <1.

A sketch of the proof follows.

If |||l is any norm on R’ , let Vv denote its restriction to

= [-1, l]n , and also the derived metric. If E is any #n-dimensional
normed space, Auerbach's Lemms {J. Lindenstrauss and L. Tzafriri, Classical
Banach Spaces I, Springer-Verlag, Berlin, 1977, Proposition 1l.c.3] asserts
the existence of norm-one vectors xl,
functionals f., ..., fh € E* with f%(xj) = Gij . Easy calculations show

crs Ty € £ and norm-one

that
n n n
max || = ||z o= T logl teren a, ... a €R.
i=1 i=1 i=1
Identifying E with R’ , we then have ||l = Il*] = ell, - Thus if x

is a compact, connected subset of some #-dimensional normed space, with

diameter one, then X is isometric to a metric space of the form (Y, v) ,

IA

where Y € H(In) and Vv V=V

I

IA

Now N={v:v_ swv

=]

vl} is a compact subset of C(In) 3 by the
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Ascoli-Arzela theorem. It is routine to show that the maps

a: H(In) x N>R and diam : H(In) x N >R are continuous. It follows

from compactness that

k, = supta(X, v) : (X, v) € B(1") x N and dian(X, v) = 1}

is strictly less than one.

n
We also note that kn >21-2"". Do see this, give R the norm

l*ll, » and consider the subset

X={{o,, ..., @) : 0Sa, =1 for all 4,

£11

[z1
£3]

(4]

51

6]

(7]

£&1

and 0 < o, < 1 for at most one value of Z} .
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