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TILINGS OF THE SPHERE BY CONGRUENT QUADRILATERALS
II: EDGE COMBINATION a3b WITH RATIONAL ANGLES

YIXI LIAO and ERXIAO WANG

Abstract. Edge-to-edge tilings of the sphere by congruent quadrilaterals are

completely classified in a series of three papers. This second one applies the

powerful tool of trigonometric Diophantine equations to classify the case of a3b-

quadrilaterals with all angles being rational degrees. There are 12 sporadic and

3 infinite sequences of quadrilaterals admitting the two-layer earth map tilings

together with their modifications, and 3 sporadic quadrilaterals admitting 4

exceptional tilings. Among them only three quadrilaterals are convex. New

interesting non-edge-to-edge triangular tilings are obtained as a byproduct.

§1. Introduction

In an edge-to-edge tiling of the sphere by congruent quadrilaterals, the tile can only have

four edge arrangements [10], [14]: a2bc,a2b2,a3b,a4. Sakano and Akama [13] classified tilings

for a2b2 and a4 via Ueno and Agaoka’s [15] list of triangular tilings. Tilings for a2bc are

classified in the first paper [10] of this series via the methods in [2], [16]–[18] developed

for pentagonal tilings. This second paper classifies tilings for a3b with all angles being

rational multiples of π (such quadrilaterals will be simply called rational hereafter). We

then classify tilings for a3b with some irrational angle in the third paper [11] to complete

the classification.

Recall that Coolsaet [4] classified convex rational quadrilaterals with three equal sides

into 7 infinite classes and 29 sporadic examples. Akama and van Cleemput [1] initiated some

explorations of degree 3 vertex types and certain forbidden cases for type a3b, assuming

also convexity.

An a3b-quadrilateral is given by Figure 1, with normal edge a, thick edge b, and angles

α,β,γ,δ as indicated. The second picture is the mirror image or flip of the first. The

angles determine the orientation. Conversely, the edge lengths and the orientation also

determine the angles. So we may present the tiling by shading instead of indicating all

angles. Throughout this paper, an a3b-tiling is always an edge-to-edge tiling of the sphere

by congruent simple quadrilaterals in Figure 1, such that all vertices have degree ≥ 3.

The first paper [10] of this series constructed a two-parameter family of two-layer earth

map tilings by a2bc-quadrilaterals. The 3D picture in Figure 2 shows an example: One time

zone (consisting of two tiles) is outlined by the yellow line, and a cycle of 12 repeating time

zones cover the sphere. All a2-angles appear at the north/south poles. The 24 middle points

of all b-edges and c-edges distribute evenly on the equator with spacing π
12 .

We use αkβlγmδn to mean a vertex having k copies of α, l copies of β, etc. The angle-

wise vertex combination(s), abbreviated as AVC, is the collection of all vertices in a tiling.
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Figure 1.

Quadrilaterals with the edge combination a3b.

Figure 2.

a2bc-quadrilateral and a two-layer earth map tiling T (24αβδ,2γ12).

Then the notation T (24αβδ,2γ12) means the tiling has exactly 24 vertices αβδ and 2 vertices

γ12, and is uniquely determined by them. In general, there may exist several different tilings

with the same set of vertices.

The a2bc-quadrilateral in Figure 2 reduces to the a3b-quadrilateral in Figure 1 when

c= a, and it is natural to expect one-parameter families of two-layer earth map a3b-tilings.

The following main theorem of this paper shows that most rational a3b-tilings are indeed

two-layer earth map tilings.

Theorem. There are 15 sporadic and 3 infinite sequences of rational quadrilaterals

which admit a3b-tilings (Tables 1 and 2). Except the last three sporadic cases, they are all

two-layer earth map tilings T (fαβδ,2γ
f
2 ) for some even integers f ≥ 6, together with their

modifications when β is an integer multiple of γ. The total number Q(f) of quadrilaterals

in Tables 1 and 2 and their total number T (f) of different tilings are:

f 6,30 8 12 16 18 20 36 12k 12k+2 12k+4 12k+6 12k+8 12k+10

k 2,≥ 4 ≥ 1 ≥ 2 ≥ 3 ≥ 2 ≥ 0
Q(f) 4 1 8 4 4 5 5 3 3 3 3 3 3
T (f) 4 1 12 14 6 13 8 6 k+6 k+11 3 k+10 k+8

In Tables 1 and 2, the angles and edge lengths are expressed in units of π, and the

last column counts all vertices and also all different tilings when they are not uniquely

determined by the vertices. All exact and numerical geometric data are provided in the

appendix. A rational fraction, such as α = 2
9 , means the precise value 2π

9 . A decimal

expression, such as a ≈ 0.3918, means an approximate value 0.3918π ≤ a < 0.3919π. We

put π back in any trigonometric functions to avoid confusion.

Four exceptional tilings for the last three sporadic quadrilaterals in Table 1 (f = 16,16,

36,36) are shown in Figure 3. The first three tilings have repeated time zones which could

be generalized combinatorially. But the quadrilaterals only exist for some particular f due

to geometric constraint. We remark that the last tiling (f = 36) is the only tiling, among

https://doi.org/10.1017/nmj.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.20
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Table 1. Fifteen sporadic quadrilaterals and their tilings

f (α,β,γ,δ),a,b Page All vertices and tilings

6 (6,3,4,3)/6,1/2,1/6 21 6αβδ,2γ3

(1,8,4,3)/6,0.391,1 27, 27, 30,
(12,4,6,2)/9,0.567,0.174 18

12 (2,10,3,6)/9,0.339,0.532 27 12αβδ,2γ6

(1,21,5,8)/15,0.424,0.741 30
(4,9,5,17)/15,0.424,0.165 19

(9,28,10,23)/30,0.335,0.415 11
(3,16,10,41)/30,0.469,0.146 19

20 (5,32,6,23)/30,0.335,0.415 30 20αβδ,2γ10

(1,16,6,43)/30,0.469,0.273 19

30 (1,42,4,17)/30,0.424,0.549 30 30αβδ,2γ15

18 (3,20,4,13)/18,0.339,0.452 29 18αβδ,2γ9

29 16αβδ,2βγ4,2αγ5δ
29 14αβδ,2α2γδ2,4βγ4

16 (1,4,2,2)/4,1/4,1/2 34 8βδ2,8α2βγ,2γ4: 2 tilings

36 (5,4,7,3)/9,0.174,0.258 16 18βγ2,6α3δ,6α2β2,6αβδ3,2δ6

36 (15,6,10,7)/18,0.225,0.118 12 14α2β,8αδ3,10βγ3,6β2γδ2

Table 2. Three infinite sequences of quadrilaterals and their tilings

(α,β,γ,δ) All vertices and tilings Page

( 4f ,1−
4
f ,

4
f ,1) ∀ even f ≥ 10 : fαβδ,2γ

f
2 21

f = 4k(k ≥ 3): (f −2)αβδ,2αγ
f
4−1δ,2βγ

f
4+1 21

(f −4)αβδ,2β2γ2,4αγ
f
4 −1δ: 2 tilings 21

f = 12: 6αβδ,2β3,6αγ2δ 21

( 2f ,
4f−4
3f , 4f ,

2f−2
3f ) ∀ even f ≥ 6 : fαβδ,2γ

f
2 23

f = 6k+4(k ≥ 1): (f −2)αβδ,2βγ
f+2
6 ,2αγ

f−1
3 δ 25

(f −4)αβδ,2α2γ
f−4
6 δ2,4βγ

f+2
6 : �k+2

2 � tilings 25

(f −6)αβδ,2αδ3,2α2βγ
f−4
6 ,4βγ

f+2
6 : 3 tilings 23

( 2f ,
2f−4
3f , 4f ,

4f−2
3f ) ∀ even f ≥ 10 : fαβδ,2γ

f
2 18

f = 6k+2(k ≥ 2): (f −2)αβδ,2αγ
f−2
6 δ,2βγ

f+1
3 18

(f −4)αβδ,4αγ
f−2
6 δ,2β2γ

f+4
6 : �k+3

2 � tilings 18

(f −6)αβδ,2β3γ,6αγ
f−2
6 δ 18

Figure 3.

Four exceptional tilings with f = 16,16,36,36.
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Figure 4.

Two very different tilings of Case (1,6,2,3)/5 in Table 2.
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Two basic flip modifications for certain two-layer earth map tilings.

all edge-to-edge triangular, quadrilateral, pentagonal tilings of the sphere, which has no

apparent relation with any platonic solids or earth map tilings.

1.1 Modifications of special two-layer earth map a3b-tilings

Once all angles are fixed, there are only finitely many combinations of them summing

to 2 or form a vertex in the tiling. Then one may apply brute-force trial-and-error to find

all tilings. However, the following hindsight can help us to understand most tilings in a

constructive way.

It turns out that a two-layer earth map a3b-tiling T (fαβδ,2γ
f
2 ) admits some modification

if and only if β is an integer multiple of γ. An authentic 3D picture for a two-layer earth

map tiling is shown in the left of Figure 4. The structure of any two-layer earth map tiling

is shown in Lemma 2.10. When β = mγ < 1, m continuous time zones (2m tiles) form a

dumb-bell like hexagon enclosed by six a-edges in the first picture of Figure 5. Simply flip

along the middle vertical line L1 (or equivalently along the middle horizontal line), and

one gets a new tiling of the sphere with different vertices. This is called the first basic flip

modification. When α+ δ =mγ ≤ 1, we get the second basic flip modification in the right

of Figure 5.

A closer look at the inner and outer sides of this hexagon reveals that these two flips are

essentially the same: α+δ =mγ is equivalent to β = (f2 −m)γ, and the sphere is divided by

the six a-edges into two complementary hexagons, either of which may be flipped. However,

it is more convenient to flip the smaller one so that we can flip several separated regions to

get more tilings. So we still use both basic flips in Figure 5 but assuming afterwards that

m≤ f
4 . Case (3,20,4,13)/18 of Table 1 and some sub-sequence of each infinite sequence of

Table 2 admit two or three basic flips.

Figure 6 shows four different flips of the two-layer earth map tiling in the third case of

Table 2 with f = 14 tiles. Flipping once, we get the first picture. Flipping twice, we get the
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Figure 6.

Four flip modifications for Case (1,4,2,9)/7 in Table 2.
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The degenerate and subdivision ways to get triangular tilings.

second and third pictures when the space between two flips is 0 or 1 time zone. Flipping

three times, we get the fourth picture.

For Case ( 2f ,
4f−4
3f , 4f ,

2f−2
3f ) with f = 6k+4(k ≥ 1), there is another kind of modification

giving three more tilings, and we will explain it later using Figures 26 and 30. An authentic

3D picture for such a new tiling with f = 10 is shown in the right of Figure 4.

1.2 Non-edge-to-edge triangular tilings

When any angle of the quadrilateral is 1, it degenerates to a triangle as shown in the

first two pictures of Figure 7. Then the first infinite sequence and two sporadic cases with

f = 6,16 produce many new examples of non-edge-to-edge triangular tilings.

The second infinite sequence of quadrilaterals satisfy γ=2α,β=2δ and can be subdivided

into three congruent triangles (observed first in [4]) as shown in the third picture of Figure

7, which also induce new non-edge-to-edge triangular tilings. Note that the sporadic case

with f = 16 admits such subdivision too, but inducing only some edge-to-edge triangular

tiling.

These are new examples, comparing to early explorations of non-edge-to-edge triangular

tilings in [5]–[9].

1.3 Outline of the paper

The classification for a2bc in [10] is mainly the analysis around a special tile. However,

a3b is handled by a new efficient method, different from all methods developed for triangular

and pentagonal tilings. While the cost is to solve some trigonometric Diophantine equations,

the idea behind this new method is very simple: too many linearly independent vertex types

in a tiling would force all angles to be rational, or the vertex types must be very limited.

This paper will identify all rational a3b-quadrilaterals suitable for tiling. Then the third of

our series (see [11]) handles the irrational angle case in a fast way due to strong constraints

on vertex types.

This paper is organized as follows: Section 2 includes general results from [10] and some

technical results specific to a3b. Section 3 looks for all possible tilings from Coolsaet’s list of
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convex rational a3b-quadrilaterals. Sections 4 and 6 solve some trigonometric Diophantine

equations to identify all concave rational a3b-quadrilaterals suitable for tiling, and then

find all of their tilings. Sections 5 and 7 handle two degenerate cases when the quadrilateral

becomes some triangle, and thus complete the classification.

§2. Basic facts

We will always express angles in units of π radians for simplicity. So the sum of all angles

at a vertex is 2. We present some basic facts and techniques in this section.

Let v,e,f be the numbers of vertices, edges, and tiles in a quadrilateral tiling. Let vk be

the number of vertices of degree k. Euler’s formula v−e+f = 2 implies (see [10]):

f = 6+
∞∑
k=4

(k−3)vk = 6+v4+2v5+3v6+ . . . , (2.1)

v3 = 8+
∞∑
k=5

(k−4)vk = 8+v5+2v6+3v7+ . . . . (2.2)

So f ≥ 6 and v3 ≥ 8.

Lemma 2.1 [10, Lem. 2]. If all tiles in a tiling of the sphere by f quadrilaterals have the

same four angles α,β,γ,δ, then

α+β+γ+ δ = 2+
4

f
,

ranging in (2, 83 ]. In particular, no vertex contains all four angles.

Lemma 2.2 [18, Lem. 3]. If the quadrilateral in Figure 1 is simple, then β < γ is

equivalent to α > δ.

Lemma 2.3. If the quadrilateral in Figure 1 is simple, then β = δ if and only if α= 1.

Furthermore, if it is convex with all angles < 1, then β > δ is equivalent to α< γ, and β < δ

is equivalent to α > γ.

Proof. If α = 1, we get an isosceles triangle in the first picture of Figure 8, thus β = δ.

If β = δ and α �= 1, then ∠CBD = ∠BDC implies ∠ABD = ∠ADB. So we get a = b,

a contradiction. When the quadrilateral is convex with all angles < 1, the line AC in the

second of Figure 8 is inside the quadrilateral, and divides α and γ as γ= θ+γ′ and α= θ+α′.

Then

α < γ ⇐⇒ α′ < γ′ ⇐⇒ a < b.

By the same reason, we have β > δ ⇐⇒ a < b. Therefore, β > δ is equivalent to α < γ.

Similarly β < δ is equivalent to α > γ.

Lemma 2.4. If the quadrilateral in Figure 1 is simple, and δ ≤ 1, then 2α+β > 1 and

β+2γ > 1.

Proof. If all angles are < 1, then the quadrilateral is convex and the line AC is inside

the quadrilateral in the second picture of Figure 8. Thus θ < α,γ. This implies 2α+β >

2θ+β > 1 and β+2γ > β+2θ > 1.
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Proof of Lemmas 2.3 and 2.4.
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Different adjacent angle deductions of α2β2.

If β ≥ 1 or both α,γ ≥ 1, then both inequalities certainly hold. If δ = 1, then α = γ by

Lemma 2.3, and 2α+β > 1 as the angle sum of a triangle. So we only need to consider the

following two cases:

1. α,β,δ < 1 and γ ≥ 1.

2. β,γ,δ < 1 and α≥ 1.

Case 1 is shown in the third picture of Figure 8, and it suffices to show 2α+β > 1. By α,δ < 1

and AB = CD = a < 1, both B and C lie in the interior of the same hemisphere bounded

by the great circle ©AD. By β < 1≤ γ and α > δ (Lemma 2.2), the line AC is inside the

quadrilateral. Then α ≥ θ as in the second picture of Figure 8, and 2α+β > 2θ+β > 1.

Case 2 can be proved similarly.

Lemma 2.5 (Parity Lemma, [18, Lem. 10]). In an a3b-tiling, the total number of ab-

angles α and δ at any vertex is even.

Lemma 2.6 (Balance Lemma, [18, Lem. 11]). In a tiling of the sphere by f congruent

tiles, each angle of the tile appears f times in total. In an a3b-tiling, if either α2 · · · or δ2 · · ·
is not a vertex, then any vertex either has no α,δ, or is of the form αδ · · · with no more

α,δ in the remainder.

The very useful tool adjacent angle deduction (abbreviated as AAD) has been introduced

in [17, Sec. 2.5]. We give a quick review here using Figure 9. Let “ ” denote an a-edge and

“ ” denote a b-edge. Then we indicate the arrangements of angles and edges by denoting

the vertices as α α β β . The notation can be reversed, such as α α β β = β β α α ; and it

can be rotated, such as α α β β = α β β α = β α α β . We also denote the first vertex in

Figure 9 as β β · · · , β β · · · ,α β · · · , β β α · · · , and denote the consecutive angle segments

as β β, β β ,α β, β β α .

The pictures of Figure 9 have the same vertex α α β β , but different arrangements of the

four tiles. To indicate the difference, we write λθμ to mean λ,μ are the two angles adjacent

to θ in the quadrilateral. The first picture has the AAD βαδ δαβ αβγ γβα . The second and

third have the AAD βαδ δαβ γβα αβγ and βαδ δαβ αβγ αβγ , respectively. The following

useful lemma is from [17, Lem. 10].
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A two-layer earth map tiling T (fαβδ,2γ
f
2 ).

Lemma 2.7. Suppose λ and μ are the two angles adjacent to θ in a quadrilateral.

• If λ λ · · · is not a vertex, then θn has the unique AAD λθμ λθμ λθμ · · · .
• If n is odd, then we have the AAD λθμ λθμ at θn.

Lemma 2.8. There is no tiling of the sphere by congruent quadrilaterals with two angles

≥ 1.

Proof. If any two angles, say α,β, are greater than or equal to 1, then α · · ·= αγxδy(x+

y ≥ 2), β · · · = βγpδq(p+ q ≥ 2). Given that #α =#β = f , we deduce that #γ+#δ ≥ 4f ,

which contradicts #γ+#δ = 2f .

Proposition 2.9. There is no tiling of the sphere by congruent symmetric a3b-

quadrilaterals (α= δ and β = γ).

Proof. The convex case with all angles < 1 has been proved by Akama and van Cleemput

in [1]. If any angle is ≥ 1, we get two angles ≥ 1 by symmetry, then Lemma 2.8 applies.

Lemma 2.10. Assume γ
f
2 is a vertex in an a3b-tiling. If β2 · · · or δ2 · · · is not a vertex,

and βδ · · · = αβδ, then the tiling must be a two-layer earth map tiling T (fαβδ,2γ
f
2 ) in

Figure 10. In particular, if all β-vertices are αβδ, then the tiling must be a two-layer earth

map tiling.

Proof. By Lemma 2.7, when β2 · · · or δ2 · · · is not a vertex, we have the unique AAD

γ
f
2 = βγδ βγδ · · · . In Figure 10, γ1γ2γ3 · · · determines T1,T2,T3. Then β2δ1 · · · = α4β2δ1

determines T4; β3δ2 · · ·= α5β3δ2,α2β4δ5 · · ·= α2β4δ5 determines T5. The argument started

at α4β2δ1 can be repeated at α5β3δ2. More repetitions give the unique tiling of f tiles with

2γ
f
2 and fαβδ.

Lemma 2.11. In an a3b-tiling, if α ≥ 1, then either αβδ or αγδ is a vertex, and the

only other possible vertex with α or δ must be αγlδ or αβlδ, respectively, for some l ≥ 2.

Proof. α ≥ 1 implies α2 · · · is not a vertex. Then Balance Lemma 2.6 and Lemma 2.1

imply that any vertex with α or δ must be of two types αβlδ or αγmδ. If there exists only

one type, say αβlδ, then l=1 by Balance Lemma 2.6. If there exist both types with l,m≥ 2,

then the only solution satisfying Balance Lemma 2.6 is: {f
2αβ

2δ, f2αγ
2δ}. This implies β= γ,

contradicting Proposition 2.9. Therefore, one of l,m must be 1, and the other must be ≥ 2

since β �= γ.

Lemma 2.12. In an a3b-tiling, the a-edge and two diagonals are always < 1. If both

β,γ < 1, then b < 1.
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Proof of Lemmas 2.12 and 2.13.

Proof. By Lemma 2.8, there are just three types of simple quadrilaterals suitable for

tiling: convex with all angles < 1, α≥ 1, or β≥ 1, as shown in Figure 11. It is clear that a< 1,

otherwise BC and CD would intersect at the antipodal of C, contradicting the simpleness.

For the first two types in Figure 11, both β < 1 and γ < 1, then a < 1 implies that both

A and D lie in the interior of the same hemisphere bounded by the great circle ©BC.

Therefore, two diagonals and b-edge are all < 1.

For the last type in Figure 11, both α< 1 and δ < 1, then a < 1 implies that both B and

C lie in the interior of the same hemisphere bounded by the great circle ©AD. Therefore,

both diagonals are < 1.

Lemma 2.13. For a3b-quadrilaterals, the following equations (2.3) and (2.4) always

hold, and one of the equations (2.5) or (2.6) must hold.

cosb=cos3a(1− cosβ)(1− cosγ)− cos2asinβ sinγ+

cosa(cosβ+cosγ− cosβ cosγ)+sinβ sinγ;
(2.3)

cosa=
sinα+cosδ sinγ

2sinδ sin2 γ
2

=
sinδ+cosαsinβ

2sinαsin2 β
2

(α,δ �= 1); (2.4)

sin(α− γ

2
)sin

β

2
= sin

γ

2
sin(δ− β

2
), (2.5)

or sin(α+
γ

2
)sin

β

2
=−sin

γ

2
sin(δ+

β

2
). (2.6)

Proof. The equation (2.3) always holds by the extended cosine law in [17, Lem. 11]. By

Lemma 2.8, there are just three types of simple quadrilaterals suitable for tiling: convex

with all angles < 1, α≥ 1, or β ≥ 1, as shown in Figure 11.

For the first type, Lemma 2.12 implies that all edges and diagonals are < 1. Therefore,

all Coolsaet’s assumptions in [4, Th. 2.1] hold and the equation (2.4) was proved there,

which further implies either the equation (2.5) or (2.6).

It turns out Coolsaet’s proof works for the other two types too. If α ≥ 1, the sine law
sin(2−α)

siny = sin(ψ−δ)
sina is equivalent to sinα

siny = sin(δ−ψ)
sina . If β ≥ 1, the sine law sin(2−β)

sinx = sin(φ)
sina

is equivalent to sinβ
sinx = sin(−φ)

sina . Then every step to derive the equation (2.4) is exactly the

same as the first type, which further implies either the equation (2.5) or (2.6).

We remark that Coolsaet also showed the equation (2.6) never holds for the first type,

but it seems difficult to dismiss (2.6) for the two concave types. It is amazing that all

rational solutions (rational multiples of π) to (2.5) or (2.6) can be found via the algebra of

cyclotomic fields in Conway–Jones [3], as Coolsaet [4] did for convex a3b-quadrilaterals using
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Table 3. Nongeneric solutions in Proposition 2.14

x1 x2 x3 x4

1/21 8/21 1/14 3/14

1/14 5/14 2/21 5/21

4/21 10/21 3/14 5/14

1/20 9/20 1/15 4/15

2/15 7/15 3/20 7/20

1/30 3/10 1/15 2/15

1/15 7/15 1/10 7/30

1/10 13/30 2/15 4/15

x1 x2 x3 x4

4/15 7/15 3/10 11/30

1/30 11/30 1/10 1/10

7/30 13/30 3/10 3/10

1/15 4/15 1/10 1/6

2/15 7/15 1/6 3/10

1/12 5/12 1/10 3/10

1/10 3/10 1/6 1/6

Myerson’s Theorem [12] for (2.5). We summarize the algorithm as the following easy-to-use

proposition.

Proposition 2.14. All solutions of sinx1 sinx2 = sinx3 sinx4 with rational angles 0≤
x1,x2,x3,x4 ≤ 1

2 fall into the following four cases:

Case 1. x1x2 = x3x4 = 0.

Case 2. {x1,x2}= {x3,x4}.
Case 3. {x1,x2}= {1

6 , θ} and {x3,x4}= {θ
2 ,

1
2 −

θ
2}, or {x3,x4}= {1

6 , θ} and {x1,x2}=
{θ
2 ,

1
2 −

θ
2}, for some 0< θ ≤ 1

2 .

Case 4. Up to reordering, all other solutions x1,x2,x3,x4 satisfying 0< x1 < x3 ≤ x4 <

x2 ≤ 1
2 are in Table 3.

Remark 2.15. We always have sin 1
6 sinθ = sin θ

2 sin(12 − θ
2). But it is a lengthy

computation to get Case 3 when we transform all angles in this formula to the range

(0,1/2] for all possible ranges of θ. We omit the details here.

Remark 2.16. After Case 1, we can assume all xi > 0. Case 2 and Case 3 have a

common solution {x1,x2}= {x3,x4}= {1
6 ,

1
3}.

Remark 2.17. The 7/15 highlighted in a box in Table 3 was 8/15 in Myerson’s original

table, which is an obvious typo since 8/15> 1/2. This typo remained in [4] but the results

there were nonetheless correct.

We will use lemma/proposition n′ to denote the use of lemma/proposition n after

interchanging α↔ δ and β ↔ γ.

By Lemma 2.8, the quadrilateral in our tiling can have at most one angle ≥ 1. Up to the

symmetry of interchanging α ↔ δ and β ↔ γ, we need only to consider five possibilities:

convex (all angles < 1), concave (α> 1 or β > 1), or degenerate (α= 1 or β = 1), which will

be discussed in the following sections, respectively.

§3. Convex case α,β,γ,δ < 1

Coolsaet [4, Th. 3.2] classified simple convex rational quadrilateral with three equal

sides into 29 sporadic examples in the first column of Table 4 and 7 infinite classes (up to

interchanging α↔ δ and β ↔ γ):
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Table 4. All 29 sporadic convex rational a3b-quadrilaterals

(α,β,γ,δ) f

(29,16,18,23)/42 84 No degree 3 vertex
(31,16,18,23)/42 42 No degree 3 vertex
(35,16,30,17)/42 12 No degree 3 vertex
(37,16,30,17)/42 21/2 f is not even
(35,18,40,17)/42 84/13 f is not even
(11,30,40,7)/42 42 No degree 3 vertex
(29,30,40,23)/42 84/19 f is not even
(49,16,42,17)/60 60 No degree 3 vertex
(53,16,42,17)/60 30 No degree 3 vertex

(21,8,26,7)/30 60 α · · ·= αβ4δ

(49,18,56,17)/60 12 No degree 3 vertex

(23,10,28,9)/30 12

(11,7,9,8)/15 12 No degree 3 vertex
(13,7,9,8)/15 60/7 f is not even

(17,14,28,9)/30 15 f is not even

(α,β,γ,δ) f

(25,16,18,19)/30 20/3 f is not even
(23,16,18,19)/30 15/2 f is not even
(25,16,22,17)/30 6 No α · · ·
(27,16,22,17)/30 60/11 f is not even
(23,32,54,13)/60 120 No degree 3 vertex
(31,32,54,19)/60 15 f is not even

(17,16,26,11)/30 12 γ · · ·= α2γ

(31,36,50,23)/60 12 No degree 3 vertex
(11,9,13,8)/15 60/11 f is not even

(19,18,28,13)/30 20/3 f is not even
(25,18,28,17)/30 30/7 f is not even
(19,42,56,13)/60 24 No degree 3 vertex
(37,42,56,29)/60 60/11 f is not even
(23,22,28,19)/30 15/4 f is not even

1. α= γ and β = δ (and all four sides are equal);

2. α= δ and β = γ;

3. α= γ
2 and δ = β

2 , α,δ <
1
2 ;

4. α= 3γ
2 ,β = 1

3 and δ = 2
3 −

γ
2 , with

1
2 < γ < 2

3 ;

5. α= 1
6 +

γ
2 ,β = 2γ and δ = 1

2 +
γ
2 , with

1
3 < γ < 1

2 ;

6. α= 1
6 +

γ
2 ,β = 2γ and δ = 1

2 +
3γ
2 = 3α, with 4

15 < γ < 1
3 ;

7. α= 1
6 +

γ
2 ,β = 2−2γ and δ = 3

2 −
3γ
2 , with 1

2 < γ < 5
6 .

In fact, Coolsaet assumed additionally that all edges and diagonals are < 1, and our Lemma

2.12 shows that such assumptions are satisfied automatically for a3b-tilings. Cases 1 and 2

are immediately dismissed due to a �= b and Proposition 2.9. In this section, we will find all

possible tilings from Table 4 and from five remaining cases.

3.1 Sporadic cases in Table 4

A quadrilateral is qualified to tile the sphere only if its angle sum is 2+ 4
f for some even

integer f ≥ 6, every angle can be extended to a vertex, and there must also exist degree 3

vertices by the equation (2.2). These basic criteria dismiss most sporadic examples in Table

4, as the details showing in the second and third columns. There are only three subcases

left. But (21,8,26,7)/30 implies α · · ·= αβ4δ and (17,16,26,11)/30 implies γ · · ·= α2γ, both

contradicting Balance Lemma 2.6. So only (23,10,28,9)/30 admits a two-layer earth map

tiling T (12αγδ,2β6). In fact the only other possible vertex is αβδ3, but Lemma 2.10 ′ shows

that there is no other tilings. This is f = 12, (9,28,10,23)/30 in Table 1 after interchanging

α↔ δ and β ↔ γ.

3.2 Case 3. α = γ
2
, δ = β

2
, α,δ < 1

2

By Lemma 2.1, we get 2
3 < α+ δ ≤ 8

9 and 4
3 < β+ γ ≤ 16

9 . Without loss of generality,

let β > γ. So we get β > 2
3 , and δ > 1

3 by Lemma 2.3. By β < 1, we get γ > 1
3 ,α > 1

6 , and

δ < 1
2 . Let R(β2 · · ·) denote the remainder or “· · ·” part of the angles at this vertex β2 · · · .

By R(β2 · · ·)< β = 2δ,γ = 2α and Parity Lemma, there is no β2 · · · vertex. Similarly, there

is no βδ2 · · · vertex. By α<R(βδ · · ·)< 3α and Parity Lemma, there is no βδ · · · vertex. By
R(β · · ·)< 3γ, γ = 2α and Parity Lemma, we get β · · ·= βγ2,α2βγ or α4β. They all satisfy

#α+#γ ≥ 2#β. If α2βγ or α4β is a vertex, then #α+#γ > 2#β, contradicting Balance

Lemma 2.6. If β · · ·= βγ2, then #γ >#β, again a contradiction. We conclude that there is

no tiling in this case.
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Figure 12.

T (14α2β,8αδ3,10βγ3,6β2γδ2).

3.3 Case 4. α = 3γ
2
,β = 1

3
, δ = 2

3
− γ

2
, 1
2
< γ < 2

3

We have 3
4 < α < 1 and 1

3 < δ < 5
12 . By R(γ · · ·) < 2α, 0 < R(αγδ · · ·) < β,γ,2δ and

Parity Lemma, there is no αγ · · · vertex. By 0 < R(γ3 · · ·) < 2β,γ,2δ and Parity Lemma,

we get γ3 · · · = βγ3. By 2β < R(γ2 · · ·) < 3β,3δ, 0 < R(γ2δ2 · · ·) < β and Parity Lemma,

we get γ2 · · ·= βγ3. By R(γδ2 · · ·) = 2β < 2δ, 4β <R(γ · · ·)< 5β and Parity Lemma, we get

γ · · ·= βγ3 or β2γδ2. By Balance Lemma, βγ3 is a vertex. Therefore, α= 5
6 ,β = 1

3 ,γ = 5
9 and

δ= 7
18 . Then we get f =36. By Parity Lemma, we get the AVC⊂{α2β,αδ3,βγ3,β2γδ2,β6}.

If β6 is a vertex, we have the AAD β6 = γβα αβγ · · · or γβα γβα · · · . This gives a vertex

α α · · · or αγ · · · , contradicting the AVC. Then there is only one solution satisfying Balance

Lemma 2.6: {14α2β,8αδ3,10βγ3,6β2γδ2}.
In Figure 12, we have the unique AAD β2γδ2 = γδα1

αδγ2
γβα

3
δγβ

4
αβγ

5 which deter-

mines T1,T2,T3,T4,T5. Then α5β4 · · · = α2β determines T6; α4β6 · · · = α2β determines T7;

α1δ4δ7 · · · = αδ3 determines T8; α8δ3 · · · = αδ3 determines T9,T10. We have γ2γ3γ10 · · · =
γ2 γ3 γ10

γβα
11 or γ2 γ3 γ10

αβγ
11 . We might as well take γ2γ3γ10 · · ·= γ2 γ3 γ10

γβα
11 which

determines T11. Similarly, we can determine T12,T13,T14,T15,T16,T17 and T18. We have

β10γ11γ13 · · ·= γ11 β10 γ13
βγδ

19 or γ11 β10 γ13
δγβ

19 . We might as well take β10γ11γ13 · · ·=
γ11 β10 γ13

βγδ
19 which determines T19. Similarly, we can determine T20,T21, . . . ,T36. For

other choices of γ2γ3γ10 · · · and β10γ11γ13 · · · , we still get this tiling or its equivalent opposite.
This is Case (15,6,10,7)/18 in Table 1.

3.4 Case 5. α = 1
6
+ γ

2
,β = 2γ,δ = 1

2
+ γ

2
, 1
3
< γ < 1

2

We have 1
3 <α< γ < 1

2 and 2
3 < δ < β < 1. By R(β2 · · ·)< 2α,β,2γ,δ and Parity Lemma,

we get β2 · · · = β2γ. By R(αβδ · · ·) < all angles, 0 < R(α2β · · ·) < 2α,2γ, 2γ < R(β · · ·) <
4γ,2δ and Parity Lemma, we get β · · · = αβδ,β2γ,α2βγ or βγ3. However, αβδ,β2γ or βγ3

implies f = 9 or 15, contradicting the fact that f is even. So we have only β · · ·= α2βγ with
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Table 5. The AVC for α = 7
12

− 1
f
,β = 1

3
+ 4

f
,γ =

5
6
− 2

f
, δ = 1

4
+ 3

f

f Vertex

All βγ2, α3δ
20 αβ2δ
24 β4, βγδ2, βδ4

36 α2β2, αβδ3, β3δ2, δ6

60 β3γ, β5, β2δ4, γδ4

84 αβ3δ, αδ5

132 β4δ2, βδ6

f = 12. But this again contradicts Balance Lemma 2.6. We conclude that there is no tiling

in this case.

3.5 Case 6. α = 1
6
+ γ

2
,β = 2γ,δ = 1

2
+ 3γ

2
= 3α, 4

15
< γ < 1

3

We have 3
10 <α< 1

3 ,
8
15 <β < 2

3 and 9
10 < δ < 1. By R(δ2 · · ·)< all angles, there is no δ2 · · ·

vertex. By 0<R(α3δ · · ·)< all angles, 0<R(αβδ · · ·)< all angles, 2γ < R(αδ · · ·)< 3γ and

Parity Lemma, there is no δ · · · vertex, a contradiction. We conclude that there is no tiling

in this case.

3.6 Case 7. α = 1
6
+ γ

2
,β = 2−2γ,δ = 3

2
− 3γ

2
, 1
2
< γ < 5

6

By Lemma 2.1, we have α = 7
12 −

1
f ,β = 1

3 +
4
f ,γ = 5

6 −
2
f and δ = 1

4 +
3
f . So we have

5
12 < α < γ < 5

6 and 1
4 < δ < β < 1.

If β > γ, then we get 6< f < 12. So we have 5
12 < α < 1

2 < δ < 3
4 and 1

2 < γ < 2
3 < β < 1.

By R(β2 · · ·)< 2α,β,γ,2δ and Parity Lemma, there is no β2 · · · vertex. By 0<R(α2β · · ·)<
all angles, R(αβδ · · ·)< all angles, R(βδ2 · · ·)< all angles, R(β · · ·) = 2γ and Parity Lemma,

we get β · · ·= αβδ,βγ2 or βδ2. Suppose αβδ or βδ2 is a vertex. Then we get f = 36
5 or 60

7 ,

a contradiction. So we have β · · ·= βγ2. But this again contradicts Balance Lemma 2.6.

Therefore, β <γ, then we get f > 12. So we have 1
4 <δ< 1

2 <α< 7
12 and 1

3 <β < 2
3 <γ < 5

6 .

If αkβlγmδn is a vertex, then we have

( 7
12 −

1
f )k+(13 +

4
f )l+(56 −

2
f )m+(14 +

3
f )n= 2.

We also have α> 1
2 ,β > 1

3 ,γ > 2
3 , δ >

1
4 . This implies k≤ 3, l≤ 5,m≤ 2,n≤ 7. We substitute

the finitely many combinations of exponents satisfying the bounds into the equation above

and solve for f. By the angle values and Parity Lemma, we get all possible AVC in Table

5. Its first row “f = all” means that the angle combinations can be vertices for any f ; all

other rows are mutually exclusive. Note that the AVC⊂ {βγ2,α3δ} in the first row admits

no solution satisfying Balance Lemma 2.6. All possible tilings based on the other subcases

are deduced as follows.

3.6.1. Table 5, f = 20,132

For f = 20, the AVC ⊂ {βγ2,α3δ,αβ2δ} admits no solution satisfying Balance Lemma

2.6.
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Figure 13.

f = 24, the AVC= {βγ2,α3δ,β4,βγδ2} admit no tiling.

For f = 132, there is no αγ · · · vertex. Then βδ6 cannot be a vertex, since its AAD gives

αγ · · · . So we get the AVC⊂ {βγ2,α3δ,β4δ2}, which admits no solution satisfying Balance

Lemma 2.6.

3.6.2. Table 5, f = 24

By Table 5, there is no αγ · · · vertex. Then βδ4 cannot be a vertex, since its AAD gives

αγ · · · . So we get the AVC⊂ {βγ2,α3δ,β4,βγδ2}, which admits a unique solution satisfying

Balance Lemma 2.6: {8βγ2,8α3δ,2β4,8βγδ2}.
In Figure 13, by the AVC, we know αγ · · · is not a vertex. So we have the AAD β4 =

αβγ
1

γβα
2

αβγ
3

γβα
4 . This determines T1,T2,T3,T4. Then γ1γ2 · · · = β5γ1γ2 determines T5.

Then α5δ2 · · ·= α5α6α7δ2 determines T6,T7. Then γ5δ1 · · ·= β9γ5δ1δ8 determines T8. By β9,

we have α9γ8 · · · or α9δ5δ6 · · · , contradicting the AVC.

3.6.3. Table 5, f = 60

By Table 5, there is no αγ · · · vertex. Then β5 cannot be a vertex, since its AAD gives

αγ · · · . So we get the AVC ⊂ {βγ2,α3δ,β3γ,γδ4,β2δ4}. By Lemma 2.7, the AAD of β2δ4

must be αδγ γδα · · · . This gives a vertex βγδ δγβ · · · . By the AVC, we have βγδ δγβ · · ·=
βγδ δγβ αβγ . This gives a vertex αβ · · · , contradicting the AVC. Therefore, β2δ4 is not a

vertex. Similarly, γδ4 is not a vertex. Then δ · · ·= α3δ, contradicting Balance Lemma 2.6.

3.6.4. Table 5, f = 84

By Table 5, we get the AVC ⊂ {βγ2,α3δ,αβ3δ,αδ5}, which admits a unique solution

satisfying Balance Lemma 2.6: {42βγ2,20α3δ,14αβ3δ,10αδ5}. Since αγ · · · is not a vertex,

we have the AAD αβ3δ = βαδ αδγ γβα αβγ γβα . This gives a vertex δγβ βγδ · · · . By the

AVC, we have δγβ βγδ · · · = δγβ βγδ γβα . This gives a vertex γδ · · · , contradicting the

AVC.

3.6.5. Table 5, f = 36

By Table 5, there is no αγ · · · vertex. Then β3δ2 cannot be a vertex, since its AAD

gives αγ · · · . So we get the AVC ⊂ {βγ2,α3δ,α2β2,αβδ3, δ6}, and α = 5
9 ,β = 4

9 ,γ = 7
9 , δ =

1
3 . If δ6 is not a vertex, there is only one solution satisfying Balance Lemma 2.6:

{18βγ2,6α3δ,4α2β2,10αβδ3}.
In Figure 14, we have the unique AAD α3δ= α1 α2 α3 δ4 which determines T1,T2,T3,T4.

Then β3γ4 · · · = β3γ4γ5. By γ5, γ3 · · · = β5γ3 · · · determines T5. Then β1β2 · · · = α6α7β1β2
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Figure 14.

f = 36, the AVC= {βγ2,α3δ,α2β2,αβδ3} admit no tiling.
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Figure 15.

Case α2α3 · · ·= α2β2 admits no tiling.

determines T6,T7; β7γ1 · · · = β7γ1γ8. By γ8, γ7 · · · = β8γ7 · · · determines T8. Then

α4δ1δ8 · · · = α4β10δ1δ8δ9 determines T9. By β10, γ9 · · · = β11γ9γ10 determines T10. By β11,

δ10 · · · = α11δ10 · · · determines T11. Then α10β4δ5 · · · = α10β4δ5δ12δ13 determines T12,T13;

α11α13δ10 · · · = α11α13α14δ10 determines T14; β6γ2 · · · = β6γ2γ15. By γ15, γ6 · · · = β15γ6 · · ·
determines T15. Then δ2δ3δ15 · · · = α16β17δ2δ3δ15 determines T16; β5γ3 · · · = β5γ3γ17
determines T17; α5α12δ17 · · · = α5α12α18δ17 determines T18; β12β18 · · · = α19α20β12β18

determines T19; β20γ12γ13 · · · = β20γ12γ13 determines T20. Then we get β13β14γ20 · · · ,
contradicting the AVC.

Therefore, δ6 is a vertex. We have the unique AAD for δ6 = δ1 δ2 · · · which determines

T1,T2,T3,T4,T5,T6. Then γ1γ2 · · ·= β7γ1γ2 determines T7. So α2α3 · · ·= α2β2 or α3δ, shown

in Figures 15 and 16, respectively.

In Figure 15, α2α3 · · · = α2α3β8β9. Then β2γ7 · · · = β2γ7γ8 determines T8. By β9,

α8 · · · = α8α9 · · · determines T9. Then γ3γ4 · · · = β10γ3γ4,β3γ9 · · · = β3γ9γ10 determine
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Figure 16.

Case α2α3 · · ·= α3δ admits T (18βγ2,6α3δ,6α2β2,6αβδ3,2δ6).

C

A

B D

x

y

β δ

φ

φ

ψ ψ

a

b

a

a

Figure 17.

a3b-quadrilateral with α > 1,β,γ,δ < 1.

T10; α8 α9 · · · = α8α9α12δ11 determines T11,T12; β12γ11 · · · = β12γ11γ13. By γ13,

γ12 · · · = β13γ12 · · · determines T13. We have α10β4 · · · = α2β2 or αβδ3. If α10β4 · · · = αβδ3,

then we get α4α5γ · · · , contradicting the AVC. Therefore, α10β4 · · · = α10α14β4β15. This

determines T14. By β15, α4α5 · · · = α4α5α15δ16 determines T15,T16; δ9δ10δ12δ14 · · · =
δ9δ10δ12δ14δ17δ18 determines T17,T18; β14γ15 · · · = β14γ15γ19, γ14γ18 · · · = β19γ14γ18
determine T19; α16δ15δ19 · · ·=α16δ15δ19δ20 · · · determines T20; α19α20β18 · · ·=α19α20β18β21.

By β21, α17α18 · · · = α17α18α21δ22 determines T21,T22. Then we get α13β17γ22 · · · ,
contradicting the AVC.

In Figure 16, α2α3 · · · = α3δ. We have β2γ7 · · · = β2γ7γ8. By γ8, α2α3 · · · = α2α3α9δ8
determines T8,T9. Then β3β9 · · · = α10α11β3β9 determines T10,T11; β11γ9 · · · = β11γ9γ12.

By γ12, γ11 · · · = β12γ11 · · · determines T12. Then α8δ9δ12 · · · = α8β14δ9δ12δ13 determines

T13. By β14, γ13 · · · = β15γ13γ14 determines T14. By β15, δ14 · · · = α15δ14 · · · determines

T15. We have α12α13 · · · = α3δ or α2β2. If α12α13 · · · = α3δ, then we get β13γ15β · · ·
or β12γ11β · · · , contradicting the AVC. Therefore, α12α13 · · · = α2β2. Then β13γ15 · · · =
β13γ15γ16,β12γ11 · · · = β12γ11γ17 determine T16,T17. The argument started at T7 can be

repeated at T10. Two repetitions give a unique tiling T (18βγ2,6α3δ,6α2β2,6αβδ3,2δ6).

This is Case (5,4,7,3)/9 in Table 1.

§4. Concave case α > 1

An a3b-quadrilateral with α > 1,β,γ,δ < 1 is shown in Figure 17, where φ = ∠ACB =

∠BAC and ψ = ∠BDC = ∠CBD. We first prove some basic facts. Recall that Lemma 2.4

implies β+2γ > 1.

Lemma 4.1. In an a3b-tiling with α > 1, we have a > b, α > 1 > γ > β > δ, γ > 1
3 and

δ < 1
2 .
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Proof. α > 1 > γ implies ∠CAD = α−φ > γ−φ = ∠ACD. So a > b. Then ∠ABD <

∠ADB. By ∠CBD =∠BDC, we get β > δ. By Lemma 2.2, we have β < γ. By Lemma 2.4,

we have β+2γ > 1, so γ > 1
3 .

If δ ≥ 1
2 , by α > 1> γ > β > δ, the sum of α with any two angles is > 2 and there is no

α · · · vertex, a contradiction.

Lemma 4.2. In an a3b-tiling with α > 1, if αβδ appears, then γ = 2
3 ,

1
2 or 2

5 .

Proof. By α+β+ δ = 2, we get γ = 4
f with f ≥ 6 being even. By Lemma 4.1, γ > 1

3 . So

f < 12. Then f = 6,8,10 and γ = 2
3 ,

1
2 or 2

5 .

To find rational a3b-quadrilaterals by solving (2.5) or (2.6) via Proposition 2.14, we

have to transform α− γ
2 ,

β
2 ,

γ
2 , δ−

β
2 ,α+ γ

2 ,−δ− β
2 to the range [0, 12 ]. For (2.5), by Lemma

4.1, we have 1
2 < α− γ

2 < 2, 0 < β
2 ,

γ
2 < 1

2 , −
1
2 < δ− β

2 < 1
2 . For (2.6), by Lemma 4.1, we

have 0 < β
2 ,

γ
2 < 1

2 ,0 < δ+ β
2 < 1, which implies sin(α+ γ

2 ) < 0. By 1 < α+ γ
2 < 5

2 , we get

1< α+ γ
2 < 2. Thus, we have to consider the following seven choices:

{x1,x2,x3,x4}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1−α+ γ
2 ,

β
2 ,

γ
2 , δ−

β
2 },

{−1+α− γ
2 ,

β
2 ,

γ
2 ,−δ+ β

2 },
{2−α+ γ

2 ,
β
2 ,

γ
2 ,−δ+ β

2 },
{−1+α+ γ

2 ,
β
2 ,

γ
2 , δ+

β
2 },

{−1+α+ γ
2 ,

β
2 ,

γ
2 ,1− δ− β

2 },
{2−α− γ

2 ,
β
2 ,

γ
2 , δ+

β
2 },

{2−α− γ
2 ,

β
2 ,

γ
2 ,1− δ− β

2 }.

(4.1)

We will match these choices with four cases of solutions in Proposition 2.14 as follows.

4.1 Case 1: x1x2 = x3x4 = 0

By −1
2 < δ− β

2 < 1
2 ,

1
2 <α− γ

2 < 2 and 0< δ+ β
2 < 1, the only solution of x1x2 = x3x4 = 0

for (4.1) comes from α− γ
2 = 1 and δ− β

2 = 0. By Lemma 2.11, we know that αβδ or αγδ

is a vertex.

If αβδ is a vertex, we get three subcases by Lemma 4.2:

1. α= 4
3 ,β = 4

9 ,γ = 2
3 , δ =

2
9 (Case (12,4,6,2)/9 in Table 1).

2. α= 5
4 ,β = γ = 1

2 , δ =
1
4 .

3. α= 6
5 ,β = 8

15 ,γ = 2
5 , δ =

4
15 .

For the second and third subcases, we have β ≥ γ, contradicting β < γ in Lemma 4.1.

In the first subcase, we have α · · ·= αβδ or αδ3. By #α=#δ, we get α · · ·= αβδ. There is

only one solution satisfying Balance Lemma 2.6: {6αβδ,2γ3}, and it gives a two-layer earth

map tiling by Lemma 2.10.

If αγδ is a vertex, then we get α = 4
3 −

2
3f ,β = 4

f ,γ = 2
3 −

4
3f , δ = 2

f . By Lemma 4.1,
4
f = β < γ = 2

3 −
4
3f . This implies f > 8. By the angle values, Parity Lemma and Lemma

2.11, we get the

AVC⊂ {αγδ,βγ3,αβ
f−2
6 δ,β

f+4
6 γ2,β

f+1
3 γ,β

f
2 }.
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{(6k−2)αγδ,4αβkδ,2βk+1γ2}

Figure 18.

Tilings by flipping once, or twice with different spacing.

When f = 6k(k ≥ 2) or 6k+4(k ≥ 1), we have the AVC ⊂ {αγδ,βγ3,β
f
2 }, and the only

solution satisfying Balance Lemma 2.6 is {fαγδ,2β f
2 } which gives a two-layer earth map

tiling by Lemma 2.10 ′.

When f = 6k+2 (k ≥ 2), we have γ = kβ, α+ δ = (2k+1)β and the

AVC⊂ {αγδ,βγ3,αβkδ,βk+1γ2,β2k+1γ,β
f
2 }.

By the AVC, we know α2 · · · , δ2 · · · , and α δ · · · are not vertices. So we have the unique

AAD for any βxγy = βγδ γβα · · · βγδ γβα . We will discuss all possible β-vertices in any

tiling as follows.

If β
f
2 appears, the tiling is a two-layer earth map tiling by Lemma 2.10 ′.

If β2k+1γ appears (β
f
2 never appears), then R(γ2 · · ·) = β2k+1 in the first picture of

Figure 18 and this β2k+1 determines 2k + 1 time zones (4k + 2 or 2f+2
3 tiles). Then

R(α1δ4 · · ·) = βk and this βk determines k time zones (2k or f−2
3 tiles). We obtain a unique

tiling T (6kαγδ,2αβkδ,2β2k+1γ) which can be viewed as the first flip modification of the

two-layer earth map tilings.

If βk+1γ2 appears (β2k+1γ,β
f
2 never appear), the tilings are shown in the second picture

of Figure 18. Depending on the space between two flips, there are �k+3
2 � or �f+16

12 � different
tilings with the same set of vertices.

If βγ3 appears (βk+1γ2,β2k+1γ,β
f
2 never appear), the tiling is shown in Figure 19. We

obtain a unique tiling T ((6k−4)αγδ,2βγ3,6αβkδ) which can be obtained by applying the

first flip modification three times.

All of the above tilings belong to the third infinite sequence in Table 2 after interchanging

α↔ δ and β ↔ γ to keep consistent the AVC for two-layer earth map tilings.

If the AVC⊂ {αγδ,αβkδ}, there is no solution satisfying Balance Lemma 2.6.

4.2 Case 2: {x1,x2} = {x3,x4}
By Proposition 2.9, β �= γ. So the only possibility is that x1 = x3 and x2 = x4 in (4.1).

After an easy check of the seven choices in (4.1), only the last one might hold: 2−α− γ
2 = γ

2

and γ
2 = 1− δ− β

2 . Then we get α+β+γ+ δ = 3> 8
3 , a contradiction.
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δ α

γ β

δ α β

γ

γ

β δα

β γ δ α

α δ
γβ

β
γ

α δ

δ α

γ β

δ α β

γ

Figure 19.

T ((6k−4)αγδ,2βγ3,6αβkδ) obtained by flipping three times.

4.3 Case 3: {x1,x2} = {1
6
,θ} and {x3,x4} = {θ

2
, 1
2
− θ

2
}, or {x3,x4} = {1

6
,θ}

and {x1,x2} = {θ
2
, 1
2
− θ

2
}, for some 0 < θ ≤ 1

2

In the seven choices of (4.1), if γ
2 = 1

6 , then γ = 1
3 , contradicting Lemma 4.1; if γ

2 = θ
2 and

β
2 = θ, then γ < β, contradicting Lemma 4.1. Therefore, we only have 5×7 = 35 options to

consider. It turns out 27 of these options are dismissed by Lemmas 2.1 and 4.1. We list the

corresponding details in the right-hand column of Table 6. The remaining eight options are

summarized as the following six subcases:

1. α= 1+ γ
2 , β = 1

3 , δ = 1
3 −

γ
2 ,

1
3 < γ < 2

3 ;

2. α= 2− 3γ
2 , β = 1

3 , δ = 1
3 −

γ
2 ,

1
3 < γ < 2

3 ;

3. α= 3γ
2 , β = 1

3 , δ = 2
3 −

γ
2 ,

2
3 < γ < 1;

4. α= 5
6 +

γ
2 , β = 2−2γ, δ = 3

2 −
3γ
2 , 5

6 ≤ γ < 1;

5. α= 1
2 +

3γ
4 , β = γ

2 , δ = 1
6 +

γ
4 ,

2
3 < γ ≤ 4

5 ;

6. α= 3
2 −

γ
4 , β = γ

2 , δ = 1
6 −

γ
4 ,

1
3 < γ < 2

3 .

For the first, second, and sixth subcases, we have β,γ < R(αδ · · ·); for the third, fourth,

and fifth subcases, we have β < R(αδ · · ·) < γ. So neither αβδ nor αγδ is a vertex,

contradicting Lemma 2.11.

4.4 Case 4: {x1,x2,x3,x4} are in Table 3.

There are 8× 7× 15 = 840 subcases to consider, but most are ruled out by violating

2 > α > 1 > γ > β > δ > 0, γ > 1
3 , δ <

1
2 or f being even integer. Such computations can

be carried out efficiently by any spreadsheet program. Only 29 subcases are left in Table

7. But 26 of them are ruled out by Lemma 2.11: there is neither αβδ nor αγδ. There are

only three subcases left: (17,5,9,4)/15, (41,10,16,3)/30, (43,6,16,1)/30. They all imply

α · · · = αγδ by the angle values and Parity Lemma. There is only one solution satisfying

Balance Lemma 2.6: {fαγδ,2β f
2 }, and it gives three two-layer earth map tilings in Table 1

after interchanging α↔ δ and β ↔ γ by Lemma 2.10.

§5. Degenerate case α = 1

If α= 1, the quadrilateral degenerates to an isosceles triangle in Figure 20.

Then β = δ, and Lemma 2.2 implies β < γ. By Lemma 2.11, exactly one of αβδ or αγδ

must be a vertex in any spherical tiling by congruent such quadrilaterals.
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Table 6. Case {x1,x2}= { 1
6
,θ} and {x3,x4}= { θ

2
, 1
2
− θ

2
} or {x3,x4}= { 1

6
,θ} and {x1,x2}= { θ

2
, 1
2
− θ

2
}, for

some 0< θ ≤ 1
2

θ 1
6

θ
2

1
2
− θ

2
α β γ δ α > 1> γ > β > δ (Lemma 4.1)

1−α+ γ
2

β
2

γ
2

δ− β
2

1− θ
2

1
3

θ 2
3
− θ

2
α < 1

−1+α− γ
2

β
2

γ
2

−δ+ β
2

1+ 3θ
2

1
3

θ − 1
3
+ θ

2
δ < 0

2−α+ γ
2

β
2

γ
2

−δ+ β
2

2− θ
2

1
3

θ − 1
3
+ θ

2
δ < 0

−1+α+ γ
2

β
2

γ
2

δ+ β
2

1+ θ
2

1
3

θ 1
3
− θ

2

√
Subcase 1

−1+α+ γ
2

β
2

γ
2

1− δ− β
2

1+ θ
2

1
3

θ 1
3
+ θ

2
β < δ

2−α− γ
2

β
2

γ
2

δ+ β
2

2− 3θ
2

1
3

θ 1
3
− θ

2

√
Subcase 2

2−α− γ
2

β
2

γ
2

1− δ− β
2

2− 3θ
2

1
3

θ 1
3
+ θ

2
β < δ

θ 1
6

1
2
− θ

2
θ
2

α β γ δ α > 1> γ > β > δ (Lemma 4.1)

1−α+ γ
2

β
2

γ
2

δ− β
2

3
2
− 3θ

2
1
3

1− θ 1
6
+ θ

2

√
Subcase 3

−1+α− γ
2

β
2

γ
2

−δ+ β
2

3
2
+ θ

2
1
3

1− θ 1
6
− θ

2
δ > 0⇒ θ < 1

3
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≥ 1

3

2−α+ γ
2

β
2

γ
2

−δ+ β
2

5
2
− 3θ

2
1
3

1− θ 1
6
− θ

2
α < 2⇒ θ > 1

3
but

δ > 0⇒ θ < 1
3

−1+α+ γ
2

β
2

γ
2

δ+ β
2

1
2
+ 3θ

2
1
3

1− θ − 1
6
+ θ

2

√
Subcase 2

−1+α+ γ
2

β
2

γ
2

1− δ− β
2

1
2
+ 3θ

2
1
3

1− θ 5
6
− θ

2
β < δ

2−α− γ
2

β
2

γ
2

δ+ β
2

3
2
− θ

2
1
3

1− θ − 1
6
+ θ

2

√
Subcase 1

2−α− γ
2

β
2

γ
2

1− δ− β
2

3
2
− θ

2
1
3

1− θ 5
6
− θ

2
β < δ

1
6

θ 1
2
− θ

2
θ
2

α β γ δ α > 1> γ > β > δ (Lemma 4.1)

1−α+ γ
2

β
2

γ
2

δ− β
2

4
3
− θ

2
2θ 1− θ 3θ

2

√
Subcase 4

−1+α− γ
2

β
2

γ
2

−δ+ β
2

5
3
− θ

2
2θ 1− θ θ

2
α+β+γ+ δ > 8

3

2−α+ γ
2

β
2

γ
2

−δ+ β
2

7
3
− θ

2
2θ 1− θ θ

2
α+β+γ+ δ > 8

3

−1+α+ γ
2

β
2

γ
2

δ+ β
2

2
3
+ θ

2
2θ 1− θ − θ

2
δ < 0

−1+α+ γ
2

β
2

γ
2

1− δ− β
2

2
3
+ θ

2
2θ 1− θ 1− 3θ

2
α < 1

2−α− γ
2

β
2

γ
2

δ+ β
2

4
3
+ θ

2
2θ 1− θ − θ

2
δ < 0

2−α− γ
2

β
2

γ
2

1− δ− β
2

4
3
+ θ

2
2θ 1− θ 1− 3θ

2
α+β+γ+ δ = 10

3
> 8

3

θ
2

1
2
− θ

2
θ 1

6
α β γ δ α > 1> γ > β > δ (Lemma 4.1)

1−α+ γ
2

β
2

γ
2

δ− β
2

1+ θ
2

1− θ 2θ 2
3
− θ

2
α+β+γ+ δ > 8

3

−1+α− γ
2

β
2

γ
2

−δ+ β
2

1+ 3θ
2

1− θ 2θ 1
3
− θ

2
β < γ ⇒ θ > 1

3
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≤ 1

6

2−α+ γ
2

β
2

γ
2

−δ+ β
2

2+ θ
2

1− θ 2θ 1
3
− θ

2
α > 2

−1+α+ γ
2

β
2

γ
2

δ+ β
2

1− θ
2

1− θ 2θ − 1
3
+ θ

2
α < 1

−1+α+ γ
2

β
2

γ
2

1− δ− β
2

1− θ
2

1− θ 2θ 1
3
+ θ

2
α < 1

2−α− γ
2

β
2

γ
2

δ+ β
2

2− 3θ
2

1− θ 2θ − 1
3
+ θ

2
δ < 0

2−α− γ
2

β
2

γ
2

1− δ− β
2

2− 3θ
2

1− θ 2θ 1
3
+ θ

2
α+β+γ+ δ = 10

3
> 8

3

1
2
− θ

2
θ
2

θ 1
6

α β γ δ α > 1> γ > β > δ (Lemma 4.1)

1−α+ γ
2

β
2

γ
2

δ− β
2

1
2
+ 3θ

2
θ 2θ 1

6
+ θ

2

√
Subcase 5

−1+α− γ
2

β
2

γ
2

−δ+ β
2

3
2
+ θ

2
θ 2θ − 1

6
+ θ

2
δ > 0⇒ θ > 1

3
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≤ 1

3

2−α+ γ
2

β
2

γ
2

−δ+ β
2

3
2
+ 3θ

2
θ 2θ − 1

6
+ θ

2
δ > 0⇒ θ > 1

3
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≤ 4

15

−1+α+ γ
2

β
2

γ
2

δ+ β
2

3
2
− 3θ

2
θ 2θ 1

6
− θ

2
α > 1⇒ θ < 1

3
but

α+β+γ+ δ > 2⇒ θ > 1
3

−1+α+ γ
2

β
2

γ
2

1− δ− β
2

3
2
− 3θ

2
θ 2θ 5

6
− θ

2
α > 1⇒ θ < 1

3
but

γ > δ ⇒ θ > 1
3

2−α− γ
2

β
2

γ
2

δ+ β
2

3
2
− θ

2
θ 2θ 1

6
− θ

2

√
Subcase 6

2−α− γ
2

β
2

γ
2

1− δ− β
2

3
2
− θ

2
θ 2θ 5

6
− θ

2
β < δ

5.1 Subcase αβδ is a vertex

By Lemma 2.1, we get β = δ = 1
2 ,γ = 4

f . Then β < γ implies f = 6 and γ = 2
3 . So the

AVC = {αβδ,γ3}, and it gives a two-layer earth map tiling by Lemma 2.10. This is Case

(6,3,4,3)/6 in Table 1.
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Table 7. All 29 solutions induced from Table 3

(α,β,γ,δ) f

(35,16,18,11)/30 6

(35,16,18,3)/30 10

(33,16,22,1)/30 10

(19,7,9,1)/15 10

(41,10,16,3)/30 12

(17,5,9,4)/15 12

(19,3,11,2)/15 12

(67,12,50,11)/60 12

(71,8,54,7)/60 12

(41,8,18,3)/30 12

(α,β,γ,δ) f

(55,16,18,7)/42 14

(49,16,30,1)/42 14

(43,6,16,1)/30 20

(43,4,18,1)/30 20

(83,16,18,13)/60 24

(71,16,42,1)/60 24

(23,3,5,1)/15 30

(41,8,10,5)/30 30

(37,8,18,1)/30 30

(67,16,42,1)/60 40

(α,β,γ,δ) f

(79,16,18,13)/60 40

(43,6,8,5)/30 60

(39,8,10,5)/30 60

(35,8,18,1)/30 60

(49,4,6,3)/30 60

(39,6,16,1)/30 60

(47,4,10,1)/30 60

(77,10,36,1)/60 60

(59,6,20,1)/42 84

β

γ

δ

a a

a+ b

β

β

γ

δ

γ

δ

Figure 20.

Degenerate case α= 1 and the subcase γ+ δ = 1.

5.2 Subcase αγδ is a vertex

By Lemma 2.1, we get β = δ = 4
f ,γ = 1− 4

f . Then β < γ implies f > 8 and γ > 1
2 . By the

angle values and Parity Lemma, we get the AVC⊂ {αγδ,γ3,β2γ2,αβ
f−4
4 δ,β

f+4
4 γ,β

f
2 }.

When f = 4k+2(k ≥ 2), we have the AVC ⊂ {αγδ,γ3,β2γ2,β
f
2 }, and the only solution

satisfying Balance Lemma 2.6 is {fαγδ,2β f
2 } which gives a two-layer earth map tiling by

Lemma 2.10 ′.

When f = 4k (k ≥ 3), we have γ = (k−1)β, α+ δ = (k+1)β and the

AVC⊂ {αγδ,γ3,β2γ2,αβk−1δ,βk+1γ,β
f
2 }.

Trying out all possible β-vertices as the previous section, there are always four tilings as

shown in Figure 10 ′, the second picture of Figure 21 (flip once), Figure 22 (flip twice with

different spacing). Only when f = 12, we can apply the first flip modification in Figure 5

(after interchanging α↔ δ and β ↔ γ) three times, as shown in the first picture of Figure

21. This is because 3(k−1)> 2k when k ≥ 4.

All above tilings belong to the first infinite sequence in Table 2.

§6. Concave case β > 1

The quadrilateral with β > 1 is shown in Figure 23. We first prove some basic facts.

Recall that Lemma 2.4 ′ implies γ+2δ > 1.

Lemma 6.1. In an a3b-tiling with β > 1, we have a < b, α < γ,δ and α < 1
2 .
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β

γ α

δ

δ

γα

β

β

γ α

δ

δ

γα

β

γ

β δα

β γ δ α

α δ γβ

βγ

α δ

δ α

γ β

δ α β

γ

T ((4k−2)αγδ,2αβk−1δ,2βk+1γ)

γ

β δα

β γ δ α

α δ γ β

δ α β

γ

γ

β δα

β γ δ α

α δ γ β

δ α β

γ

γ

β δα

β γ δ α

α δ γ β

δ α β

γ

T (6αγδ,2γ3,6αβ2δ)

Figure 21.

Two degenerate a3b-tilings.

β

γ α

δ

δ

γα

β

β

γ α

δ

δ

γα

β

γ

β δα

β γ δ α

α δ γβ

βγ

α δ

δ α

γ β

δ α β

γ

γ

β δα

β γ δ α

α δ γβ

βγ

α δ

δ α

γ β

δ α β

γ

β

γ α

δ

δ

γα

β

β

γ α

δ

δ

γα

β

γ

β δα

β γ δ α

α δ γβ

βγ

α δ

δ α

γ β

δ α β

γ

γ

β δα

β γ δ α

α δ γβ

βγ

α δ

δ α

γ β

δ α β

γ

Figure 22.

Two tilings for {(4k−4)αγδ,2β2γ2,4αβk−1δ}.

C A

B

D

x

y

ψ
αγ

ψ

φφ

a b

a a

Figure 23.

a3b-quadrilateral with β > 1,α,γ,δ < 1.

Proof. In Figure 23, by β > δ, ∠ABD = β−ψ > δ−ψ = ∠ADB. This implies a < b.

Then ∠CAD < ∠ACD, that is, α+φ < γ+φ. So α < γ. By Lemma 2.2 ′, α < δ. If α ≥ 1
2 ,

then γ,δ > 1
2 , and there is no β · · · vertex. So α < 1

2 .

Lemma 6.2. In an a3b-tiling with β > 1, βδ · · · is a vertex and β+ δ < 2.

Proof. If βδ · · · is not a vertex, by β > 1 and Parity Lemma, we get β · · · =
αxβ,αyβγz,βγw(x,y,w ≥ 2, z ≥ 1). Then #α+#γ ≥ 2#β = 2f , and there is only one
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solution satisfying Balance Lemma 2.6: {f
2 α

2β, f2 βγ
2, fk δ

k}. But this implies α = γ,

contradicting Lemma 2.3′. Therefore, βδ · · · is a vertex.

To find rational a3b-quadrilaterals by solving (2.5) or (2.6) via Proposition 2.14, we have

to transform α− γ
2 ,

β
2 ,

γ
2 , δ−

β
2 ,α+ γ

2 ,−δ− β
2 to the range [0, 12 ]. For (2.5), by Lemma 6.1,

we have −1
2 <α− γ

2 < 1
2 ,

1
2 <

β
2 < 1,0< γ

2 < 1
2 and −1< δ− β

2 < 1
2 . For (2.6), by Lemma 6.1,

we have 0< α+ γ
2 < 1, 12 < β

2 < 1,0< γ < 1
2 , which implies sin(δ+ β

2 )< 0. By 1
2 < δ+ β

2 < 2,

we get 1 < δ+ β
2 < 2. If 3

2 ≤ δ+ β
2 < 2, we get β+ δ > 2, contradicting Lemma 6.2. So for

the equation (2.6), we have 0<α+ γ
2 < 1, 12 < β

2 < 1,0< γ
2 < 1

2 and 1< δ+ β
2 < 3

2 . Thus, we

have to consider the following five choices:

{x1,x2,x3,x4}=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{α− γ
2 ,1−

β
2 ,

γ
2 , δ−

β
2 },

{−α+ γ
2 ,1−

β
2 ,

γ
2 ,1+ δ− β

2 },
{−α+ γ

2 ,1−
β
2 ,

γ
2 ,−δ+ β

2 },
{α+ γ

2 ,1−
β
2 ,

γ
2 ,−1+ δ+ β

2 },
{1−α− γ

2 ,1−
β
2 ,

γ
2 ,−1+ δ+ β

2 }.

(6.1)

We will match these choices with four cases of solutions in Proposition 2.14 as follows.

6.1 Case 1: x1x2 = x3x4 = 0

By −1 < δ− β
2 < 1

2 , −
1
2 < α− γ

2 < 1
2 and 1 < δ+ β

2 < 3
2 , the only solution of x1x2 =

x3x4 = 0 for (6.1) comes from α = γ
2 , δ =

β
2 . Then we get 3α+β+ δ > 2. By R(βδ · · ·) <

3α,β,δ, Parity Lemma and Lemma 6.2, we deduce that αβδ is a vertex. This implies

α = 2
f ,β = 4

3 −
4
3f ,γ = 4

f , δ =
2
3 −

2
3f . By the angle values and Parity Lemma, we get the

AVC ⊂ {αβδ,αδ3,αxβγ
f−3x+2

6 ,αyγ
f−3y+2

6 δ2,αzγ
2f−3z+1

6 δ,αwγ
f−w

2 }. Then we know there is

no β2 · · · vertex, which further implies that (by AAD) the

AVC⊂ {αβδ,αδ3,α2βγ
f−4
6 ,α2γ

f−4
6 δ2,βγ

f+2
6 ,γ

f+2
6 δ2,αγ

f−1
3 δ,γ

f
2 }.

When f = 6k or 6k+2 (k ≥ 1), we have the AVC⊂ {αβδ,αδ3,γ f
2 }, and the only solution

satisfying Balance Lemma 2.6 is {fαβδ,2γ f
2 } which gives a two-layer earth map tiling by

Lemma 2.10.

When f = 6k+4 (k ≥ 1), we have β = (2k+1)γ, α+ δ = (k+1)γ and the

AVC⊂ {αβδ,αδ3,α2βγk,α2γkδ2,βγk+1,γk+1δ2,αγ2k+1δ,γ
f
2 }.

We will discuss all possible γ-vertices in any tiling as follows. Whenever γ
f
2 is a vertex,

the tiling must be a two-layer earth map tiling by Lemma 2.10. If γ
f
2 never appears, we

have the following subcases.

6.1.1. Subcase α2βγk appears (γ
f
2 never appears)

By the AVC, β2 · · · is never a vertex. Then α2βγk has only two possible AAD. In

Figure 24, α2βγk = βγδ βαδ δαβ δγβ · · · determines T1,T2,T3,T4. Then β2δ1 · · · = α5β2δ1
determines T5. So β5 γ2 · · · = β5 γ2 α · · · , β5 γ2

βγδ · · · or β5 γ2
δγβ · · · . If β5 γ2 · · · =

β5 γ2 α · · · or β5 γ2
βγδ · · · , we get δ2δ3 · · ·= βδ2δ3 · · · , contradicting the AVC. So we have

β5 γ2 · · ·= β5 γ2
δγβ · · · which determines T6. Similarly, we can determine T7,T8. Then we

get δ2δ3δ6δ7 · · · , contradicting the AVC. Therefore, α2βγk = βγδ βαδ δαβ β · · · .
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γ α

β α δ β γ δ

δ α β

γ

γ δ

β α

γα

βαδβγδ

δαβ

γ

γδ

βα

1 2 3 4

5 6 7 8

Figure 24.

One possible AAD of α2βγk = βγδ βαδ δαβ δγβ · · · .

γ α α β γ γ

β δ β δ δ β
α δ γ

β δ β δ

α

α

β

δ

γ

α

α

βδ

γ

α

α

βδ

γ

γ
γ

γ

δ α

β

α δ

γ

β

γ

γ

δ

β

α β γ

δα

δ

α

β

γ

β

δ

α

β

γ

γ

δ

β

α α

δ

δ

βα γ

1 2 3 4

56

7

8

9

10

11

12

13

14 15

Figure 25.

One special tiling for {(6k−2)αβδ,2αδ3,2α2βγk,4βγk+1}.

The AAD α2βγ
f−4
6 = βγδ

1
βαδ

2
δαβ

3 β · · · determines T1,T2,T3 in Figure 25. Then

R( α α β · · ·) = γk and this γk determines k time zones (2k or f−4
3 tiles). We have β6γ2 · · ·=

β6 γ2
βαδ · · · , β6 γ2

βγδ · · · or β6 γ2
δγβ · · · . If β6γ2 · · ·= β6 γ2

βαδ · · · or β6 γ2
βγδ · · · ,

then we get βδ2δ3 · · · , contradicting the AVC. Therefore, β6γ2 · · · = β6 γ2
δγβ · · · . This

determines T7. Then δ2δ3δ7 · · · = α8δ2δ3δ7 determines T8. We have β6 γ2 γ7 · · · = α2βγk

or βγk+1. If β6 γ2 γ7 · · · = α2βγk = βα α β6 γ2
δγβ

7 · · · , this gives a vertex β2 · · · , contra-
dicting the AVC. Therefore, β6 γ2 γ7 · · ·= βγk+1 = β6 γ2

δγβ
7

δγβ · · · determines T9. Then

R(β6γ2 · · ·) = γk and this γk determines k time zones (2k or f−4
3 tiles). Similarly, we get

β8γ3 · · · = β8
δγβ

3
δγβ

10 · · · = βγk+1 which determines T10. Then R(β8γ3γ10 · · ·) = γk−1 and

this γk−1 determines k− 1 time zones (2k− 2 or f−10
3 tiles). Then β3δ10 · · · = α12β3δ10

determines T12. So only two tiles are undetermined. By checking all possibilities, it turns

out there are 3 different ways to arrange these last two tiles, and Figure 25 shows one

way with β11γ
f−4
6 · · · = βγ

f+2
6 . Then α9δ · · · = α9β14δ determines T14; α14β9γ

f−4
6 · · · =

α14α15β9γ
f−4
6 ,α11δ14δ · · ·= α11δ14δ15δ,β4γ

f−4
6 · · ·= β4γ

f−4
6 γ15,α4δ5 · · ·= α4β15δ5determine

T15. Centering T14,T15 in Figure 26, it becomes clear that they form a hexagon with three-

fold symmetry, and the other two ways are obtained by rotating the b-edge 120◦ and 240◦,

respectively.
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δδ

α α

β β

γ γ

αδ αδ

αδ

βγk

βγk βγk

α α β

β γ

γ δδ

β

γ

δ
α

β

γ

δ
α

δ
α

β γ

γ

β α

δ
α

δ

β

γ
β

α

δ

γ

γ

δ β

α

α

δ

β

γ

γ

β
α

δ

Figure 26.

Three special tilings for {(6k−2)αβδ,2αδ3,2α2βγk,4βγk+1}.

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

γ

β δ

α

α

δ β

γ

γ

β δ

α

α

δ β

γ

γ

β δ

α

α

δ β

γ

1 2 3 4

56 8 7

Figure 27.

T ((6k+2)αβδ,2βγk+1,2αγ2k+1δ).

6.1.2. Subcase αγ2k+1δ appears (α2βγk,γ
f
2 never appear)

If α2βγk,γ
f
2 never appear, Balance Lemma 2.6 implies the

AVC⊂ {αβδ,α2γkδ2,βγk+1,αγ2k+1δ}.

In Figure 27, we have the unique AAD αγ2k+1δ = βγδ
1

βαδ
2

αδγ3
βγδ

4 · · · which determines

T2,T3. Then R(α2δ3 · · ·) = γ2k+1 and this γ2k+1 determines 2k+1 time zones (4k+2 or
2f−2

3 tiles). Then β4
δγβ

3 · · ·= β4
δγβ

3
δγβ · · ·= βγk+1. Then R(β4γ3 · · ·) = γk and this γk

determines k time zones (2k or f−4
3 tiles). This tiling is exactly the second flip modification

in Figure 5.

6.1.3. Subcase α2γkδ2 appears (α2βγk,αγ2k+1δ,γ
f
2 never appear)

By the AVC, β2 · · · is never a vertex. Then α2γkδ2 has only two possible AAD. In Figure

28, α2γkδ2 = βαδ
1

δαβ
2

δγβ
3 · · · determines T1,T2,T3. Then β2δ3 · · ·= α4β2δ3 determines T4;

β4γ2 · · · = β4γ2γ5 · · · = βγk+1. By γ5, we get βδ1δ2 · · · or δ1δ2δ · · · , contradicting the AVC.

Therefore, α2γkδ2 = α δ · · · α δ · · · .
In Figure 29, α2γkδ2 = βαδ

1
αδγ2 · · · βγδ · · · βαδ

3
αδγ4 · · · βγδ · · · determines T1,T2,T3,T4.

Then R(α2δ2 · · ·) = γk determines k time zones (2k or f−4
3 tiles). Then R(βγ2 · · ·) =
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α α γ

β γ δ δ γ β δ α β

γ β α δ

γ

1 2 3

45

Figure 28.

One possible AAD of α2γkδ2 = α α · · · .

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

γ

β δ

α

α

δ β

γ

γ

β δ

α

α

δ β

γ

1 2 3 4

Figure 29.

Many different tilings for {6kαβδ,2α2γkδ2,4βγk+1}.

Table 8. All 10 subcases of {x1,x2}= {x3,x4}

x1(= x3 =
γ
2 ) x4(= x2 = 1− β

2 )

α− γ
2 δ− β

2 δ = 1

−α+ γ
2 1+ δ− β

2 δ = 0

−α+ γ
2 −δ+ β

2 α= 0

α+ γ
2 −1+ δ+ β

2 α= 0

1−α− γ
2 1− β

2 f = 4

x1 = x4 (&1− β
2 = γ

2 )

α− γ
2 = δ− β

2 f < 4

−α+ γ
2 = 1+ δ− β

2 α+ δ = 0

−α+ γ
2 =−δ+ β

2

α+ γ
2 =−1+ δ+ β

2 β+ δ > 2

1−α− γ
2 =−1+ δ+ β

2 f = 4

R(βγ4 · · ·) = γk and each of these two γk determines k time zones (2k or f−4
3 tiles). This

tiling can also be obtained by applying the second flip modification in Figure 5 two times.

If the AVC⊂ {αβδ,βγk+1}, there is no solution satisfying Balance Lemma 2.6.

In fact, one special tiling in Figure 29, as shown in the first picture of Figure 30, is related

to Figure 25 by a special flip modification along L3 in Figure 30.

All of the above tilings belong to the second infinite sequence in Table 2.

6.2 Case 2: {x1,x2} = {x3,x4}
We can fix x2 = 1− β

2 and x3 =
γ
2 in (6.1). Then either x1 = x3, x4 = x2 as listed in the

left of Table 8, or x1 = x4,x2 = x3 as listed in the right. All solutions are ruled out by the

fact listed in the other column of Table 8 except one solution −α+ γ
2 =−δ+ β

2 , 1−
β
2 = γ

2 .

By β+ γ = 2, we have β · · · = αxβδy. By #α+#δ ≥ 2#β = 2f and α �= δ, there is only

one solution satisfying Balance Lemma 2.6: {fαβδ,2γ f
2 }. Then α=−1

2 +
4
f ,β = 2− 4

f ,γ =
4
f , δ =

1
2 . By α > 0, we get f < 8 which forces f = 6. This solution admits only a two-layer

earth map tiling T (6αβδ,2γ3), and is Case (1,8,4,3)/6 in Table 1.
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6.3 Case 3: {x1,x2} = {1
6
,θ} and {x3,x4} = {θ

2
, 1
2
− θ

2
}, or {x3,x4} = {1

6
,θ}

and {x1,x2} = {θ
2
, 1
2
− θ

2
}, for some 0 < θ ≤ 1

2

In Table 9, we list each of these 5×8 = 40 options. It turns out 36 of these options are

dismissed by Lemma 2.1, Lemma 2.4 ′, and Lemma 6.2. We list the corresponding details

in the right-hand column. The remaining four options are summarized as follows:

1. α=−1
6 +

γ
2 , β = 2γ, δ =−1

2 +
3γ
2 , 8

15 < γ ≤ 2
3 ;

2. β = 2
3 +2α, γ = 1

3 , δ = 3α, 1
6 < α≤ 5

18 ;

3. α= 3γ
4 , β = 1+ γ

2 , δ = 2
3 +

γ
4 ,

2
15 < γ ≤ 2

5 ;

4. α= γ
4 , β = 1+ γ

2 , δ = 1
3 +

γ
4 ,

1
3 < γ ≤ 2

3 .

6.3.1. Subcase α=−1
6 +

γ
2 ,β = 2γ,δ =−1

2 +
3γ
2 , 8

15 < γ ≤ 2
3

By the angle values and Parity Lemma, only αβδ, βδ2 and γ3 can be degree 3 vertices.

If βδ2 is a vertex, we have α= 2
15 , β = 6

5 , γ = 3
5 , δ =

2
5 . Then β · · ·= βδ2, α3βδ or α6β. So

#α+#δ > 2#β = 2f , contradicting Balance Lemma 2.6. So αβδ or γ3 is a vertex. Both

cases imply α = 1
6 , β = 4

3 , γ = 2
3 , δ =

1
2 , and f = 6. This implies all vertices have degree

3. There is only one solution satisfying Balance Lemma 2.6: {6αβδ,2γ3}, and it gives a

two-layer earth map tiling by Lemma 2.10. This also gives Case (1,8,4,3)/6 in Table 1 (see

Remark 2.16).

6.3.2. Subcase β = 2
3 +2α,γ = 1

3 , δ = 3α, 16 < α≤ 5
18

By R(βδ · · ·) < 3α,β,δ, Parity Lemma and Lemma 6.2, we get αβδ is a vertex. This

implies α= 2
9 ,β = 10

9 ,γ = 1
3 , δ=

2
3 . Then β · · ·= αβδ,α4β. By #β =#α, we have β · · ·= αβδ.

There is only one solution satisfying Balance Lemma 2.6: {12αβδ,2γ6}, and it gives a two-

layer earth map tiling by Lemma 2.10. This is Case (2,10,3,6)/9 in Table 1.

6.3.3. Subcase α= 3γ
4 ,β = 1+ γ

2 , δ =
2
3 +

γ
4 ,

2
15 < γ ≤ 2

5

By R(βδ · · ·) < 3α,β,δ, Parity Lemma and Lemma 6.2, we get αβδ is a vertex. This

implies α = 1
6 ,β = 10

9 ,γ = 2
9 , δ =

13
18 . Then α+ δ = 4γ and β = 5γ. Then we get f = 18. By

the angle values and Parity Lemma, we get the

AVC⊂ {αβδ,α2γδ2,βγ4,α4βγ,αγ5δ,α5γ2δ,γ9,α4γ6,α8γ3,α12}.

By #δ =#α, we have α · · ·= δ · · ·= αβδ,α2γδ2 or αγ5δ. Therefore, the

AVC⊂ {αβδ,α2γδ2,βγ4,αγ5δ,γ9}.

We will discuss all possible vertices containing γ in any tiling as follows.

If γ9 appears, the tiling is a two-layer earth map tiling by Lemma 2.10. This is Case

(3,20,4,13)/18 in Table 1.

If αγ5δ appears (γ9 never appears), then αγ5δ = βαδ
1

αδγ2
βγδ

3 · · · determines

T1,T2, . . . ,T7 in Figure 31. Then β4δ3 · · · = α8β4δ3 determines T8. Similarly, we can

determine T9,T10,T11,T12. Then β3γ2 · · · = β3γ2γ13γ14γ15. By γ13, we get β2 · · · = β2δ13 · · ·
which determines T13. Similarly, we can determine T14,T15. Then β2δ13 · · ·= α16β2δ13 and

α2δ1 · · ·= α2β16δ1 determine T16. Similarly, we can determine T17,T18. This tiling is exactly

the second flip modification in Figure 5.
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Table 9. Case {x1,x2}= { 1
6
,θ} and {x3,x4}= { θ

2
, 1
2
− θ

2
} or {x3,x4}= { 1

6
,θ} and {x1,x2}= { θ

2
, 1
2
− θ

2
}, for

some 0< θ ≤ 1
2

θ 1
6

θ
2

1
2 −

θ
2 α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

3θ
2

5
3

θ 4
3
− θ

2
α+β+γ+ δ > 8

3

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

− θ
2

5
3

θ 1
3
− θ

2
α < 0

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

− θ
2

5
3

θ 1
3
+ θ

2
α < 0

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

θ
2

5
3

θ 2
3
− θ

2
β+ δ > 2

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

1− 3θ
2

5
3

θ 2
3
− θ

2
α+β+γ+ δ > 8

3

θ 1
6

1
2
− θ

2
θ
2

α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

1
2
+ θ

2
5
3

1−θ 5
6
+ θ

2
α+β+γ+ δ = 4> 8

3

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

1
2
− 3θ

2
5
3

1−θ − 1
6
+ θ

2
γ+2δ = 2

3

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

1
2
− 3θ

2
5
3

1−θ 5
6
− θ

2
β+ δ > 2

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

− 1
2
+ 3θ

2
5
3

1−θ 1
6
+ θ

2
α > 0⇒ θ > 1

3
but

β+ δ < 2⇒ θ < 1
3

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

1
2
− θ

2
5
3

1−θ 1
6
+ θ

2
α < δ ⇒ θ > 1

3
but

α+β+γ+ δ > 2⇒ θ < 1
3

1
6

θ θ
2

1
2
− θ

2
α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

1
6
+ θ

2
2−2θ θ 3

2
− 3θ

2
β > 1⇒ θ < 1

2
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≥ 1

2

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

− 1
6
+ θ

2
2−2θ θ 1

2
− 3θ

2
γ+2δ < 1

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

− 1
6
+ θ

2
2−2θ θ 1

2
− θ

2
γ+2δ = 1

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

1
6
− θ

2
2−2θ θ 1

2
+ θ

2
α > 0⇒ θ < 1

3
but

β+ δ < 2⇒ θ > 1
3

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

5
6
− θ

2
2−2θ θ 1

2
+ θ

2
α+β+γ+ δ > 8

3

1
6

θ 1
2
− θ

2
θ
2

α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

2
3
− θ

2
2−2θ 1−θ 1− θ

2
β > 1⇒ θ < 1

2
but

α+β+γ+ δ ≤ 8
3
⇒ θ ≥ 1

2

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

1
3
− θ

2
2−2θ 1−θ − θ

2
δ < 0

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

1
3
− θ

2
2−2θ 1−θ 1− 3θ

2

√
Subcase1

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

− 1
3
+ θ

2
2−2θ 1−θ 3θ

2
α < 0

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

1
3
+ θ

2
2−2θ 1−θ 3θ

2
α+β+γ+ δ > 8

3

θ
2

1
2
− θ

2
1
6

θ α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

1
6
+ θ

2
1+θ 1

3
1
2
+ 3θ

2

√
Subcase2

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

1
6
− θ

2
1+θ 1

3
− 1

2
+ 3θ

2
α > 0⇒ θ < 1

3
but

δ > 0⇒ θ > 1
3

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

1
6
− θ

2
1+θ 1

3
1
2
− θ

2
α+β+γ+ δ = 2

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

− 1
6
+ θ

2
1+θ 1

3
1
2
+ θ

2
α > 0⇒ θ > 1

3
but

β+ δ < 2⇒ θ < 1
3

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

5
6
− θ

2
1+θ 1

3
1
2
+ θ

2
α+β+γ+ δ > 3

8

θ
2

1
2
− θ

2
θ 1

6
α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

3θ
2

1+θ 2θ 2
3
+ θ

2

√
Subcase3

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

θ
2

1+θ 2θ − 1
3
+ θ

2
δ < 0

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

θ
2

1+θ 2θ 1
3
+ θ

2

√
Subcase4

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

− θ
2

1+θ 2θ 2
3
− θ

2
α < 0

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

1− 3θ
2

1+θ 2θ 2
3
− θ

2
α+β+γ+ δ > 8

3
1
2
− θ

2
θ
2

1
6

θ α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2

1− β
2

γ
2

δ− β
2

2
3
− θ

2
2−θ 1

3
1+ θ

2
δ > 1

−α+ γ
2

1− β
2

γ
2

1+ δ− β
2

− 1
3
+ θ

2
2−θ 1

3
θ
2

α+β+γ+ δ = 2

−α+ γ
2

1− β
2

γ
2

−δ+ β
2

− 1
3
+ θ

2
2−θ 1

3
1− 3θ

2
α < 0

α+ γ
2

1− β
2

γ
2

−1+ δ+ β
2

1
3
− θ

2
2−θ 1

3
3θ
2

β+ δ > 2

1−α− γ
2

1− β
2

γ
2

−1+ δ+ β
2

1
3
+ θ

2
2−θ 1

3
3θ
2

α+β+γ+ δ > 8
3

https://doi.org/10.1017/nmj.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.20


156 Y. LIAO AND E. WANG

Table 9. (Continued)

1
2 −

θ
2

θ
2 θ 1

6 α β γ δ γ+2δ > 1,β+ δ < 2 (Lemmas 2.4′ and 6.2)

α− γ
2 1− β

2
γ
2 δ− β

2
1
2 +

θ
2 2−θ 2θ 7

6 −
θ
2 α+β+γ+ δ > 8

3

−α+ γ
2 1− β

2
γ
2 1+ δ− β

2 − 1
2 +

3θ
2 2−θ 2θ 1

6 −
θ
2 γ+2δ < 1

−α+ γ
2 1− β

2
γ
2 −δ+ β

2 − 1
2 +

3θ
2 2−θ 2θ 5

6 −
θ
2 α > 0⇒ θ > 1

3 but
α+ · · ·+ δ ≤ 8

3 ⇒ θ ≤ 1
6

α+ γ
2 1− β

2
γ
2 −1+ δ+ β

2
1
2 −

3θ
2 2−θ 2θ 1

6 +
θ
2 α > 0⇒ θ < 1

3 but
β+ δ < 2⇒ θ > 1

3

1−α− γ
2 1− β

2
γ
2 −1+ δ+ β

2
1
2 −

θ
2 2−θ 2θ 1

6 +
θ
2 α+β+γ+ δ > 8

3

{(6k−2)αβδ,2α2γkδ2,4βγk+1}

δ

δ

αγ
f−4

6

αγ
f−4

6

αδ2

αδ2

βγ γ
f−4

6βγγ
f−4

6

αβ

αβ

L3

δ

δ

αγ
f−4

6

αγ
f−4

6

αδ2

αδ2

βγ γ
f−4

6βγγ
f−4

6

αβ

αβ

Figure 30.

A special flip modification ( f+2
3

tiles flipped).

γ

β δ

α
α

γ

δ β

γ

β δ

α
α

γ

δ β

γ

β δ

α
α

γ

δ β

γ

β δ

α
α

γ

δ β

γ

β δ

α
α

γ

δ β

α

δ
β

γ

δ

α

β

γ
γ

γ

β

α δ

δ α β

β α δ

δ α

β

β

α δ

δ

β

α

γ
γ
γ γ

1 2 3 4 5 6 7

8 9 10 11 12

13

14

15

16

17

18

Figure 31.

T (16αβδ,2βγ4,2αγ5δ).

If α2γδ2 appears (αγ5δ, γ9 never appear), it has only two possible AAD since there is no

vertex β2 · · · by β > 1. In the first picture of Figure 32, α2γδ2 = βαδ
1

δαβ
2

γδα3
αδγ4

βγδ
5

determines T1,T2,T3,T4,T5. Then β1δ5 · · · = α6β1δ5 determines T6. We have β6γ1 · · · =
β6γ1γ7γ

2. By γ7, we have β7δ1δ2 · · · or δ1δ2δ7 · · · , contradicting the AVC. In the second

picture of Figure 32, α2γδ2 = βαδ
1

αδγ2
βαδ

3
αδγ4

βγδ
5 determines T1,T2,T3,T4,T5. Then

β1δ5 · · ·= α6β1δ5 determines T6. Then β5γ4 · · ·= β5γ4γ7γ8γ9. By γ7, we get β4 · · ·= β4δ7 · · ·
which determines T7. Similarly, we can determine T8,T9. Then β4δ7 · · ·= α10β4δ7,α4δ3 · · ·=
α4β10δ3 determine T10. Similarly, we can determine T11, T12. After repeating the process
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Figure 32.

T (14αβδ,2α2γδ2,4βγ4).

Table 10. All 10 solutions induced from Table 3

(α,β,γ,δ) f

(5,32,18,11)/30 20 No degree 3 vertex

(5,32,6,23)/30 20
(1,42,4,17)/30 30

(1,17,9,4)/15 60 No degree 3 vertex

(1,21,5,8)/15 12

(α,β,γ,δ) f

(13,66,32,29)/60 12 No degree 3 vertex

(5,32,14,13)/30 30 β · · ·= βγ2 or α3βδ

(3,32,22,7)/30 30 No degree 3 vertex
(1,19,3,8)/15 60 No degree 3 vertex
(7,66,8,49)/60 24 No degree 3 vertex

one more time, we can determine T13, T14, . . . , T18. This tiling can also be obtained by

applying the second flip modification in Figure 5 two times.

If the AVC⊂ {αβδ,βγ4}, there is no solution satisfying Balance Lemma 2.6.

6.3.4. Subcase α= γ
4 ,β = 1+ γ

2 , δ =
1
3 +

γ
4 ,

1
3 < γ ≤ 2

3

By R(βδ · · ·) < 5α,β,δ, Parity Lemma and Lemma 6.2, we deduce that αβδ or α3βδ is

a vertex. If αβδ is a vertex, then α = 1
6 ,β = 4

3 ,γ = 2
3 , δ = 1

2 . There is only one solution

satisfying Balance Lemma 2.6: {6αβδ,2γ3}, and it gives a two-layer earth map tiling by

Lemma 2.10. This also gives Case (1,8,4,3)/6 in Table 1. If α3γδ is a vertex, then α =
1
9 ,β = 11

9 ,γ = 4
9 , δ =

4
9 , which does not admit any any degree 3 vertex, a contradiction.

6.4 Case 4: {x1,x2,x3,x4} are in Table 3.

There are 8× 5× 15 = 600 subcases to consider, but most are ruled out by violating

0<α,γ,δ < 1,1<β < 2, f being even integer or β+δ < 2. Only 10 subcases are left in Table

10. But six of them are ruled out by not admitting any degree 3 vertex. Four remaining

subcases are boxed.

6.4.1. Subcase (5,32,6,23)/30

By the angle values and Parity Lemma, we get β · · · = αβδ or α2βγ3. By #β =#α, we

get β · · · = αβδ, which determines a two-layer earth map tiling T (20αβδ,2γ10) in Table 1

by Lemma 2.10.

6.4.2. Subcase (1,42,4,17)/30

By the angle values and Parity Lemma, we get β · · ·=αβδ, α2βγ4, α6βγ3, α10βγ2, α14βγ

or α18β. By #β =#α, we get β · · · = αβδ, which determines a two-layer earth map tiling

T (30αβδ,2γ15) in Table 1 by Lemma 2.10.
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a b
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γ

γ

δ

α

δ

α

Figure 33.

β = 1 and the subcase α+ δ = 1.

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

γ

β δ

α

α

δ β

γ

γ

β δ

α

α

δ β

γ

T ((4k−2)αβδ,2αγkδ,2βγk)

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

α δ

β δ
α β γ

γ

γ

γ β α δ β

δ α

T ((4k−4)αβδ,2α2δ2,4βγk)

Figure 34.

Two flips of T (4kαβδ,2γ2k) if β = 1 and α+ δ = 1.

6.4.3. Subcase (1,21,5,8)/15

By the angle values and Parity Lemma, we get β · · · = αβδ or α4βγ. By #β = #α, we

get β · · ·= αβδ, which determines a two-layer earth map tiling T (12αβδ,2γ6) in Table 1 by

Lemma 2.10.

6.4.4. Subcase (5,32,14,13)/30

By the angle values and Parity Lemma, we get β · · ·= βγ2 or α3βδ. There is no solution

satisfying Balance Lemma 2.6.

§7. Degenerate case β = 1

If β = 1, the quadrilateral degenerates to an isosceles triangle in Figure 33.

By β = 1, we have α+ γ+ δ = (1+ 4
f ). By Lemmas 2.2 ′ and 2.4 ′, we get δ > α and

γ+2δ > 1. By a+ b > 2a, we get b > a. This implies γ > α. If α ≥ 1
2 , then R(β · · ·) = 1 ≤

2α< 2γ,2δ. So β · · ·= α2β, contradicting Balance Lemma. We conclude that α< 1
2 and α2β

is never a vertex.

If αβδ is a vertex, we have α+ δ = 1,β = 1,γ = 4
f , as shown in the second picture of

Figure 33. So a= 1
3 , and we get α= arctan(2tan 2π

f ) by the cosine law. This is equivalent to

cos(π2 −α− 2π
f )−3cos(π2 −α+ 2π

f ) = 0 by the product to sum formula. Then Theorem 6 of

Conway–Jones [3] implies that α is irrational for any even integer f ≥ 6. Thus, this belongs

to the irrational angle case in [11]. Such quadrilaterals always admit two-layer earth map

tilings for any even integer f ≥ 6, together with their flip modifications when f = 4k as

shown in Figure 34.
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If αβδ is not a vertex, then we will find all tilings by discussing all possible β-vertices. If

αxβ(x≥ 4) is a vertex, then its unique AAD αβ βα · · · at αxβ(x≥ 4) gives a vertex β2 · · · ,
contradicting β = 1. Similarly, αyβδ(y ≥ 5), αwβγ(w ≥ 4), αpγq(p≥ 2) and αzδ2(z ≥ 4) are

not vertices.

7.0.1 Subcase γ > δ

Then we have β > γ > δ > α. By γ+2δ > 1, we get γ > 1
3 . By the angle values and Parity

Lemma, we get β · · ·= βγ2,α2βγ,βδx(x≥ 2) or αpβδq(p≥ 1,p+ q ≥ 4).

If βγ2 is a vertex, then γ = 1
2 ,α+ δ > 1

2 ,
1
4 < δ < 1

2 . So we have β · · · = βγ2, α2βγ or

α3βδ. They all satisfy #α+#γ ≥ 2#β. If α2βγ or α3βδ is a vertex, then #α+#γ > 2#β,

contradicting Balance Lemma 2.6. If β · · ·= βγ2, then #γ >#β, again a contradiction.

Therefore, we have β · · · = α2βγ,βδx or αpβδq. They all satisfy #α+#δ ≥ 2#β = 2f .

There is only one solution satisfying Balance Lemma 2.6: {f
2βδ

2, f2α
2βγ,2γ

f
4 }. This implies

α = 1
2 −

4
f , γ = 8

f , δ =
1
2 . By 1 > γ > δ, we get 8 < f < 16, which do not satisfy (2.5) in

Lemma 2.13. We conclude that there is no tiling in this case.

7.0.2 Subcase γ < δ

Then we have β > δ > γ > α. By γ+2δ > 1, we get δ > 1
3 . By the angle values and Parity

Lemma, we get β · · ·= βδ2,α3βδ,βγx(x≥ 2) or αpβγq(p≥ 2, q ≥ 1).

If βδ2 is a vertex, then γ < δ = 1
2 , α+ γ > 1

2 . So β · · · = βδ2,α2βγ,α3βδ or βγy(y ≥ 3).

If α3βδ is a vertex, then β · · · = βδ2 or α3βδ. So #α+#δ > 2#β, contradicting Balance

Lemma 2.6. Similarly, βγy is not a vertex. So β · · ·= βδ2 or α2βγ. There is only one solution

satisfying Balance Lemma 2.6: {f
2βδ

2, f2α
2βγ,2γ

f
4 }. We get α = 1

2 −
4
f ,β = 1,γ = 8

f , δ =
1
2 .

By γ < δ, we get f > 16. By (2.5) in Lemma 2.13, we get f = 16, a contradiction.

If βδ2 is not a vertex, we have β · · ·=α3βδ,βγx or αpβγq. They all satisfy #α+#γ≥ 2#β.

If α3βδ or αpβγq is a vertex, then #α+#γ > 2#β, contradicting Balance Lemma 2.6. If

β · · ·= βγx, then #γ >#β, again a contradiction.

7.0.3 Subcase γ = δ

By γ+2δ > 1, we get γ = δ > 1
3 . By the angle values and Parity Lemma, we get β · · ·=

βγ2,βδ2,α2βγ or α3βδ. If βγ2 and βδ2 are not vertices, we have β · · · = α2βγ or α3βδ,

contradicting Balance Lemma 2.6. Therefore, βγ2 or βδ2 is a vertex. So we get γ = δ = 1
2 .

Then we get α= 4
f . By γ = δ = 1

2 , we get b= 2a= 1
2 . By the sine law sinα

sina = sinγ
sin2a , we have

α= 1
4 . This implies f = 16. By the angle values and Parity Lemma, we get the

AVC⊂ {βγ2,βδ2,α2βγ,γ4,γ2δ2, δ4,α2γδ2}.

If α2γδ2 is a vertex, it has only two possible AAD. In the left of Figure 35, α2γδ2 =
βαδ

1
δαβ

2
γδα3

αδγ4
βγδ

5 determines T1,T2, T3,T4,T5. We have β2γ3 · · · = βγ2 or α2βγ. If

β2γ3 · · · = α2βγ, we get the AAD αβ βγ · · · at α2βγ. This gives a vertex β2 · · · , contra-
dicting the AVC. Therefore, β2γ3 · · ·= γβα

2
δγβ

3
δγβ

6 determines T6. Then β3δ6 · · ·= β3δ6δ7
determines T7. Similarly, we can determine T8,T9. Then we get α3α4γ7γ8 · · · , contradicting
the AVC.

In the right of Figure 35, α2γδ2 = βαδ
1

αδγ2
βαδ

3 · · · determines T1,T2,T3. We have

β3γ2 · · · = βγ2 or α2βγ. If β3γ2 · · · = α2βγ, we get the AAD αβ βγ · · · at α2βγ. This

gives a vertex β2 · · · , contradicting the AVC. Therefore, β3γ2 · · ·= γβα
3

δγβ
2

δγβ
4 determines

T4. Then β2δ4 · · ·= β2δ4δ5 determines T5; γ5 α2 δ1 · · ·= γ5 α2 δ1 α6 δ7 determines T6,T7.
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Figure 35.

Two possible α2γδ2 and their AAD.
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Figure 36.

Two possible AAD for βγ2.

Similarly, we can determine T8. Then α4α5β8 · · ·= βαδ
4

δαβ
5

γβα
8

βγδ
9 determines T9. We get

β4γ3δ9 · · · , contradicting the AVC.

Therefore, α2γδ2 is not a vertex. This implies α · · ·= α2βγ.

If βγ2 is a vertex, it has only two possible AAD. In the first picture of Figure 36,

βγ2 = δγβ
1

δγβ
2

αβγ
3 determines T1,T2,T3. Then α3 β2 · · ·= δαβ

3
γβα

2
βγδ

5
βαδ

4 determines

T4,T5; α2 β5 · · · = δαβ
2

γβα
5

βγδ
6

βαδ
7 , β1δ2δ7 · · · = β1δ2δ7 determines T6,T7; β7δ6 · · · =

β7δ6δ8 determines T8. We get α1γ7γ8 · · · , contradicting the AVC.

In the second picture of Figure 36, βγ2 = βγδ
1

δγβ
2

αβγ
3 determines T1,T2,T3. Then

α3 β2 · · ·= δαβ
3

γβα
2

βγδ
5

βαδ
4 determines T4,T5; α2 β5 · · ·= δαβ

2
γβα

5
βγδ

6
βαδ

7 determines

T6,T7; δ1δ2δ7 · · · = δ1δ2δ7δ8 determines T8; β7δ6 · · · = β7δ6δ9 determines T9; γ7γ8γ9 · · · =
γ7γ8γ9γ10. We get β8β10 · · · or β9β10 · · · , contradicting the AVC.

Therefore, βγ2 is not a vertex.

This implies the AVC ⊂ {βδ2,α2βγ,γ4,γ2δ2, δ4}. There is only one solution satisfying

Balance Lemma 2.6: {8βδ2,8α2βγ,2γ4}. We have the AAD γ4 = βγδ
1

βγδ
2

βγδ
3

βγδ
4 which

determines T1,T2,T3, T4. Then β2δ1 · · ·= β2δ1δ5 determines T5. Similarly, we can determine

T6,T7,T8. Then α2α6γ5 · · · = βαδ
2

δαβ
6

γβα
9

βγδ
5 . So β5 · · · = α9β5 · · · or β5γ9 · · · , shown in

two pictures of Figure 37, respectively.

In the left of Figure 37, β5 · · · = α9β5 · · · determines T9. Then α3α7γ6 · · · =

α3α7β10γ6,β6γ9 · · ·= α10β6γ9 · · · determine T10. Similarly, we can determine T11,T12. Then

α9β5γ12 · · ·= α9α13β5γ12 determines T13. Similarly, we can determine T14,T15,T16.

In the right of Figure 37, β5 · · · = β5γ9 · · · determines T9. Then we get a different tiling

by similar deductions. The 3D pictures for these two tilings are shown in Figure 3. Their

authentic pictures of the stereo-graphic projection are shown in Figure 38. This is Case

(1,4,2,2)/4 in Table 1.
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Figure 37.

Two tilings for {8βδ2,8α2βγ,2γ4}.

Figure 38.

Stereo-graphic projection for two tilings of {8βδ2,8α2βγ,2γ4}.

Appendix: Exact and numerical geometric data

Angles (α,β,γ,δ) Edges

(6,3,4,3)/6 a= 1/2, b= 1/6

(1,8,4,3)/6 a= arccos(1/3)≈ 0.3918, b= 1

(12,4,6,2)/9 a= 1−arcsin

(
√
2√

cos( 2π
9 )(2−2cos( 4π

9 ))

)
≈ 0.5673

b= arccos

(√
3cot( 2π

9 )−cot( 2π
9 )sin(

π
9 )

1+cos(π
9 )

)
≈ 0.1741

(2,10,3,6)/9 a= arccos
(

4
√
3sin( 2π

9 )

3 −1
)
≈ 0.3390

b= arccos
(

8cos(π
9 )−4

√
3 sin( 4π

9 )−1

3

)
≈ 0.5324

(1,21,5,8)/15 a= arccos

(
2sin( π

15 )−
√
3 cos( 7π

15 )
sin( 7π

15 )

)
≈ 0.4241

b= arccos

(
51−90

√
3 sin( 2π

5 )−96
√
3 sin( 7π

15 )+88cos( 2π
15 )+184cos( π

15 )
1+6cos( 7π

15 )−2cos( 2π
15 )+6cos( 2π

5 )+2cos(π
5 )

)
≈ 0.7413

(4,9,5,17)/15 a= arccos

(
2sin( π

15 )−
√
3 cos( 7π

15 )
sin( 7π

15 )

)
≈ 0.4241

b= arccos

(
−3+9

√
5−5

√
3
√

10−2
√
5

−9−9
√
5+

√
3(

√
5+4)

√
10−2

√
5

)
≈ 0.1654

(9,28,10,23)/30 a= arccos

(
cot( π

10 )−2cot( π
10 )cos(

7π
30 )sin(

π
5 )

2sin(π
5 )sin(

7π
30 )

)
≈ 0.3353

b= arccos

(
30+2

√
5−

√
3(5+

√
5)
√

10−2
√
5

2−10
√
5+3

√
3(

√
5+1)

√
10−2

√
5

)
≈ 0.4159
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Angles (α,β,γ,δ) Edges

(3,16,10,41)/30 a= arccos

(√
3cos( 11π

30 )−2sin( π
10 )

sin( 11π
30 )

)
≈ 0.4698

b= arccos

(
−28+60

√
3 sin( 7π

15 )+61
√
3 sin( 4π

15 )+61
√
3 sin( π

15 )−61cos( 2π
15 )−120cos( π

15 )
cos( 2π

5 )+3cos( 2π
15 )

)
≈ 0.1461

(5,32,6,23)/30 a= arccos

(
cot( π

10 )−2cot( π
10 )cos(

7π
30 )sin(

π
5 )

2sin(π
5 )sin(

7π
30 )

)
≈ 0.3353

b= arccos

(
30+2

√
5−

√
3(5+

√
5)
√

10−2
√
5

2−10
√
5+3

√
3(

√
5+1)

√
10−2

√
5

)
≈ 0.4159

(1,16,6,43)/30 a= arccos

(√
3cos( 11π

30 )−2sin( π
10 )

sin( 11π
30 )

)
≈ 0.4698

b= arccos

(
−7

√
3+22

√
3 cos( π

15 )−24
√
3 cos( 2π

15 )+32sin( 7π
15 )−18sin( 2π

5 )
21

√
3−66

√
3 cos( π

15 )+80
√
3 cos( 2π

15 )−104sin( 7π
15 )+58sin( 2π

5 )

)
≈ 0.2730

(1,42,4,17)/30 a= arccos

(
2sin( π

15 )−
√
3 cos( 7π

15 )
sin( 7π

15 )

)
≈ 0.4241

b= arccos

( √
3(9

√
5+29)

√
10−2

√
5−58

√
5−70

(15
√
5+27)

√
3
√

10−2
√
5−46

√
5−146

)
≈ 0.5493

(3,20,4,13)/18 a= arccos
(

4
√
3sin( 2π

9 )

3 −1
)
≈ 0.3390

b= arccos

(
cos(π

9 )−1

2
√
3 sin( 4π

9 )−3cos(π
9 )−1

)
≈ 0.4527

(1,4,2,2)/4 a= 1/4, b= 1/2

(5,4,7,3)/9 a= arccos

(√
3cot( 2π

9 )−cot( 2π
9 )sin(

π
9 )

1+cos(π
9 )

)
≈ 0.1741

b= arccos

(
68

√
3+47

√
3cos(π

9 )+162sin( 2π
9 )+162sin(π

9 )
99

√
3+69

√
3cos(π

9 )+234sin( 2π
9 )+234sin(π

9 )

)
≈ 0.2584

(15,6,10,7)/18 a= arccos
(
4cos

(
π
9

)
−3

)
≈ 0.2258

b= arccos
(
28

√
3sin

(
4π
9

)
−36cos

(
π
9

)
−13

)
≈ 0.1183

( 4f ,1−
4
f ,

4
f ,1) a= arccos

(
cos( 4π

f )(1−cos( 4π
f ))

sin2( 4π
f )

)
, b= 1−2a

f = 10,a≈ 0.4241, b≈ 0.1517; limf→∞ a= limf→∞ b= 1/3

( 2f ,
4f−4
3f , 4f ,

2f−2
3f ) a= arccos

(√
3 sin( 8π

3f )−
√
3 sin( 4π

3f )−cos( 4π
3f )−cos( 8π

3f )+2
√
3 sin( 8π

3f )+
√
3 sin( 4π

3f )+cos( 4π
3f )−cos( 8π

3f )

)

b= arccos

(√
3 sin( 2π

3f )+4cos( 2π
f )−cos( 2π

3f )√
3 sin( 2π

3f )+3cos( 2π
3f )

)

+ arccos

(√
3(cos( 2π

f )−cos( 2π
3f )+

√
3 sin( 2π

3f ))
3sin( 2π

f )

)
f = 6,a≈ 0.3390, b≈ 0.8065; limf→∞ a= limf→∞ b= arccos(1/3)

( 2f ,
2f−4
3f , 4f ,

4f−2
3f ) a= arccos

(√
3 sin( 2π

3f )cos(
2π
f )+cos( 2π

3f )cos(
2π
f )−1

sin( 2π
f )(

√
3cos( 2π

3f )−sin( 2π
3f ))

)

φ= arccos

(
sin( 2π

f )−sin( (f+4)π
6f )sin( 4π

f )√
−2sin( 4π

f )sin( 2π
f )sin( (f+4)π

6f )−cos( 2π
f )

2−cos( 4π
f )

2
+2

)

b= arcsin

(
sinasin(− 2π

3 + 4π
3f +φ)

sin(− 4π
3 + 2π

3f +φ)

)
f = 10,a≈ 0.4698, b≈ 0.0898; limf→∞ a= limf→∞ b= arccos(1/3)
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