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TILINGS OF THE SPHERE BY CONGRUENT QUADRILATERALS
II: EDGE COMBINATION a3b WITH RATIONAL ANGLES

YIXI LIAO® anD ERXIAO WANG

Abstract. Edge-to-edge tilings of the sphere by congruent quadrilaterals are
completely classified in a series of three papers. This second one applies the
powerful tool of trigonometric Diophantine equations to classify the case of a>b-
quadrilaterals with all angles being rational degrees. There are 12 sporadic and
3 infinite sequences of quadrilaterals admitting the two-layer earth map tilings
together with their modifications, and 3 sporadic quadrilaterals admitting 4
exceptional tilings. Among them only three quadrilaterals are convex. New
interesting non-edge-to-edge triangular tilings are obtained as a byproduct.

81. Introduction

In an edge-to-edge tiling of the sphere by congruent quadrilaterals, the tile can only have
four edge arrangements [10], [14]: a®be,a?b?,a3b,a*. Sakano and Akama [13] classified tilings
for a?b? and a* via Ueno and Agaoka’s [15] list of triangular tilings. Tilings for a?bc are
classified in the first paper [10] of this series via the methods in [2], [16]-[18] developed
for pentagonal tilings. This second paper classifies tilings for a3b with all angles being
rational multiples of 7 (such quadrilaterals will be simply called rational hereafter). We
then classify tilings for ab with some irrational angle in the third paper [11] to complete
the classification.

Recall that Coolsaet [4] classified convex rational quadrilaterals with three equal sides
into 7 infinite classes and 29 sporadic examples. Akama and van Cleemput [1] initiated some
explorations of degree 3 vertex types and certain forbidden cases for type ab, assuming
also convexity.

An a®b-quadrilateral is given by Figure 1, with normal edge a, thick edge b, and angles
«,3,7,0 as indicated. The second picture is the mirror image or flip of the first. The
angles determine the orientation. Conversely, the edge lengths and the orientation also
determine the angles. So we may present the tiling by shading instead of indicating all
angles. Throughout this paper, an a®b-tiling is always an edge-to-edge tiling of the sphere
by congruent simple quadrilaterals in Figure 1, such that all vertices have degree > 3.

The first paper [10] of this series constructed a two-parameter family of two-layer earth
map tilings by a?be-quadrilaterals. The 3D picture in Figure 2 shows an example: One time
zone (consisting of two tiles) is outlined by the yellow line, and a cycle of 12 repeating time
zones cover the sphere. All a?-angles appear at the north/south poles. The 24 middle points
of all b-edges and c-edges distribute evenly on the equator with spacing 5.

We use o Bl9™8™ to mean a vertex having k copies of «, [ copies of 3, etc. The angle-
wise vertex combination(s), abbreviated as AVC, is the collection of all vertices in a tiling.
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Quadrilaterals with the edge combination ab.
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Figure 2.
a?be-quadrilateral and a two-layer earth map tiling T (240396, 2712).

Then the notation T'(24a33,27'?) means the tiling has exactly 24 vertices a3 and 2 vertices
7'2, and is uniquely determined by them. In general, there may exist several different tilings
with the same set of vertices.

The a®be-quadrilateral in Figure 2 reduces to the a®b-quadrilateral in Figure 1 when
¢ = a, and it is natural to expect one-parameter families of two-layer earth map a®b-tilings.
The following main theorem of this paper shows that most rational a®b-tilings are indeed

two-layer earth map tilings.

THEOREM. There are 15 sporadic and 3 infinite sequences of rational quadrilaterals
which admit a3b-tilings (Tables 1 and 2). Except the last three sporadic cases, they are all
two-layer earth map tilings T (fa S0, QW%) for some even integers f > 6, together with their
modifications when 3 is an integer multiple of 7. The total number Q(f) of quadrilaterals
in Tables 1 and 2 and their total number T (f) of different tilings are:

f 6,30 8 12 16 18 20 36 12k 12k+2  12k+4 12k+6 12k+8 12k+10
k

2,24 =1 >2 >3 >2 >0
o(fy 4 1 8 4 4 5 5 3 3 3 3 3 3
T(f) 4 1 12 14 6 13 8 6 k+6 k+11 3 k+10  k+8

In Tables 1 and 2, the angles and edge lengths are expressed in units of 7, and the
last column counts all vertices and also all different tilings when they are not uniquely

determined by the vertices. All exact and numerical geometric data are provided in the
2

expression, such as a ~ 0.3918, means an apSroximate value 0.39187 < a < 0.39197. We
put 7 back in any trigonometric functions to avoid confusion.

Four exceptional tilings for the last three sporadic quadrilaterals in Table 1 (f = 16,16,
36,36) are shown in Figure 3. The first three tilings have repeated time zones which could

be generalized combinatorially. But the quadrilaterals only exist for some particular f due

appendix. A rational fraction, such as o = means the precise value %”. A decimal

to geometric constraint. We remark that the last tiling (f = 36) is the only tiling, among
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Table 1. Fifteen sporadic quadrilaterals and their tilings

f (a,8,7,9),a,b Page All vertices and tilings
6 (6,3,4,3)/6,1/2,1/6 21 608,273
(1,8,4,3)/6,0.391,1 27, 27, 30,
(12,4,6,2)/9,0.567,0.174 18
12 (2,10,3,6)/9,0.339,0.532 27 12038,2~5
(1,21,5,8)/15,0.424,0.741 30
(4,9,5,17)/15,0.424,0.165 19
(9,28,10,23)/30,0.335,0.415 11
(3,16,10,41)/30,0.469,0.146 19
20 (5,32,6,23)/30,0.335,0.415 30 20036, 210
(1,16,6,43)/30,0.469,0.273 19
30 (1,42,4,17)/30,0.424,0.549 30 30 38,2+1°
18 (3,20,4,13)/18,0.339,0.452 29 18a34,2+°
29 16a36,26v*,20v°6
29 14a36,2a2~v62%,48~*
16 (1,4,2,2)/4,1/4,1/2 34 862,802 3v,2v%: 2 tilings
36 (5,4,7,3)/9,0.174,0.258 16 18672,6028,602 52, 6a46°,26°
36 (15,6,10,7)/18,0.225,0.118 12 1402 3,8a0%,10873, 632762

Table 2. Three infinite sequences of quadrilaterals and their tilings

(o, 8,7,0) All vertices and tilings Page
(%,1—%,%,1) VeveanlO:faﬁ(Sﬂv% 21
f=4k(k>3): (f—z)aﬁa,fzaﬁ—la,zm%ﬂ 21
(f —4)aps,28%4%, 4ayT715: 2 tilings 21
f=12: 606,283,602 21
(%,%}u,%,z?’;z) VeveanG:faﬂé,Qvg 23
f=6k+4(k>1): (f—2)aB56,28y% ,2ay"5 6 25
(f—4)apfs,2a ~I5 62,48y | 2421 tilings 25
(f —6)aps,2a6% 202875, 48y5 : 3 tilings 23
(%, 23;4,%, 43;2) Veven f>10: faﬁ5,2’y£ 18
f=6k+2(k> 2);,(5 - 2)aﬁfci£42a'y% 5,28y 18
(f —4)aBs,day s 6,26%y% : ka | tilings 18
(f —6)aB6,28%y,607 55 18

Figure 3.
Four exceptional tilings with f = 16,16,36,36.
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Figure 4.
Two very different tilings of Case (1,6,2,3)/5 in Table 2.

Figure 5.
Two basic flip modifications for certain two-layer earth map tilings.

all edge-to-edge triangular, quadrilateral, pentagonal tilings of the sphere, which has no
apparent relation with any platonic solids or earth map tilings.

1.1 Modifications of special two-layer earth map a2b-tilings

Once all angles are fixed, there are only finitely many combinations of them summing
to 2 or form a vertex in the tiling. Then one may apply brute-force trial-and-error to find
all tilings. However, the following hindsight can help us to understand most tilings in a
constructive way.

It turns out that a two-layer earth map a3b-tiling T'(fa 39, 2’)/%) admits some modification
if and only if § is an integer multiple of v. An authentic 3D picture for a two-layer earth
map tiling is shown in the left of Figure 4. The structure of any two-layer earth map tiling
is shown in Lemma 2.10. When = m~y < 1, m continuous time zones (2m tiles) form a
dumb-bell like hexagon enclosed by six a-edges in the first picture of Figure 5. Simply flip
along the middle vertical line L; (or equivalently along the middle horizontal line), and
one gets a new tiling of the sphere with different vertices. This is called the first basic flip
modification. When a+d = m~y < 1, we get the second basic flip modification in the right
of Figure 5.

A closer look at the inner and outer sides of this hexagon reveals that these two flips are
essentially the same: o+ & = my is equivalent to 8 = (% —m)~, and the sphere is divided by
the six a-edges into two complementary hexagons, either of which may be flipped. However,
it is more convenient to flip the smaller one so that we can flip several separated regions to
get more tilings. So we still use both basic flips in Figure 5 but assuming afterwards that
m < %. Case (3,20,4,13)/18 of Table 1 and some sub-sequence of each infinite sequence of
Table 2 admit two or three basic flips.

Figure 6 shows four different flips of the two-layer earth map tiling in the third case of
Table 2 with f = 14 tiles. Flipping once, we get the first picture. Flipping twice, we get the
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Figure 6.
Four flip modifications for Case (1,4,2,9)/7 in Table 2.

Figure 7.

The degenerate and subdivision ways to get triangular tilings.

second and third pictures when the space between two flips is 0 or 1 time zone. Flipping
three times, we get the fourth picture.

For Case (%, i%, %, %3;&) with f =6k+4(k > 1), there is another kind of modification
giving three more tilings, and we will explain it later using Figures 26 and 30. An authentic
3D picture for such a new tiling with f = 10 is shown in the right of Figure 4.

1.2 Non-edge-to-edge triangular tilings

When any angle of the quadrilateral is 1, it degenerates to a triangle as shown in the
first two pictures of Figure 7. Then the first infinite sequence and two sporadic cases with
f =6,16 produce many new examples of non-edge-to-edge triangular tilings.

The second infinite sequence of quadrilaterals satisfy v = 2a, 8 = 24 and can be subdivided
into three congruent triangles (observed first in [4]) as shown in the third picture of Figure
7, which also induce new non-edge-to-edge triangular tilings. Note that the sporadic case
with f =16 admits such subdivision too, but inducing only some edge-to-edge triangular
tiling.

These are new examples, comparing to early explorations of non-edge-to-edge triangular
tilings in [5]-[9].

1.3 Outline of the paper

The classification for a?be in [10] is mainly the analysis around a special tile. However,
a3b is handled by a new efficient method, different from all methods developed for triangular
and pentagonal tilings. While the cost is to solve some trigonometric Diophantine equations,
the idea behind this new method is very simple: too many linearly independent vertex types
in a tiling would force all angles to be rational, or the vertex types must be very limited.
This paper will identify all rational a®b-quadrilaterals suitable for tiling. Then the third of
our series (see [11]) handles the irrational angle case in a fast way due to strong constraints
on vertex types.

This paper is organized as follows: Section 2 includes general results from [10] and some
technical results specific to a3b. Section 3 looks for all possible tilings from Coolsaet’s list of
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convex rational a®b-quadrilaterals. Sections 4 and 6 solve some trigonometric Diophantine
equations to identify all concave rational a®b-quadrilaterals suitable for tiling, and then
find all of their tilings. Sections 5 and 7 handle two degenerate cases when the quadrilateral
becomes some triangle, and thus complete the classification.

§2. Basic facts

We will always express angles in units of 7 radians for simplicity. So the sum of all angles
at a vertex is 2. We present some basic facts and techniques in this section.

Let v,e, f be the numbers of vertices, edges, and tiles in a quadrilateral tiling. Let vy be
the number of vertices of degree k. Euler’s formula v — e+ f = 2 implies (see [10]):

F=6+> (k=3)vp=06+vs+2v5+3v6+..., (2.1)
k=4

U3:8—|—Z(k‘—4)’vk:8+U5+2U6—|—3U7—|—.... (22)
k=5

So f>6 and vz > 8.

LEMMA 2.1 [10, Lem. 2]. If all tiles in a tiling of the sphere by f quadrilaterals have the
same four angles o, 3,7,9, then

4
Oé+,3+’}’+($:2+?,

ranging in (2, %] In particular, no vertex contains all four angles.

LEMMA 2.2 [18, Lem. 3]. If the quadrilateral in Figure 1 is simple, then 5 <~y is
equivalent to o > 4.

LEMMA 2.3. If the quadrilateral in Figure 1 is simple, then =10 if and only if a = 1.
Furthermore, if it is convex with all angles < 1, then B> § is equivalent to a <-y, and B < §
s equivalent to a > 7.

Proof. If a =1, we get an isosceles triangle in the first picture of Figure 8, thus 5 = 9.
If =6 and a# 1, then ZCBD = /ZBDC implies ZABD = ZADB. So we get a = b,
a contradiction. When the quadrilateral is convex with all angles < 1, the line AC in the
second of Figure 8 is inside the quadrilateral, and divides c and yas y=60++" and a =0 +a’.
Then

a<vy = o <y <= a<b.

By the same reason, we have > <= a < b. Therefore, 5 > § is equivalent to o < 7.
Similarly 8 < ¢ is equivalent to a > ~. 0

LEMMA 2.4. If the quadrilateral in Figure 1 is simple, and 6 <1, then 2a+ 3 > 1 and
B+2y>1.

Proof. 1If all angles are < 1, then the quadrilateral is convex and the line AC' is inside
the quadrilateral in the second picture of Figure 8. Thus 6 < «,~. This implies 2o+ 5 >
20+3>1and f+2y>5+20 > 1.
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Figure 8.
Proof of Lemmas 2.3 and 2.4.
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Figure 9.

Different adjacent angle deductions of a?32.

If 3> 1 or both a,v > 1, then both inequalities certainly hold. If § =1, then a =~ by
Lemma 2.3, and 2a+ 8 > 1 as the angle sum of a triangle. So we only need to consider the
following two cases:

1. a,8,0 <1 and y>1.
2. B,y,0<1land a>1.

Case 1 is shown in the third picture of Figure 8, and it suffices to show 2a+5>1. By o, < 1
and AB=CD =a< 1, both B and C lie in the interior of the same hemisphere bounded
by the great circle QOAD. By f <1<+ and a > 6 (Lemma 2.2), the line AC is inside the
quadrilateral. Then « > 6 as in the second picture of Figure 8, and 2a+ 8 > 20+ 5 > 1.
Case 2 can be proved similarly. O

LEMMA 2.5 (Parity Lemma, [18, Lem. 10]). In an a3b-tiling, the total number of ab-
angles a and § at any vertex is even.

LEMMA 2.6 (Balance Lemma, [18, Lem. 11)). In a tiling of the sphere by f congruent
tiles, each angle of the tile appears f times in total. In an a3b-tiling, if either a?--- or 62---
s not a vertex, then any vertex either has no «,d8, or is of the form ad--- with no more
a,d in the remainder.

The very useful tool adjacent angle deduction (abbreviated as AAD) has been introduced
“” denote an a-edge and
denote a b-edge. Then we indicate the arrangements of angles and edges by denoting
the vertices as lalalBlBl. The notation can be reversed, such as lalalslBl = I515lalal; and it
can be rotated, such as lalalglsl = lalglglal = |5lalalsl. We also denote the first vertex in
Figure 9 as Sl3---, 18181---,al3---, I518lal-- -, and denote the consecutive angle segments
as BB, 18181, alB, 1813lal.

The pictures of Figure 9 have the same vertex lalal313l, but different arrangements of the
four tiles. To indicate the difference, we write *6# to mean \,p are the two angles adjacent
to @ in the quadrilateral. The first picture has the AAD [Pal1°a#1* 3717321, The second and
third have the AAD 1801908173l 37] and 18a’ 9Pl 37|37, respectively. The following
useful lemma is from [17, Lem. 10].

in [17, Sec. 2.5]. We give a quick review here using Figure 9. Let

ulav
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Figure 10. ;
A two-layer earth map tiling T'(fa80,272).

LEMMA 2.7. Suppose A and u are the two angles adjacent to 6 in a quadrilateral.

o If M-+ is not a vertez, then 0™ has the unique AAD [**IAgHIAgH] . ..
e If n is odd, then we have the AAD MO*I1*G*| at 6™.

LEMMA 2.8. There is no tiling of the sphere by congruent quadrilaterals with two angles

> 1.

Proof. If any two angles, say «, (3, are greater than or equal to 1, then o+ = ay®éY(z +
y>2), B =PyPd(p+q > 2). Given that #a = #0 = f, we deduce that #~+ #d > 4f,
which contradicts #~v+ #6 = 2f. 0

PROPOSITION 2.9. There is no tiling of the sphere by congruent symmetric a>b-
quadrilaterals (¢ =96 and B =y).

Proof. The convex case with all angles < 1 has been proved by Akama and van Cleemput
in [1]. If any angle is > 1, we get two angles > 1 by symmetry, then Lemma 2.8 applies. []

LEMMA 2.10. Assume 'y% is a vertex in an a3b-tiling. If B?--- or 6--- is not a vertex,
and B9--- = afd, then the tiling must be a two-layer earth map tiling T'(fapBé, 275) m
Figure 10. In particular, if all S-vertices are a9, then the tiling must be a two-layer earth
map tiling.

Proof. By Lemma 2.7, when 3%--- or 62--- is not a vertex, we have the unique AAD

’yg = |575|575|---. In Figure 10, v17927y3--- determines T%,75,73. Then B0 - = ayf201
determines Ty; 8302+ = a58302, 008405 - - - = 28405 determines Ts. The argument started
at ay P01 can be repeated at as83d2. More repetitions give the unique tiling of f tiles with
275 and fafd. 0

LEMMA 2.11. In an a®b-tiling, if o > 1, then either aB6 or a~d is a verter, and the
only other possible vertex with o or § must be ay'é or aBlS, respectively, for some 1> 2.

Proof. « > 1 implies a?--- is not a vertex. Then Balance Lemma 2.6 and Lemma 2.1
imply that any vertex with a or § must be of two types af'd or ay™d. If there exists only
one type, say a3'6, then [ = 1 by Balance Lemma 2.6. If there exist both types with I,m > 2,
then the only solution satisfying Balance Lemma 2.6 is: { {326, La25}. This implies 8 =1,
contradicting Proposition 2.9. Therefore, one of {,m must be 1, and the other must be > 2

since 3 # 7. 0

LEMMA 2.12. In an a3b-tiling, the a-edge and two diagonals are always < 1. If both
B,y <1, then b<1.
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Figure 11.
Proof of Lemmas 2.12 and 2.13.

Proof. By Lemma 2.8, there are just three types of simple quadrilaterals suitable for
tiling: convex with all angles < 1, & > 1, or 8> 1, as shown in Figure 11. It is clear that a < 1,
otherwise BC' and C'D would intersect at the antipodal of C, contradicting the simpleness.

For the first two types in Figure 11, both 8 <1 and v < 1, then a < 1 implies that both
A and D lie in the interior of the same hemisphere bounded by the great circle OBC.
Therefore, two diagonals and b-edge are all < 1.

For the last type in Figure 11, both o < 1 and 6 < 1, then a < 1 implies that both B and
C lie in the interior of the same hemisphere bounded by the great circle ()OAD. Therefore,
both diagonals are < 1. 1

LEMMA 2.13. For ab-quadrilaterals, the following equations (2.3) and (2.4) always
hold, and one of the equations (2.5) or (2.6) must hold.

cosb =cos® a(1 — cos B)(1 — cosy) — cos? asin Bsiny+ (2.3)
cosa(cos B+ cosy — cos Bcosy) +sin Bsin~y; '
cosd sinoz.+ co.s<52sin'y _ sin5+cosazsin5 (0,6 £1); (2.4)
2sindsin® 2sinasin g
sin(a — %) sing = sin%sin(é — g), (2.5)
or sin(a—i—%)sing = —sin%sin(é—i—g). (2.6)

Proof. The equation (2.3) always holds by the extended cosine law in [17, Lem. 11]. By
Lemma 2.8, there are just three types of simple quadrilaterals suitable for tiling: convex
with all angles <1, « > 1, or 8> 1, as shown in Figure 11.

For the first type, Lemma 2.12 implies that all edges and diagonals are < 1. Therefore,
all Coolsaet’s assumptions in [4, Th. 2.1] hold and the equation (2.4) was proved there,
which further implies either the equation (2.5) or (2.6).

It turns out Coolsaet’s proof works for the other two types too. If @ > 1, the sine law
sin(2-a) _ sinl¥=9) i¢ oquivalent to S2e = SMO=¥) ¢ 351 the sine law SL2=A) — sin(é)

siny sina . ) siny sina sinx sina
is equivalent to % = w Then every step to derive the equation (2.4) is exactly the
same as the first type, which further implies either the equation (2.5) or (2.6). U

We remark that Coolsaet also showed the equation (2.6) never holds for the first type,
but it seems difficult to dismiss (2.6) for the two concave types. It is amazing that all
rational solutions (rational multiples of 7) to (2.5) or (2.6) can be found via the algebra of
cyclotomic fields in Conway—Jones [3], as Coolsaet [4] did for convex a3b-quadrilaterals using
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Table 3. Nongeneric solutions in Proposition 2.1}

/21 8/21 1/14 3/14 4/15 7/15  3/10 11/30
/14 5/14  2/21 5/21 1/30 11/30 1/10 1/10
4/21 10/21 3/14 5/14 7/30 13/30 3/10 3/10
120 9/20  1/15 4/15 /15 4/15 1/10 1/6

2/15 7/15 3/20 7/20 17/15]

v a0 s o i 5 g
1/15  7/15 1/10 7/30 1/10 3/10 1/6 1/6
1/10 13/30 2/15 4/15

Myerson’s Theorem [12] for (2.5). We summarize the algorithm as the following easy-to-use
proposition.

PRrROPOSITION 2.14. All solutions of sinxysinxs = sinxgsinzy with rational angles 0 <
T1,T2,%3,Tq < % fall into the following four cases:

Case 1. T1T9 = T3L4 = 0.
Case 2. {z1,22} = {z3,24}.
Case 3. {x1,22} ={%,0} and {xs,24} = {4, 1 -4}, or {5, 24} ={1,0} and {21,202} =
g,%—g}, for some 0 <0 < %
Case 4. Up to reordering, all other solutions x1,x2,3,x4 satisfying 0 < x1 < x3 <xy4 <
To < % are in Table 5.
REMARK 2.15. We always have sin% sinf = sing sin(% — g) But it is a lengthy
computation to get Case 3 when we transform all angles in this formula to the range

(0,1/2] for all possible ranges of §. We omit the details here.

REMARK 2.16. After Case 1, we can assume all x; > 0. Case 2 and Case 3 have a
common solution {z1,22} = {3, 24} = {5, 3}-

REMARK 2.17. The 7/15 highlighted in a box in Table 3 was 8/15 in Myerson’s original
table, which is an obvious typo since 8/15 > 1/2. This typo remained in [4] but the results
there were nonetheless correct.

We will use lemma/proposition n’ to denote the use of lemma/proposition n after
interchanging a <+ 6 and 3 < 7.

By Lemma 2.8, the quadrilateral in our tiling can have at most one angle > 1. Up to the
symmetry of interchanging « <> d and [ <> 7, we need only to consider five possibilities:
convex (all angles < 1), concave (o> 1 or > 1), or degenerate (=1 or § = 1), which will
be discussed in the following sections, respectively.

§3. Convex case a,(3,7v,0 <1

Coolsaet [4, Th. 3.2] classified simple convex rational quadrilateral with three equal
sides into 29 sporadic examples in the first column of Table 4 and 7 infinite classes (up to
interchanging o <> d and (3 <> ):
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Table 4. All 29 sporadic convex rational a®b-quadrilaterals

(o, 8,7,0) f (o, 8,7,0) f
(29,16,18,23) /42 84 No degree 3 vertex (25,16,18,19)/30  20/3 f is not even
(31,16,18,23)/42 42 No degree 3 vertex (23,16,18,19)/30  15/2 f is not even
(35,16,30,17) /42 12 No degree 3 vertex (25,16,22,17)/30 6 No a---
(37,16,30,17)/42  21/2 f is not even (27,16,22,17)/30  60/11 £ is not even
(35,18,40,17)/42  84/13 f is not even (23,32,54,13) /60 120 No degree 3 vertex
(11,30,40,7) /42 42 No degree 3 vertex (31,32,54,19) /60 15 f is not even
(29,30,40,23)/42  84/19 f is not even l (17,16,26,11) /30 12 v =aly
(49,16,42,17) /60 60 No degree 3 vertex (31,36,50,23) /60 12 No degree 3 vertex
(53,16,42,17)/60 30  No degree 3 vertex (11,9,13,8)/15  60/11 f is not even
(21,8,26,7)/30 60 a---=aBf* | (19,18,28,13)/30  20/3 f is not even
(49,18,56,17) /60 12 No degree 3 vertex (25,18,28,17)/30  30/7 f is not even
] (23,10,28,9)/30 12 [ (19,42,56,13) /60 24 No degree 3 vertex
(11,7,9,8)/15 12 No degree 3 vertex (37,42,56,29)/60 60/11 f is not even
(13,7,9,8)/15 60/7 f is not even (23,22,28,19)/30 15/4 f is not even
(17,14,28,9)/30 15 f is not even
a=- and f=4¢ (and all four sides are equal);
a=4§ and f=1;
a=7 andézg, a,(5<l‘
a=% B=~%andd=2-1, With%<’7<%,

a:%+%’5:27and5_2+ with % <7<
a:%+%75:2yand5—%+37—304w1th <7<

o= 438=2-2yando=3-% with } <y<3.

N Ot W=

In fact, Coolsaet assumed additionally that all edges and diagonals are < 1, and our Lemma
2.12 shows that such assumptions are satisfied automatically for a®b-tilings. Cases 1 and 2
are immediately dismissed due to a # b and Proposition 2.9. In this section, we will find all
possible tilings from Table 4 and from five remaining cases.

3.1 Sporadic cases in Table 4

A quadrilateral is qualified to tile the sphere only if its angle sum is 2+ % for some even
integer f > 6, every angle can be extended to a vertex, and there must also exist degree 3
vertices by the equation (2.2). These basic criteria dismiss most sporadic examples in Table
4, as the details showing in the second and third columns. There are only three subcases
left. But (21,8,26,7)/30 implies a--- = a6 and (17,16,26,11)/30 implies 7y - -- = a2+, both
contradicting Balance Lemma 2.6. So only (23,10,28,9)/30 admits a two-layer earth map
tiling T'(12av6,2/3%). In fact the only other possible vertex is a36%, but Lemma 2.10 " shows
that there is no other tilings. This is f =12, (9,28,10,23)/30 in Table 1 after interchanging
a0 and 8+ 7.

3.2 Case 3. a=7 6_2,a6<

By Lemma 2.1, we get <a+d<3g and % 3<B+7< 16 . Without loss of generahty,
let6>’y So we get 6> 7aund(5> byLemma 2.3. By5<17 Wegetfy> ,o > = ,and
§< i Let R(B%-) denote the remainder or “.--” part of the angles at this Vertex 52
By R(ﬁ2 ) < B =26,7 =2a and Parity Lemma, there is no 32--- vertex. Similarly, there
is no 30%--- vertex. By a < R(B8§---) < 3a and Parity Lemma, there is no 3§--- vertex. By
R(B--+) <37, v=2a and Parity Lemma, we get 3--- = 372,023y or a*3. They all satisfy
Ha+#y > 248. If o?By or o is a vertex, then #a + #v > 2473, contradicting Balance
Lemma 2.6. If B--- = Bv2, then #~ > #/3, again a contradiction. We conclude that there is
no tiling in this case.

\OONM-A
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Figure 12.
T (1402 3,806, 108~?,65%v52).

3.3 Case4 a_?’—",ﬂ 15—f—§,§<~/<7

We have 3 7<a<l1and 3 < d <15 By R(v---) <2a, 0 < R(ayd---) < 3,7,26 and
Parity Lemma there is no a’y . vertex By 0 < R(y3-+) < 2B,7,20 and Parity Lemma,
we get y = y3. By 28 < R(y?--+) < 33,35, 0 < R(y?62---) < B and Parity Lemma,
we get v2--- = 373, By R(762%---) = 25 < 20,48 < R(7y--+) < 5 and Parity Lemma, We get
Y= 573 or 3%2+62%. By Balance Lemma, 372 is a vertex. Therefore, a = %,ﬁ 3,7 2 and
§ = -=. Then we get f = 36. By Parity Lemma, we get the AVC C {a?3,ad®, 33 62752 3%},

If 56 is a vertex, we have the AAD 36 =[7g|*B7|... or |Yp*[73%].... This gives a vertex
ala--- or ary---, contradicting the AVC. Then there is only one solution satisfying Balance
Lemma 2.6: {14a23,8a63,103v3,6/3%v5%}.

In Figure 12, we have the unique AAD [2v62 = |7(5°‘|°‘57|“/53 9 |a6g| which deter-
mines 11,75, 13,74, Ts. Then asfs--- = o determines Tg; asafls- - = 0425 determines T7;
10407 -+ = d® determines Tk; a853~-- = ad? determines Tg,Tlo. We have v9v3710:-- =
Ivolvsly10l7 B 1 or Iyalyslyiol® 67, ]. We might as well take voy3710 - - = Y2 ly3ly10l7 8% | which
determines Tll- Slmllarly, we can determine Tlg,Tlg,T14,T15,T16,T17 and Tlg. We have
Broyiimiz - = Iv1lBiolyisPydg!l or |711|510|713|57f9|. We might as well take 819711713+ =
Iv111B1017131%99¢ ! which determines Tyg. Similarly, we can determine Tho, 751, ..., 3. For
other choices of y2v3710 - -+ and B1py11713 - - -, we still get this tiling or its equivalent opposite.
This is Case (15,6,10,7)/18 in Table 1.

3.4 Case 5. a:%—l—%,,@:%y,é— -|—2,3 <’)/< 5

We have 3§ <a<y<gjand 2<d<f<1 By R($?) < 2, 3,27, and Parity Lemma,
we get B2--- = 3%y, By R(afd---) < all angles, 0 < R(a?3---) < 20,27, 2y < R(B--+) <
47,26 and Parity Lemma, we get 3--- = af3d, 32v,a?By or 3v3. However, a4, 3%y or 37>
implies f =9 or 15, contradicting the fact that f is even. So we have only 3--- = a3y with
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Table 5. The AVC for a = 5 — %,ﬁ =14 %,7:
5_ 25 1,3

6 f 4 f

f Vertex

All B2, a3

20 aff%6

24 ﬂ4, ﬁ’752, 554

36 a2B?, afs?, 362, 8°
60 53,},, 657 62647 754
84 aB35, ad®

132 8452, 386

f =12. But this again contradicts Balance Lemma 2.6. We conclude that there is no tiling
in this case.

35 Case6.a=2+2,8=2v,0=1+32 =30, <y<13

We have 1% <a< %,% <p< % and 1% <§<1.By R(6?--) < all angles, there is no 62 --
vertex. By 0 < R(a35---) < all angles, 0 < R(a36---) < all angles, 2y < R(ad--+) < 37 and
Parity Lemma, there is no d--- vertex, a contradiction. We conclude that there is no tiling

in this case.

3.6 Case 7. a:%+%,,@:2—27,6:%—%’,%< <%
By Lemma 2.1, we have a:%—%,ﬁ:%—{—%,v:%—% and 52%—}—% So we have

L <a<y<fand i<i<p<l
If B >+, then we get 6 < f < 12. Sowehave%<a<%<6<%and%<’y<%<6<l.
By R(8?--+) < 2a,3,7,26 and Parity Lemma, there is no 42--- vertex. By 0 < R(a?3--+) <
all angles, R(af3d---) < all angles, R(36%---) < all angles, R(3--+) = 27y and Parity Lemma,
we get 3--- = 38,372 or $6%. Suppose o35 or 352 is a vertex. Then we get f = % or @,
a contradiction. So we have 3--- = 3v2. But this again contradicts Balance Lemma 2.6.
Therefore, 5 < -y, then we get f > 12. Sowehave%<5<%<a<% and%<5<§<'y<%.
If o*Bly™™ is a vertex, then we have

(= Dkt G+ 0+ (G- Dm+ G+ Pn=2

i

We also have o > %,5 > %,’y > %,5 > %. This implies k < 3,1 <5,m < 2,n < 7. We substitute
the finitely many combinations of exponents satisfying the bounds into the equation above
and solve for f. By the angle values and Parity Lemma, we get all possible AVC in Table
5. Its first row “f = all” means that the angle combinations can be vertices for any f; all
other rows are mutually exclusive. Note that the AVC C {8v%,a35} in the first row admits
no solution satisfying Balance Lemma 2.6. All possible tilings based on the other subcases
are deduced as follows.

3.6.1. Table 5, f = 20,132

For f =20, the AVC C {B72,035,a%5} admits no solution satisfying Balance Lemma
2.6.
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Figure 13.
f =24, the AVC'={B+?,a°5,5*,875?} admit no tiling.

For f =132, there is no ay--- vertex. Then $§¢ cannot be a vertex, since its AAD gives
ay-+-. So we get the AVC C {82,035, 345%}, which admits no solution satisfying Balance
Lemma 2.6.

3.6.2. Table 5, f =24

By Table 5, there is no ay--- vertex. Then $d* cannot be a vertex, since its AAD gives
ay-+-. So we get the AVC C {872,036, 8%, 8762}, which admits a unique solution satisfying
Balance Lemma 2.6: {8372,8a36,244,83v2%}.

In Figure 13, by the AVC, we know a--- is not a vertex. So we have the AAD B* =
l*sY 17 351> 3717 3¢ 1. This determines Ty,T%,T5,Ty. Then 172+ = B57172 determines Tj.
Then a50s - - - = asagards determines Tg,T7. Then 567 - - - = Boy5010s determines Tg. By By,
we have agyg:-- or agdsdg-- -, contradicting the AVC.

3.6.3. Table 5, f =60

By Table 5, there is no a~y--- vertex. Then $° cannot be a vertex, since its AAD gives
ay---. So we get the AVC C {B+%,a35,8%y,70*,8264}. By Lemma 2.7, the AAD of 325*
must be 1267|7621 - ... This gives a vertex [P4%19~4P].... By the AVC, we have |#49[°48]... =
|8~4919~B1* 37|, This gives a vertex af---, contradicting the AVC. Therefore, 326* is not a
vertex. Similarly, 7§ is not a vertex. Then §--- = o34, contradicting Balance Lemma, 2.6.

3.6.4. Table 5, f=284

By Table 5, we get the AVC C {$7?,a35,a335,a6°}, which admits a unique solution
satisfying Balance Lemma 2.6: {423v2,20035,14a3%5,10a6°}. Since ary--- is not a vertex,
we have the AAD aB36 = 18016717 321* 377 3]. This gives a vertex [°4518~%].... By the
AVC, we have 19481849]... = 19~818+0173| This gives a vertex vd---, contradicting the
AVC.

3.6.5. Table 5, f =236

By Table 5, there is no a7y--- vertex. Then 3282 cannot be a vertex, since its AAD
gives a7y---. So we get the AVC C {B72,035,a%6%, (62,6}, and a = g,ﬁ = %,'y = g,é =
%. If 6% is not a vertex, there is only one solution satisfying Balance Lemma 2.6:
{188+2,6a36,4a232,10a35°}.

In Figure 14, we have the unique AAD o368 = laq laslasldsl which determines Ty, 1o, 75, Ty.

Then B37y4--- = B3747Y5- By 75, 73+ = B573--+ determines T5. Then 3135+ = agar 152
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Figure 15.
Case asaz -+ = a2ﬂ2 admits no tiling.
determines Tg,17; B7v1--- = Bry1ys. By s, V7 - = Bsyr--- determines Tg. Then
40108 -+ = 4310010809 determines Ty. By B1o, 7o+ = Bi179710 determines Tio. By i1,
510"' = 0511510"' determines T11. Then 01105455"' = a105455612513 determines T12,T13;
11013010+ = a11013014010 determines Tiy; Bey2 - = Bevey1s- By 715, Y60 = Bis¥e -
determines Tis. Then 6203015+ = 165170203015 determines Tig; Bsys--- = Bs5Y3V17
determines Th7; asai2017--- = asaigongdiy determines Thg; Bi2fig -+ = a9 B12518
determines Tig; B20712713° - = B20v12713 determines Tpo. Then we get [13514720- -,

contradicting the AVC.

Therefore, §° is a vertex. We have the unique AAD for 6% = 18,1651 -- which determines
Ty, T5, T3, Ty, Ts, Ts. Then 1792 - - - = Bry1y2 determines Tx. So asarz - -- = o232 or a8, shown
in Figures 15 and 16, respectively.

In Figure 15, asas--- = asaszfsfBe. Then Poyr--- = Boyryvs determines Tg. By [,
ag - = agag--- determines Ty. Then ~37y4--- = B1o7Y3V4,53Y9 - = B3Y9y10 determine
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Figure 16.

Case azaz--- = > admits T(18672,60>6,60°3%,60,35%,25°).

Figure 17.
a’b-quadrilateral with o > 1,,v,8 < 1.

Tio; laslagl--- = asagai2dyy  determines Tip,Th2; Biovii- = Bieyiins. By s,
Yig--- = P13712--- determines Ti3. We have a19B4--- = B2 or aB83. If a10B4--- = a3,
then we get agasvy---, contradicting the AVC. Therefore, ay084--+ = a191484515. This
determines Ti4. By fBi5, auas--- = agasaysdig determines Tis,T1g; 09010012014+ =
09010012014017018 determines Ti7,T1s; Sravis - = Bra¥isy1ie, N4Y1s - = B19714718
determine T1g; 16015019+ - = 16015019020 - - - determines Tog; 190 B1s -+ = 19020318521
By 621, Q170018 = 041706180421(522 determines Tgl,TQQ. Then we get 0613617’)/22"',
contradicting the AVC.

In Figure 16, agas--- = a35. We have Boyr--- = Boyrys. By 78, oz« = asaizagds
determines Tg,Tg. Then 53,89"' = aloallﬁgﬁg determines T107T11; 611")/9”' = 611"}/9"}/12.
By Y12, Y11 = ,812’)/11'-- determines T12. Then 05869512"‘ = 048,314(59512(513 determines
Ti3. By B4, 13-+ = 15713714 determines Ti4. By Bis, 014+ = 15014+ determines
T15. We have 120013+ — 043(5 or QQBQ. If 19013+ — 053(5, then we get /813715ﬁ"'
or 127118+, contradicting the AVC. Therefore, ajsais--- = a?%. Then Bi3715--- =
513’715’7167B12711"' = B12711’717 determine T16,T17. The argument started at T7 can be
repeated at Tip. Two repetitions give a unique tiling T(18372,6035,60%32,60/353,248°).
This is Case (5,4,7,3)/9 in Table 1.

84. Concave case a > 1

An a3b-quadrilateral with o > 1,3,v,d < 1 is shown in Figure 17, where ¢ = ZACB =
/BAC and v = /BDC = ZCBD. We first prove some basic facts. Recall that Lemma 2.4
implies 5+ 2y > 1.

LEMMA 4.1. In an a®b-tiling with o > 1, we have a >b, a >1>~v> B> 6, v >% and
§<3.
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Proof. a>1>~ implies ZCAD =a—¢p >~v—¢=LACD. So a >b. Then LZABD <
/ADB. By Z/CBD = /BDC, we get 8> 9. By Lemma 2.2, we have § <. By Lemma 2.4,

we have 427 >1,s0 v > %

Ifé> %, by a >1>~> >4, the sum of a with any two angles is > 2 and there is no

«--- vertex, a contradiction.

LEMMA 4.2. In an a3b-tiling with o > 1, if o35 appears, then v = %

Proof. By a+p+6 =2, Weget
f<12. Then f=6,8,10 and v= %

1
3 2

0

1

) or

[SIN]

= % with f > 6 being even. By Lemma 4.1, v > % So
or % O

To find rational a%—quadrilaterals by solving (2.5) or (2.6) via Proposition 2.14, we

7575

have to transform o — 2D 3

4.1, Wehavef<a

1
<2 O<§,§<§,

—5—% to the range [0,1]. For (2.5), by Lemma
-3 < 5—§ < 1. For (2.6), by Lemma 4.1, we

have 0 < 2,2 %,0<6+§ < 1, which implies sin(a+g) <0.By 1<a+3 <3, we get
1 <a+73 <2. Thus, we have to consider the following seven choices:
(1-at3.5.3.0-5)
(-1+a=34.3,-5+4),
(2-a+3.3.3,-0+)
{z1,29,23,24} = {~1+a+3,2,2,6+ 5}, (4.1)
{(~1+a+172,5,2,1-6-5},
C-o-3.239+9)
2-a=3,5.3.1-9-5}

We will match these choices with four cases of solutions in Proposition 2.14 as follows.

4.1 Case 1: x1x3 =x314 =0

B
By -4 <dé-5<i i<a-1

is a vertex.

<2and 0< (5—}—% < 1, the only solution of 129 =z314 =0
for (4.1) comes from a—3 =1 and § — 5

=0. By Lemma 2.11, we know that a8d or ayd

If a0 is a vertex, we get three subcases by Lemma 4.2:

4 4 2
1. O[—g, —§,’Y—§5—
_ 5 I | _ 1
2. a—z, —’7—5,5—1
6 8 2 4
3. a=5,B=17=50= 15

2 (Case (12,4,6,2)/9 in Table 1).

For the second and third subcases, we have § > =, contradicting 8 < v in Lemma 4.1.

In the first subcase, we have a---

= afid or ad>. By #a = #6, we get -+

= afd. There is

only one solution satisfying Balance Lemma 2.6: {636,272}, and it gives a two-layer earth

map tiling by Lemma 2.10.

If avd is a Vertex then we get o = 3 f,ﬁ f,w = 34f,6 = <. By Lemma 4.1,
% b <~ =%— 2. This implies f > 8. By the angle Values Parity Lemma and Lemma
2.11, we get the

fi4 f
AVC C {as, By? aﬁ65ﬂ ¥ 5 ’752}-
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Figure 18.

Tilings by flipping once, or twice with different spacing.

When f =6k(k>2) or 6k+4(k > 1), we have the AVC C {a’yé,ﬁ’yg,ﬁg}, and the only
solution satisfying Balance Lemma 2.6 is {fa~d,2/3 %} which gives a two-layer earth map
tiling by Lemma 2.10 ".

When f=6k+2 (k>2), we have y = kB, a+0 = (2k+ 1) and the

AVC C {an5, 877,085, BF142, g24H1y B3Y,

By the AVC, we know o?---,6%---, and ald--- are not vertices. So we have the unique
AAD for any B%yY = B0l 1849173, We will discuss all possible -vertices in any
tiling as follows.

Ifg % appears, the tiling is a two-layer earth map tiling by Lemma 2.10 ’.

If B?k+1y appears (55 never appears), then R(vyy---) = 2**! in the first picture of
Figure 18 and this B2**! determines 2k + 1 time zones (4k + 2 or 2fT+2 tiles). Then
R(a184--+) = % and this ¥ determines & time zones (2k or % tiles). We obtain a unique
tiling T(6kayd,2a8%5,23%%T17) which can be viewed as the first flip modification of the
two-layer earth map tilings.

If g*¥*142 appears (82k*1y, 8 % never appear), the tilings are shown in the second picture
of Figure 18. Depending on the space between two flips, there are L%J or L%J different
tilings with the same set of vertices.

If 3y appears (6’”1'72,52’”'17,6% never appear), the tiling is shown in Figure 19. We
obtain a unique tiling T'((6k —4)ayd,23v3,6a4%6) which can be obtained by applying the
first flip modification three times.

All of the above tilings belong to the third infinite sequence in Table 2 after interchanging
a4+ § and B < 7y to keep consistent the AVC' for two-layer earth map tilings.

If the AVC C {av6,aB%5}, there is no solution satisfying Balance Lemma 2.6.

4.2 Case 2: {x1,x2} = {x3,24}

After an easy check of the seven choices in (4.1), only the last one might hold: 2 —a —
and g =1-6— g Then we get a+58+7+d=3> %, a contradiction.
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Figure 19.

T((6k —4)ay6,28~%,6a8%5) obtained by flipping three times.

4.3 Case 3: {x1,x2} = {%,0} and {x3,T4} = {g,% — g}, or {xs, x4} = {%,9}

and {x1,z2} = g,% — g}, for some 0 < 0 < %
In the seven choices of (4.1), if 3 = §, then 7 = %, contradicting Lemma 4.1; if % = g and

g =0, then v < B, contradicting Lemma 4.1. Therefore, we only have 5 x 7= 35 options to
consider. It turns out 27 of these options are dismissed by Lemmas 2.1 and 4.1. We list the
corresponding details in the right-hand column of Table 6. The remaining eight options are
summarized as the following six subcases:

1.a—1+§, B=3, b=%2-1, i1<vy<?i
2. a=2-3, B=3, b=1-1, 1<v<¥
3. a=%, B=1 §=2-2, Z<y<1;
4. a=2+1, B=2-2y, §=3-3, S<y<1
soa=ted p=3 0 s=14d Togsh
6. a=3-% B=3 0=5-%1 3<7<}

For the first, second, and sixth subcases, we have 3,7 < R(ad---); for the third, fourth,
and fifth subcases, we have f < R(ad---) < 7. So neither af8J nor ayd is a vertex,
contradicting Lemma 2.11.

4.4 Case 4: {x1,z2,3,24} are in Table 3.

There are 8 x 7 x 15 = 840 subcases to consider, but most are ruled out by violating
2>a>1>y>pB>6>0,v> %, 0 < % or f being even integer. Such computations can
be carried out efficiently by any spreadsheet program. Only 29 subcases are left in Table
7. But 26 of them are ruled out by Lemma 2.11: there is neither a3§ nor a~yd. There are
only three subcases left: (17,5,9,4)/15, (41,10,16,3)/30, (43,6,16,1)/30. They all imply
«a--- = avd by the angle values and Parity Lemma. There is only one solution satisfying
Balance Lemma 2.6: {fav0,23 %}, and it gives three two-layer earth map tilings in Table 1
after interchanging « <» ¢ and S <> v by Lemma 2.10.

§5. Degenerate case a =1

If @ =1, the quadrilateral degenerates to an isosceles triangle in Figure 20.
Then g =4, and Lemma 2.2 implies 8 < . By Lemma 2.11, exactly one of a8d or ayd
must be a vertex in any spherical tiling by congruent such quadrilaterals.
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Table 6. Case {x1,22} ={%,0} and {xs,24} ={5,3 =5} or {ws, 24} ={},0} and {21,322} ={5,5 -4}, for
some 0 < 0 < %

0 é g %—g « B y ) a>1>~>>6 (Lemma 4.1)
[ 1 2 [
1—o¢+g7 g % 5—%6 ~2 3 6 5Ta a<l
—1+a—7§ g 2 —5"!‘% 1+? % 0 —;-‘rg 6<0
27Oé+§ g b *6+§ — 3 3 [% *§+§ 5<0
—1+a+73 3 7 5+§ 1+95 : 0 i-¢ v/ Subcase 1
~1+a+7 7 7 1—552 1+3% % 0 %+§ B<s
27047% g % 6+§ﬁ 2 2 3 0 i3 v/ Subcase 2
2—a—1 g 2 1-6-58 ] 2-3¢ L 9 148 B<é
2 2 2 2 2 3 3 2
0 é %—g % e B vy 0 a>1>vy>F>0 (Lemma 4.1)
B B 3 _ 30 1 1,0
—lta=3 3 2 otz | 272 3 - 62 >0=0< 3 bu
atf+y+6<E=0>1
2—a+1 g 1 -5+ | 3-3 1 1-¢ L1-¢ a§2:>0§é})ut
>0=>60<1
3
_1+o¢+% g % 5+§B %—l—% % 1-6 —5%—&-0% v/ Subcase 2
—1+C¥+§ g b 1—6—5 §+7 3 1-6 ) B<6
2—a—13 g 7 5+§ﬁ %72 % 1-6 75%+0g v/ Subcase 1
2-a—3 2 3 1-6-5]5-35 3 1-0 §-3 p<s
1 1 0 6
= 0 s—3 ) a B o 6 a>1>~>p>5 (Lemma 4.1)
6 2 2 2
l-a+3 % 7 57§ gig 20 1-6 % v/ Subcase 4
~1+a—7% 5 1 —6+§ 5.8 29 1-0 u atB+y+d>8
2—a+32 3 1 —5+5 | I-% 20 1-9¢ ¢ at+B+y+5> 3
~l+a+73 7 1 5+58 248 20 1-0 ¢ 5<0
—l+a+7 g . 1-6-5 1 248 20 1-9 1-3% a<1
2—a-17 % it 5+8 s+e 20 1-9 -g 5§<0
2—a-1 £ et 1-6-82 | 442 20 1-9 1-3¢ atpBt+y+o=120>8
g %,g 0 % B y ) a>1>~v>3>0 (Lemma 4.1)
1—04—‘,—%7 % % 5—%6 1+3§6 1-6 260 %—% a+ﬂ+'y+§1>%
~l+a—1% g . —5+5 1 1+32 1-0 26 1_¢ [;<'y:>60>8§b191t .
atpf+y+0<3=0<3%
_ ol B ol 5+ B 4 _ 1_9 ’ ¢
2—a+ 7 ; z 545 244 1-6 20 1-8 a>2
~l+a+? s z §+58 -Z2 1-0 20 -14¢ a<l1
“1+a+7% % . 1-6-5 1 1-¢ 0 20 148 a<l1
2—a—71 5 it 5+58 2-3 1.9 20 L4 §<0
2—a—7 g 1 1-6-512-3 1.9 20 144 a+B+y+s=2120>28
%—g g 0 % e B 5 1) a>1>~v>pB>5 (Lemma 4.1)
l—a+3 g 7 6—% 143 0 20 149 v/ Subcase 5
~1+a-12 g 1 —5+58 | 348 ] 20 -1+¢ 5>Oé9>8%but )
at+B+y+6<E=0<1
2—a+71 g 7 —5+5 | 2+32 9 20 —i+8 §>0=0> 1 but
8 4
atf+y+i<i=o< L
~1+a+72 g 1 §+8 33 0 26 14 a>1=0<1but .
at+pB+y+d>2=0>3
~1+a+7 g z 1-§-58 1330 26 5-¢ a>1=0<1ibut
Y>5=0>1
2—a—73 g 7 5+§ %7% 0 20 %7g v/ Subcase 6
2—a—7 g z 1-§—8 | 3¢ 6 26 5_¢ B<é

5.1 Subcase a3 is a vertex
%. Then 8 <~ implies f =6 and v = % So the
AVC = {aB6,v3}, and it gives a two-layer earth map tiling by Lemma 2.10. This is Case

(6,3,4,3)/6 in Table 1.

By Lemma 2.1, we get =0 = %77 =
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Table 7. All 29 solutions induced from Table 3

(c, 8,7,0) f (o, 8,7,0) f (o, 8,7,0) f
(35,16,18,11)/30 6 (55,16,18,7)/42 14 (79,16,18,13)/60 40
(35,16,18,3)/30 10 (49,16,30,1)/42 14 (43,6,8,5)/30 60
(33,16,22,1)/30 10 | (43,6,16,1)/30 20 | (39,8,10,5)/30 60

(19,7,9,1)/15 10 (43,4,18,1)/30 20 (35,8,18,1)/30 60
(41,10,16,3)/30 12 (83,16,18,13)/60 24 (49,4,6,3)/30 60
(17,5,9,4)/15 12 (71,16,42,1)/60 24 (39,6,16,1)/30 60
(19,3,11,2)/15 12 (23,3,5,1)/15 30 (47,4,10,1)/30 60
(67,12,50,11)/60 12 (41,8,10,5)/30 30 (77,10,36,1)/60 60
(71,8,54,7)/60 12 (37,8,18,1)/30 30 (59,6,20,1)/42 84

(41,8,18,3)/30 12 (67,16,42,1)/60 40

a K a
B )
a+b
Figure 20.

Degenerate case @ =1 and the subcase v+§ = 1.

5.2 Subcase a6 is a vertex

By Lemma 2.1, we get § =0 = %,fy =1- %. Then § <~ implies f > 8 and v > % By the
angle values and Parity Lemma, we get the AVC C {a~d, 73,6272,046% 5,ﬂ%fy,ﬁ%}.

When f =4k+2(k > 2), we have the AVC C {a’yé,’y3,52’y2,65}, and the only solution
satisfying Balance Lemma 2.6 is {favd,20 %} which gives a two-layer earth map tiling by
Lemma 2.10 .

When f =4k (k> 3), we have y=(k—1)8, a+0 = (k+1)5 and the

_ t
AVC C {av6,7%, 242, aB 16, By, B2 .

Trying out all possible -vertices as the previous section, there are always four tilings as
shown in Figure 10’, the second picture of Figure 21 (flip once), Figure 22 (flip twice with
different spacing). Only when f = 12, we can apply the first flip modification in Figure 5
(after interchanging a <+ § and (3 <> ) three times, as shown in the first picture of Figure
21. This is because 3(k—1) > 2k when k > 4.

All above tilings belong to the first infinite sequence in Table 2.

§6. Concave case 3> 1

The quadrilateral with 8 > 1 is shown in Figure 23. We first prove some basic facts.
Recall that Lemma 2.4 " implies v+ 26 > 1.

LEMMA 6.1. In an a®b-tiling with B > 1, we have a <b, a < ~,d and a < %
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Y v ol v B B
B X a
a 5 a s a s 5 b K
Y6 « Y « Y|l6 o B 0457
a 5|7 b a 5|7 THal P
N 6,
5 o o 5 @ a§|Y B oy
§ B @
Y v ol v B8 B
T(6ay8,273,6a326) T((4k — 2)ayd,2a8%~16,26% 1)
Figure 21.
Two degenerate a>b-tilings.
v ol Y ol
5 o J o)y 8 a§ 8 a§ o 3 o §
B Yo« B 7|6 o B 7|6 @ B 7|6 o
5. 066,y 4 55. a&,y 5. aé,y 55. aé,y
W60¢ ..,8 7604 ,_ﬂ ’yéoc ._55 75a ‘ﬂ
o 5|y B - 70457 B o §|Y B 70467 B
§ a B 5 a s 5 a E) E
v vy vy vy

149

Figure 22.
Two tilings for {(4k —4)a76,26%% 405" "6}

Figure 23.
a®b-quadrilateral with 8> 1,a,7,8 < 1.

Proof. In Figure 23, by > 6, ZABD =3 —1 > 6 —1 = LZADB. This implies a < b.
Then Z/CAD < ZACD, that is, a+¢ <~y+¢. So a <~v. By Lemma 2.2/, a <. If a > %,
then ~,d > %, and there is no 3--- vertex. So o < % U

LEMMA 6.2. In an a3b-tiling with 3> 1, B5--- is a vertex and f+6 < 2.

Proof. If B6--- is not a vertex, by § > 1 and Parity Lemma, we get ([--- =
a®B,aYByE, By (x,y,w > 2,2 > 1). Then #a+ #v > 2#F = 2f, and there is only one
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solution satisfying Balance Lemma 2.6: {goﬁﬁ,gﬁfﬂ,%ék}. But this implies a = v,
contradicting Lemma 2.3". Therefore, 86--- is a vertex. O

To find rational a%—quadrilaterals by solving (2.5) or (2.6) via Proposition 2.14, we have

to transform a—%,g,%é % (5—ft0 the range [0,2] For (2.5), by Lemma 6.1,
wehave—%<a—%<%,%< <1 0< <7and 1<5—§<7 For(2.6),byLemma6.l,
wehave0<a+ <1,%<ﬁ<1O<7<2,wh1ch1rnphess1n(5+ ) <0. By2<5+ <2,

we get 1< 5+ < 2. If 3 < 5+ < 2, we get B+5 > 2, contradlctmg Lemma 6.2. So for
the equation (26) Wehave()<a+ <1l,i<§ b<1,0<2 1< 1and 1<5—|— < 3. Thus, we
have to consider the following five ch01ces

{Oé 7 §7%>5 g}
B B
{ Oé+ ]- 55%7 6 }
{@1,m2,23,24} = {—a+2,1 £1,-6 g}, (6.1)

(a1 53145+ )
(1-a-2,1-8,2 -1+6+2}.

We will match these choices with four cases of solutions in Proposition 2.14 as follows.

6.1 Case 1: xyx3 = x324 =0

By —1 <(5—§ < %, —% <a—13 % and 1 <5+§ < %, the only solution of xixs =
r3x4 = 0 for (6.1) comes from o= 3,5 = g Then we get 3a++6 > 2. By R(8d--+) <
3a, 3,0, Parity Lemma and Lemma 6.2, we deduce that afd is a vertex. This implies

a= %,ﬁ = %— %,7 = %,5 = %— % By the angle values and Parity Lemma, we get the

3x42 F—3y+2 2f— 3z+1

AVC C {aﬂé,aé‘g,oﬂﬂ’yke ,oYy e 0%, 0%y J,a¥ ’y “2"}. Then we know there is
no 32--- vertex, which further implies that (by AAD) the

AVC C {aBs,a8%,0°8y"5 0>y 5 62,8776 45 6% a5 6,77},

When f =6k or 6k+2 (k> 1), we have the AVC C {0, a63,7£}, and the only solution
satisfying Balance Lemma 2.6 is { fa/39, 275} which gives a two-layer earth map tiling by
Lemma 2.10.

When f=6k+4 (k>1), we have = (2k+1)y, a+ 6 = (k+1)v and the

AVC C {aB5,06%,02By*, a2* 52, Byt FH162 ay2ktls 43},

We will discuss all possible v-vertices in any tiling as follows. Whenever 'y% is a vertex,
the tiling must be a two-layer earth map tiling by Lemma 2.10. If *yé never appears, we
have the following subcases.

6.1.1. Subcase azﬁvk appears (,yé never appears)
By the AVC, %--- is never a vertex. Then a?37* has only two possible AAD. In

Figure 24, a?B~* = 18~°18a°19aP19~P| ... determines Ty, T5,T5,Ty. Then Bod; --- = as P01
determines Ts. So IBslval--- = IBslyalad -+, 18517alP~°%1 - or |B5lyal®4Bl. .. If IBslsl--- =
|85l y2lal - or 1851ya1P~°1 - we get 8205 - -+ = 0203 - - -, contradicting the AVC. So we have
1B51yal--- = |,85|72|5*ny| .-+ which determines Ty. Similarly, we can determine 17,7Tg. Then we

get 82030607 - - -, contradicting the AVC. Therefore, o27* = 18~°18a19af1pI - -
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Y «
® ®
A e A 1
s o B dN\S
® ®
9} 8 «

Figure 2.
One possible AAD of a28v% = 1°4°1°a1°aP1°~7] . ..

[e%

Figure 25.
One special tiling for {(6k — 2)a35,2a6°,2a26~*, 48751}

The AAD azﬁfyfg 1842180318011 - determines T, TQ,T3 in Figure 25. Then
R(lalalBl---) = ~* and this * determlnes k time zones (2k or £32 tiles). We have B2+ =
|56|V2|5046|' ) |56|72|67 - or |56|72 75| At Beya- e = |56|72|BOZ I or |56|72|B’76|"'7
then we get [30203---, contradicting the AVC. Therefore, Beva -+ = |Bglyal®yPl- .. This
determines T%. Then 020367+ = agdad3d7 determines Tgz. We have |Bglyalvyl--- = a?B~F
or By If 1Bglyalyrl - = a2pyF = |f3a|a|ﬁ6|72|5'y7’8|--', this gives a vertex 3%---, contra-
dicting the AVC. Therefore, |Bglyalyrl--- = pyF+1l = |66|'yg|5773|57ﬁ| .-+ determines Ty. Then
R(Beyz--+) =~F and this v* determines k time zones (2k or % tiles). Similarly, we get
Bz |5g|(S ’Ym .- = By¥*+1 which determines Thg. Then R(Bsy3710---) =~*~! and
this v*—1 determlnes k—1 time zones (2k —2 or f_310 tiles). Then 3010+ = a1283010
determines T1s. So only two tiles are undetermined. By checking all possibilities, it turns

out there are 3 different Ways to arrange these last two tiles, and Figure 25 shows one
way with ﬂll'y 5= ,6’7 5. Then a95 = a95145 determines Ti4; ai14897y 5=
arsfoy’ a115145 = 04115145155, By e - = Bay’ T 15,0405 - = auBrsdsdetermine
T15. Centering 174,715 in Figure 26, it becomes clear that they form a hexagon with three-
fold symmetry, and the other two ways are obtained by rotating the b-edge 120° and 240°,

respectively.
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Figure 26.
Three special tilings for {(6k —2)a35,2a6%,2a%~*, 4671}

Figure 27.
T((6k +2)a 88,2875, 2a425T16).

6.1.2. Subcase ay?**+1§ appears (04267’“,75 never appear)

If azﬁ'yk,yé never appear, Balance Lemma 2.6 implies the
AVC C {aps,a’y% 6%, ByP Tt any?h s},

In Figure 27, we have the unique AAD ay? 1§ = 19491Pa3l*6]1P~3] - which determines
Ty, T3. Then R(adz---) = 2%t and this v?**! determines 2k + 1 time zones (4k +2 or
sz—2 tiles). Then 18419451 = 184159519481... = By*+1 Then R(Bsvs---) =~* and this ~*
determines k time zones (2k or % tiles). This tiling is exactly the second flip modification
in Figure 5.

6.1.3. Subcase a?v*§2 appears (a2ﬁvk,ay2k+16,7% never appear)

By the AVC, 52--- is never a vertex. Then a?v*§? has only two possible AAD. In Figure
28, a27%62 = 1808190519481 .. determines Ty, Ty, Ts. Then Bods--- = 203 determines Ty;
Baya - = Bayays - = By By 75, we get 86102+ or 61020, contradicting the AVC.
Therefore, a?~v%6% = laldsl---lalél---.

In Figure 29, a?~v%62 = 18319671 18~°1 ... 18a312§]1- - - 1P~°] ... determines T}, T5, T3, T}.

Then R(a?62---) = 4* determines k time zones (2k or % tiles). Then R(B7y2---) =
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a «a Y
0] @ ®
B 7 4|d Y Blg o B
; VNB & §
5
Figure 28.

One possible AAD of a?~*6% = lalal---.

e 8 Y a é Y
@ @ ©) @
8 s a B Y 8 s a B 8
4 4
’Y- ’y-
5 3 ald B o 3 al o B
6 « Y 1 « Y
Figure 29.

Many different tilings for {6ka 35,2022 46y}

Table 8. All 10 subcases of {x1,x2} = {x3,24}

ri(=23=13) x4(:x2:1—§) T1 =24 (&:1—%2%)
a—7 58 =1 a-3=6-2 f<4
—a+1 1+6-5 6=0 —a+1=1+6-5 |a+5=0
—a+3 —5+5 a=0 —a+i=-6+2
a+3 ~1+35+5 a=0 a+l=—1+6+2 | B+5>2
1-a—1 -2 f=4 l-a-2=-14+6+5| f=4

R(Bvs4---) =~" and each of these two v* determines k time zones (2k or % tiles). This
tiling can also be obtained by applying the second flip modification in Figure 5 two times.

If the AVC C {afBd,3vy*1}, there is no solution satisfying Balance Lemma 2.6.

In fact, one special tiling in Figure 29, as shown in the first picture of Figure 30, is related
to Figure 25 by a special flip modification along Ls in Figure 30.

All of the above tilings belong to the second infinite sequence in Table 2.

6.2 Case 2: {x1,z2} = {x3, 24}

We can fix x5 =1 —g and 3 = 7 in (6.1). Then either z1 = 3, x4 = 22 as listed in the
left of Table 8, or &1 = x4,x2 = x3 as listed in the right. All solutions are ruled out by the
fact listed in the other column of Table 8 except one solution —a+3 = —d+ g, 1-— g = 1.

By B++v =2, we have 3--- = a”$6Y. By #a+ #§ > 2#0 =2f and a # J, there is only
one solution satisfying Balance Lemma 2.6: {faf34, 275}. Then a = —% + %,ﬁ =2-— %,’y =
%,5 = % By a >0, we get f < 8 which forces f = 6. This solution admits only a two-layer
earth map tiling T'(635,2v?), and is Case (1,8,4,3)/6 in Table 1.
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6.3 Case 3: {x1,x2} = {6,0} and {x3,z4} = {5,5 - 5 ,or {xz, x4} = {6,0}
and {x1,z2} = {2, 2 9}, for some 0 < 0 < ;
In Table 9, we list each of these 5 x 8 = 40 options. It turns out 36 of these options are
dismissed by Lemma 2.1, Lemma 2.4/, and Lemma 6.2. We list the corresponding details
in the right-hand column. The remaining four options are summarized as follows:

Loa=—g+3, B=2y, d=—3+3, FH<1<3;
2. f=4+20, 72%7 § = 3a, Tea<y;
basll pelen st gosy
4oa=g, =143, d=5+71, 3<7<3
6.3.1. Subcase a=—3+73,8= 2’y,5——§+2,15<7

By the angle values and Parity Lemma, only a6, £§2 and 73 can be degree 3 vertices.
If 362 is a vertex, we have o = 1—25, 8= g, v = %, 6= % Then 3--- = 362, a®B6 or a®B. So
Ha+#0 > 2#8 =2f, contradicting Balance Lemma 2.6. So 3§ or ¥2 is a vertex. Both
cases imply a = 6, 6= 3, v = 2 , 0= , and f = 6. This implies all vertices have degree
3. There is only one solution satisfying Balance Lemma 2.6: {636,273}, and it gives a
two-layer earth map tiling by Lemma 2.10. This also gives Case (1,8,4,3)/6 in Table 1 (see
Remark 2.16).

6.3.2. Subcase = §+2a,7 = %,6: 301,% <a< %

R(BS---) < Sa,ﬁ 0, Parity Lemma and Lemma 6.2, we get 30 is a vertex. This
impiiesa—g, 9 0y = (5:%.Thenﬁ~--:a65,a4ﬁ. By #8 = #«, we have 8--- = af0.
There is only one solution satisfying Balance Lemma 2.6: {12a38,27°}, and it gives a two-

layer earth map tiling by Lemma 2.10. This is Case (2,10,3,6)/9 in Table 1.

6.3.3. Subcasea—?’—'y =1+3,0=

R(Bo--+) < 3oz,ﬁ,5 Parity Lemma and Lemma 6.2, we get afd is a vertex. This
1mphes a= 6,6 ,7 2 ,0 = %. Then oo+ = 4~ and B =5v. Then we get f=18. By
the angle values and Parity Lemma, we get the

4,15<’y

AVC C {aBs,a’y6%, Byt ot By, an°0,0°9%5,47,a*°,a®y%, a'?Y.
By #6 = #a, we have a--- = §--- = a8, a?v6? or ay®s. Therefore, the
AVC C {aBs,a’y6%, By, ar°5,7"}.

We will discuss all possible vertices containing v in any tiling as follows.

If 42 appears, the tiling is a two-layer earth map tiling by Lemma 2.10. This is Case
(3,20,4,13)/18 in Table 1.

If ay®5 appears (7 mnever appears), then ay®6 = 1Pafl*5]1843l... determines
T1,T5,...,T7 in Figure 31. Then [403--- = agf403 determines Tsg. Simllariy, we can
determine Ty, T10,T11,T12. Then B3yz--- = B3y2713714715- By 713, we get Bz = [Bad13---
which determines T73. Similarly, we can determine T74,715. Then 82013 = a1682013 and
Qo071 -+ = ap 81601 determine T7g. Similarly, we can determine Ty7,T1g. This tiling is exactly
the second flip modification in Figure 5
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Table 9. Case {x1,v2} ={%,0} and {zs,z4} ={%,2 — £} or {ws, 24} = {1,0} and {z1,22} ={%,1 — £}, for

80m60<9§%

0 B ¢ i-2 @ Jé] y 0 v+25>1,8+8 <2 (Lemmas 2.4 and 6.2)
B B 30 5 4_ 0 8
DTS - SRS R A AR o | MOSIE
—a+2 1-5 2 1+6—5 -z 2 =5 a<0
BOE TN B B B
aty 1 3 2 o+ 3 2 3 o 313 a<0
8 0 5 5_ 98
Oé-f—% l—g % —1+5+g 539 g 0 g—g B+06>2 .
1—a—% 1—5 % —1+6+§ 1—2 3 6 3732 oz+,3+'y+(5>§
0 é %—% g «a B 5 é v+26>1,8+6 <2 (Lemmas 2.4" and 6.2)
8 B 1,06 5 5,06 _ 8
DA S SN P S N S RS
—Q A — £ s — = = — =27 2 — — = =z v = £
DV ST B A S-S S R S B o y
atl 1 ;2 i+8  1_& 2 1-9 £-¢ B+6>2
a+l 1-2 2 -—145+8 1432 2 19 148 a>0¢0>%b1{c
l-a—21-52 2 -145+& 1-¢ 2 1-¢ 149¢ a<§=0>1but )
% 0 % %—% «a B 5 é ¥+2§>1,84+d <2 (Lemmas 2.4" and 6.2)
6 0
a-2 1-8 2 i-£2 148 2-20 9 2-3¢ ﬁ>1¢9<8%but )
at+B+y+d< =025
—a+2 1-5% 2 145-8 149 2-20 o L1-320 y+25<1
—a+7 172 1 —5+8 148 2-2 9 L1-¢ y+25=1
a+2 1-2 2 —1+5+8 1-9 2-20 0 148 a>o:»9<§bqt
5 5 s ) ) 0 ,8+6<2:>0>8§
l—a—2 1—5 % —1+6+§ 6 32 2—260 (4 §+§ Oé+,8+’y+(5>§
1 1_96 0
5 0 5-3 5 «a B ~ 1 v+26>1,8+6 <2 (Lemmas 2.4" and 6.2)
B B 2_ 0 [4 1
a-27 1-5 7 -5 -5 2-201-0 1-3 B>1:>9<8§but )
04+/3+’Y+5§§:>92§
—a+2 1-£2 2 145-5 1-¢ 2-201-9 % 5<0
—a+7 1—% 1 —+L 1-% 2-201-0 1-2 v Subcasel
atZ -3 z 71+6+§ -1+% 2-201-9 % a<0
l—a-% 1-52 % -—1+6+5 L+% 2-201-0 22 a+B+y+5>2
g %—% é 0 a B ~ 8 Y+256>1,8+6 <2 (Lemmas 2.4 and 6.2)
B B 1,0 1 1, 36
a—73 1—5 Z 6—56 §+g 140 3 §1+739 V4 Subcasle2
—a+2 1-2 2 145-£ 1-%2 149 1 1432 a>0=0<1but
§>0=60>1
—a+d 1-2 3 -ovd Ao 1s0 1 1ot atito+d 22
a+2 1-2 2 —1+5+8 149 140 L 148 oz>0:>9>éblit
B+o<2=0<;
l-a-2 1-% 1 -1+46+% 2-2 140 % 142 atfry+o>g
g %—% 0 é @ B8 ~ § v+26>1,8+6 <2 (Lemmas 2.4" and 6.2)
B B 36 2,80
a—3 l—g 3 6—5[3 3 1+6 26 §1+59 v/ Subcase3
—a+1 1-5 I 146-%5 5 1+6 20 —3+3 §<0
—a+ 7T 17é Z 75+§ g 1+60 20 %Jrg v/ Subcase4
o+ 1-% 1 —1+5+§ -4 146 20 2-2% a<0
l—a—3 1-5 § -1+3+3 1-32 146 20 2-% atf+y+6>3
%—% g 5 0 «a B ~ 8 Y+256>1,8+6 <2 (Lemmas 2.4 and 6.2)
B B 2_ 0 1 0
a—73 1—g Z 5_56 57, 2—6 3 14{;5 6>1
—a+ 7 1—g 3 1+6—-5 —3+5 2-60 3 g at+B+y+06=2
—a+1 1-2 ¥ 645 148 2-9 LI 1-3¢ a<0
a+ 2 172 . 71+6+§ 1-9% 2-9 1 36 B+35>2
l-a—2 1-2 2 14442 148 929 1 30 atpB+y+5>2
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Table 9. (Continued)

%—g g 0 % «a B v § ~4+25>1,8+5<2 (Lemmas 2.4 and 6.2)
a—13 1—% T 5-Z 1+8 2-020 T-¢ a+B+y+6>%
—a+3 1—g T 1+6-8 1438 2920 12 y+26<1
—a+3 1-5 3 75+§ *%4’% 2—-6 20 %fg a>0:>0>%but )
at-+6<E=0<1
a+d 1-£ 2 -146+% 1-38 2-920 1+¢ a>0:»0<%blit
B+6<2=0>3
l-a-2 1-2 2 —146+5 1-8 2-0920 14+¢ at+B+y+6>%

{(6k —2)a85,2a27¥ 52,47 4+1}

Figure 30.
A special flip modification (% tiles flipped).

Figure 31.
T(16088,26~*,20°6).

If a2~ appears (ay°d, 79 never appear), it has only two possible AAD since there is no
vertex 32--- by 8> 1. In the first picture of Figure 32, a2y82 = 18all9af 176312618~
determines T7,75,73,T4,T5. Then (105 - = agf105 determines Tz. We have [gyy--- =
Bevivry2. By 77, we have B76102--- or 610207 ---, contradicting the AVC. In the second
picture of Figure 32, a?y6% = 1Pad1*5]1Pa31*5]1°~2| determines Ty,T%,T3,T4,T5. Then
B105 -+ - = agP105 determines Ts. Then B5y4--- = Bsvay77879- By 77, we get By--- = B467---
which determines 7. Similarly, we can determine Tg,Ty. Then B407 -+ = 108407, 403+ - =
a4f1003 determine Thg. Similarly, we can determine 171, T1o. After repeating the process
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Figure 32.
T(14088,202~6%,48~%).

Table 10. All 10 solutions induced from Table 3

(o, 8,7,6) / (o, 8,7,6) /

(5,32,18,11)/30 20 No degree 3 vertex (13,66,32,29)/60 12  No degree 3 vertex
(5,32,6,23)/30 20 [ (532,14,13)/30 30 B---=p" or &’ |
(1,42,4,17)/30 30 (3,32,22,7)/30 30  No degree 3 vertex
(1,17,9,4)/15 60 No degree 3 vertex (1,19,3,8)/15 60 No degree 3 vertex

[ (1,21,58)/15 12 \ (7,66,8,49)/60 24  No degree 3 vertex
one more time, we can determine Tis3, Th4, ..., T1g. This tiling can also be obtained by

applying the second flip modification in Figure 5 two times.
If the AVC C {af36, 5y}, there is no solution satisfying Balance Lemma 2.6.

6.3.4. Subcaseazz,5:1+%,5:%+%,% <fy§%

By R(B6--+) < ba, 3,0, Parity Lemma and Lemma 6.2, we deduce that a3 or a®34 is
a vertex. If 89 is a vertex, then o = %,B = %,'y = %,5 = % There is only one solution
satisfying Balance Lemma 2.6: {636,273}, and it gives a two-layer earth map tiling by
Lemma 2.10. This also gives Case (1,8,4,3)/6 in Table 1. If a®v4 is a vertex, then o =
%, b= %,'y = %,(5 = %, which does not admit any any degree 3 vertex, a contradiction.

6.4 Case 4: {x1,x2,23,24} are in Table 3.

There are 8 x 5 x 15 = 600 subcases to consider, but most are ruled out by violating
0<a,vy,0<1,1<p<2,f being even integer or 5+ 9 < 2. Only 10 subcases are left in Table
10. But six of them are ruled out by not admitting any degree 3 vertex. Four remaining
subcases are boxed.

6.4.1. Subcase (5,32,6,23)/30

By the angle values and Parity Lemma, we get 3--- = o35 or o?3v3. By #8 = #a, we
get B--- = af3d, which determines a two-layer earth map tiling 7'(20a35,2v?) in Table 1
by Lemma 2.10.

6.4.2. Subcase (1,42,4,17)/30

By the angle values and Parity Lemma, we get 3--- = a36, a28y*, a®p73, a'?B~2, a8y
or a'®B. By #8 = #a, we get 3--- = af3§, which determines a two-layer earth map tiling
T(30a36,2v'%) in Table 1 by Lemma 2.10.
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Figure 33.
B =1 and the subcase a+9d = 1.

e 4 v Y o 1) o] 0
8 sl B 8 sle B . Y 38 sle B 2
ol Y
A v V.
5 3 = ~ 7 o PR 7 e CRA
0 @ 2l 2l é e’ 0 «
T((4k —2)aB6,2av%68,26v%) T((4k —4)aBs,2a262,48~F)

Figure 34.
Two flips of T'(4ka35,27%*) if =1 and a4+ = 1.

6.4.3. Subcase (1,21,5,8)/15

By the angle values and Parity Lemma, we get 3--- = afd or a*By. By #8 = #a, we
get 3--- = a4, which determines a two-layer earth map tiling 7'(12c,38,27°%) in Table 1 by
Lemma 2.10.

6.4.4. Subcase (5,32,14,13)/30

By the angle values and Parity Lemma, we get (3--- = 3+2 or a®3§. There is no solution
satisfying Balance Lemma 2.6.

§7. Degenerate case 3 =1

If 8 =1, the quadrilateral degenerates to an isosceles triangle in Figure 33.

By =1, we have a+~v+0 = (1—1—%). By Lemmas 2.2/ and 2.4/, we get § > a and
v+20 > 1. By a+b> 2a, we get b > a. This implies v > a. If a > %, then R(B---)=1<
200 < 27,25. So B--- = a?3, contradicting Balance Lemma. We conclude that a < % and o?f3
is never a vertex.

If aBd is a vertex, we have a+d=1,=1,y= %, as shown in the second picture of

Figure 33. So a = 1, and we get o = arctan(2tan 27”) by the cosine law. This is equivalent to

39
cos(§ —a— 27”) —3cos(5 —a+ 27”) =0 by the product to sum formula. Then Theorem 6 of
Conway—Jones [3] implies that « is irrational for any even integer f > 6. Thus, this belongs
to the irrational angle case in [11]. Such quadrilaterals always admit two-layer earth map
tilings for any even integer f > 6, together with their flip modifications when f =4k as

shown in Figure 34.
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If B4 is not a vertex, then we will find all tilings by discussing all possible S-vertices. If
o®B(x > 4) is a vertex, then its unique AAD la#1%al .- at a®B(x > 4) gives a vertex 52---,
contradicting 8 = 1. Similarly, a¥6(y > 5), o By(w > 4), aPy%(p > 2) and a*6*(z > 4) are
not vertices.

7.0.1 Subcase v > §

Then we have 5>y >¢§ > a. By y+2§ > 1, we get 7 > % By the angle values and Parity
Lemma, we get 8-+ = 32, a2B~,36%(x >2) or aPB69(p > 1,p+q > 4).

If 8?2 is a vertex, then v = %,a—i—é > %,i <d< % So we have 3--- = 372, a?B7y or
a3/6. They all satisfy #a + #v > 2#8. If a?By or o34 is a vertex, then #o + #v > 2# 8,
contradicting Balance Lemma 2.6. If 3--- = 32, then #~ > #/, again a contradiction.

Therefore, we have 3--- = a?3v,86% or aPBd%. They all satisfy #oa + #6 > 2#5 = 2f.
There is only one solution satisfying Balance Lemma 2.6: {g B62, gaz ny,2’y£}. This implies
%— %, v = %, 0= % By 1>~ >0, we get 8 < f < 16, which do not satisfy (2.5) in
Lemma 2.13. We conclude that there is no tiling in this case.

o=

7.0.2 Subcase v < 6

Then we have 8> 4§ >~y > «a. By y4+20 > 1, we get 6 > é By the angle values and Parity
Lemma, we get 3--- = 362,336, By%(x > 2) or aPByi(p>2,q>1).

If 362 is a vertex, then v < § = %, a+y> % So B+ = 82,028,336 or By (y > 3).
If o336 is a vertex, then B--- = 382 or a®B5. So #a + #5 > 243, contradicting Balance

Lemma 2.6. Similarly, 37Y is not a vertex. So 3--- = 362 or a?/3y. There is only one solution
satisfying Balance Lemma 2.6: {5552,5a2ﬁ7,2y£}. We get o = % — %,ﬁ =1,v= %,5 = %

By v < d, we get f>16. By (2.5) in Lemma 2.13, we get f = 16, a contradiction.

If 362 is not a vertex, we have 3--- = a9, 57 or a? B9. They all satisfy #a+#v > 248.
If o386 or aPBy? is a vertex, then #a + #+v > 2#03, contradicting Balance Lemma 2.6. If
B = pB~*, then #~ > #0, again a contradiction.

7.0.3 Subcase v =6
By v+25 > 1, we get y=0 > % By the angle values and Parity Lemma, we get §--- =
B2, B6%,0%By or a3B6. If By? and B2 are not vertices, we have B--- = a?fy or of6,

contradicting Balance Lemma 2.6. Therefore, 3v? or 362 is a vertex. So we get y=0= %
Then we get a = %. By v =0 =3, we get b=2a = 1. By the sine law % = L, we have
a= %. This implies f = 16. By the angle values and Parity Lemma, we get the
AVC C{B?, 562, 0°B,7* 7202, 6, 0’767}

If a?v62 is a vertex, it has only two possible AAD. In the left of Figure 35, o762 =
|5a‘13|5ag|75§“|a61|57g| determines Ty,Ty, T3,Ty,T5. We have Byvys3--- = By? or a?fBy. If
Boys - = a?fy, we get the AAD laP1P4l... at a?B~. This gives a vertex $2---, contra-
dicting the AVC. Therefore, Ba7ys--- = |7B§‘|57g|57g| determines Tg. Then B3 - - = B30607
determines T7%. Similarly, we can determine Tg,Ty. Then we get agayy7ys -+, contradicting

the AVC.

In the right of Figure 35, a?v§? = 1%asl*6]1Pagl--- determines Ty,T»,T3. We have
B3ya - = By% or o?By. If Bgya--- = a?By, we get the AAD laP1P4l... at a?B~. This
gives a vertex 2---, contradicting the AVC. Therefore, B3y - -+ = 17851921547 | determines
Ty. Then B0y --- = B26405 determines Tk; lyslagldil- - = lyslasldilagld;| determines Ty, Tx.
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;@ B D
o’ °® % A 5|
B NV B &
T osls Y ®
G ® @
a  §|B oo Bl§ o v 6 fa
(e 1 Y/ \Y 1 «a
@ O
B B
Figure 35.
Two possible a?~62 and their AAD.
Y v B v v B
©) ) ® ©) ) ©)
5 a Bl a Bla 5 2l B a 5o @ Bla 5 v
o0 oI Yo 6 a 56 alNB Ne §
! /3® ! ®66@’7 ﬂ77®67 o 6@5’7
« a
5[5 ©7 Y6 108
5 oy 52l
Figure 36.
Two possible AAD for A~2.
Similarly, we can determine Ts. Then oyas3g--- = 1° ail‘sag 178818431 determines Ty. We get
Bav3dg - -+, contradicting the AVC.
Therefore, a?v3? is not a vertex. This implies - -- = a?37.
If B2 is a vertex, it has only two possible AAD. In the first picture of Figure 36,
By = |‘57f|‘57§|0‘ﬁg| determines T4,T5,T5. Then laslBsl - = |‘5a§|75§‘|/37g|5aﬁ| determines
Ty, Ts; laslpsl-- = |‘Sa§|vﬁ5‘l|57g|f8a$|, B10267 -+ = 10207 determines Tg,T7; Brdg--+ =

B7060s determines Tg. We get a17y7ys -+ -, contradicting the AVC.

In the second picture of Figure 36, fv? = |f8’yf|5’y§|o‘ﬁg| determines T4,7T%,T5. Then
las|Bol - - - = 190517 2184218 041 determines Ty, Ts; lagl B - - - = 1Paf 17 2184218081 determines
TG,T7; (51(52(57‘ = 51525758 determines Tg; 5756 ree = ﬁ7(5659 determines Tg; YrY8Yo - =
YrY8YoY10- We get BgB10--+ or BgfBig---, contradicting the AVC.

Therefore, 372 is not a vertex.

This implies the AVC C {362, a28v,7*,~7%0%,6%}. There is only one solution satisfying
Balance Lemma 2.6: {8362,8a237,27*}. We have the AAD ~* = 1742184915~31843| which
determines Ty,75,T5, Ty. Then (501 - -+ = B20105 determines T5. Similarly, we can determine
Ts,T7,Ts. Then asagys--- = |f8ozg|5ag|7ﬁ§‘|57g|. So B5--- = agf5--- or Bsvyg---, shown in
two pictures of Figure 37, respectively.

In the left of Figure 37, B5--- = agfs--- determines Tyg. Then agarys--- =
azarP10%6,BeYo -+ = 108679 - - - determine T7g. Similarly, we can determine T71,775. Then
Qg9fB5Y12 - = ag13P57y12 determines T13. Similarly, we can determine 114,715, 716-

In the right of Figure 37, B5--- = B579--- determines Ty. Then we get a different tiling
by similar deductions. The 3D pictures for these two tilings are shown in Figure 3. Their
authentic pictures of the stereo-graphic projection are shown in Figure 38. This is Case
(1,4,2,2)/4 in Table 1.
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vy Y v Y Y v Y ol
© @ ©) @ ©) @ ® @
B a §|B o §|f a B a § B a §|B o §|B a B a §
a § Y/ANX 6 Y/NX S Y/N\ Sy O Y/N\NX 0 Y/A\X 5 V/A\X & Y
B B B B B B B B
® ® @ ® ® @
5@55@5® 5©ﬁﬁ®ﬁ@
a § Y\/a § Y\/a § V\/a & 7 Y 5 o a\/T § a\/T & a\/TV § «
B a §|B a §|B a §|B a § a B[s a Bls a Bl a B
ol Y ol Y v 8l v 2l
Figure 37.
Two tilings for {886%,8a28v,2v"}.
Figure 38.
Stereo-graphic projection for two tilings of {8552,8a2ﬁ7,274}.
Appendix: Exact and numerical geometric data
Angles (a,8,7,9) Edges
(6,3,4,3)/6 a=1/2,b=1/6
(1,8,4,3)/6 a = arccos(1/3) ~ 0.3918,b=1
(12,4,6,2)/9 a=1—arcsin 2 ~ 0.5673
\/COS(TR)(272COS(%))
b = arccos VBeo( 5 ) —cot( 55 ) sin(§) ~0.1741
1+cos(% .
(2,10,3,6)/9 a= arccos(4\/§51n( —1) ~0.3390
_arccos<8cos( §)- 4\/55111(4#) 1) =~ 0.5324
(1,21,5,8)/15 a—arccos(2 il 3605(11%)) ~ 0.4241
—arccos<51 90\/53111 2” —96\/53111(1— +88cos(2")+184cos(1"5)) ~0.7413
1+6cos —75') 2005(—7;) 6cos( )+2c05(5) ~ M
cos| 7—1’
(4,9,5,17)/15 a—arCCOb(Q = 3 & )> ~0.4241
b = arccos —3+9V5— 5‘[V 1025 ~(0.1654
—9— 9f+f (VB+4)v/10— 2\/
cO COS| Ix sin|
(9,28,10,23)/30 a = arccos —2cot( ) cos( 55 ) sin( %) = 0.3353
251n sm( ‘50)
b = arccos 30+2v5-V3( 5+f) 10-2v5 =~ (0.4159
2-10V5+3v3(v/5+1)V/10-2v5
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Angles (o,8,7,0)

Edges

(3,16,10,41)/30

(5,32,6,23)/30

(1,16,6,43)/30

(1,42,4,17)/30

(3,20,4,13)/18

(1,4,2,2)/4
(5,4,7,3)/9

(15,6,10,7)/18

—
[N
—
|
S
NS
—
o)

—
[N
'S
W~

||
W~
sl

2f—2
’W)

a = arccos

cos 11" sin( 75
2o Mf (w)) ~ 0.4698

n
— arccos

~ 0.1461

28+60\/§ sin| 1—”)+61\/§ sm( %75' )+61\/§ sm(
cos( )+3c05(£

15) 61(:05(1—") 120(:05(%)
> )

a = arccos

1lo 2cot )cos(g)g)sin(g)> ~ 0.3353

2sm sln(
30+2v65— f5+f) 10—2v/5 ~ 04159
2-10v5+3v3 (v5+1)v/10-2V5

(=
(-
(=
o= arcc05<( V3 cos( muf’s‘“( >) ~ 0.4698
(
(=
(i

= arcco

Sll’l
7\f+22\/§cos(%) 24+/3 cos( 2% ) +32sin( 12 ) —18sin( 22 )
21f 66\/§cos (% )+80V/3 cos( 2F ) —104sin( 12 )+58sin( 22 )

5

= arccos

sinl V3 COS( %)

SlIl

a = arccos ~ 0.4241

9f+29 V/10-2v/5-58 /570
155427 f\/lo 2v/5—461/5—146

= arccos ) ~ (0.5493

a = arccos % — ) ~ 0.3390

o . cos(g)fl -
b = arccos 2V sin( ) —3eo(3) 1 ~ 0.4527
a=1/4,b=1/2

cot( 2= co 2—" sm 3
a:arccos(\/g () t(ﬁ 0 ) 0.1741
1+cos 5

_ 68v/8+47vBcos( 5 )+162sin( %) +162sin(F) |

b= arccos <99f+69\/§cos(g)+234s1n(2’;)+234sm(g) ~0.2584

a = arccos(4cos(5) — 3) ~ 0.2258
b = arccos (28\[8111(4;) 36 cos(%) — 13) ~0.1183
a= arccos(cos( L )(1(4?)3( )>> b=1-2a
Sin 7
f=10,a~0.4241,b~ 0.1517; limy oo a =limy_,,cb=1/3
\/gbm(df) ﬁsm(df) cos(df) cos( )+2)
\/gbm(Sf)Jr\/gbm(Sf)Jrcos(?f") COb(Bf)

V3 sin( 27 )+4cos( 2;') cos( 37 )
\/§, bm( )+3 COb( 55 ) )
V3 (oo 37 )con 35) +vBsin35)
35111( 2;’) >
f=06,a~0.3390,b~ 0.8065; limy_,o, a =lims_,, b= arccos(1/3)

\/gblIl(df)COb( )—i—coa(df)cos( 7 )—1)
o ) (Vo3 ()

¢ — arccos sm(zT”) sm( (f+}1)7r)sin(47")
\/ 2811’1( 1n (f+4)ﬂ)7 )2+2

) 7” s
sina sm —2r ¢$
b = arcsin _ i
-‘r -‘r
~ O

ff10a~04698b

a = arccos(

b= arccos(

-+ arccos

a = arccos(

s limyyooa =lmy_, o, b= arccos(1/3)
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